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Abstract

Current investigations regarding social stress primarily focus on the health consequences of being in stressful social
hierarchies. The repetitive nature of social conflicts seems to favor an induction of hyperalgesia or hypoalgesia, both
in rodents and humans. Additionally, social conflicts may affect the immune system. In order to better establish the
pain and immune responses to stress, the present study implemented a sensory contact model on 32 male BALB/c
mice. Subsequent to establishing a dominance/submissive social relationship, each mouse was injected with formalin
(20 pl, 2%) and their pain behavior was scored and serum concentrations of proinflammatory cytokines IL-1 and IL-6,
and corticosterone were also measured. Test results revealed that subordinate mice were hypoalgesic during chronic
phase of formalin test compared to control and dominant mice (P<0.05). On the other hand, subordinate mice were
hyperalgesic compared to dominant mice during the whole acute phase of formalin test (P<0.05). Corticosterone,
IL-1 and IL-6 concentrations were much higher in serum of dominant and subordinate mice than in the control group
(p<0.05). The results indicated that, although both dominant and subordinate animals displayed an increase in serum
corticosterone and proinflammatory cytokines during social interactions, their response to pain perception differently
was affected with the social status.
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Introduction

Current literature regarding social stress primarily indicates
negative health consequences of being in a stressful social
hierarchy. A person’s social ranking has a huge effect on
his/her level of stress [1,2]. Although stress is not a disease
unto itself, continuous exposure to stressful stimuli has been
directly related to onset, progression or outcome of
pathological processes [3,4]. Sapolsky et al found that there
are lower levels of stress hormones in high-ranking baboons
compared to submissive baboons while subordinate animals
displayed increased heart rates and higher blood pressure,
which have a negative impact on health [5].

A wide variety of experimental and clinical investigations
have shown that both natural and laboratory-induced stressors
have a profound influence on immune response [6-8]. Chronic
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stressors can have health-adverse effects, some of which are
mediated through immune mechanisms [9]. Additionally, acute
stress-induced immunoenhancement may serve to increase
immunoprotection. In contrast, stress may exacerbate
immunopathology, if the enhanced immune response is
dysregulated following prolonged activation, as seen during
chronic stress [9]. Chronic stress has also been shown to alter
the expression of cytokines, such as interleukin (IL)-1 and IL-6
[10]. In studies of the splenocytes of subordinate animals, high
levels of the proinflammatory cytokines including IL-6 and
tumor necrosis factor (TNF)-a were secreted [11-13]. Stressful
experiences can also directly provoke transient increases in
proinflammatory cytokines of plasma and brain, especially IL-1
and IL-6 [14].

Laboratory and clinical studies have also revealed that social
interactions between pairs of conspecifics can affect the
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response of individuals to external stimuli [15]. There has been
growing interest in the relationship between pain and
psychiatric pathologies in the past 20 years, with a focus on
sensory mechanisms of nociception in animals [16]. Studies of
chronic stress suggest that stress can produce hyperalgesia
rather than hypoalgesia [16,17]. Alternatively, it has been
shown that, in animal models of pain, exposure to a new
circumstance, or a potentially fear-inducing or stressful
situation, actually reduces pain reactivity [18,19].

The social subordinate/dominant paradigm represents a
psychological chronic stress protocol, which lends itself to a
natural experiment of the physiological alterations induced by
the chronic stress stimulus [3,20]. Group-housed male mice
establish social hierarchies, the loss of hierarchical position in a
group or the territory appears to be a key factor in determining
the occurrence of chronic state of stress [21]. Utilizing these
aforementioned models, the first objective of the current study
was to examine the relationship between dominant/subordinate
social status and the perception of pain. For this purpose,
prolonged chemically evoked pain behavior was assessed in
the formalin model. The second aim of this study sought to
establish an immune response to social stress. We measured
serum corticosterone, IL-1 and IL-6 concentrations, with the
hypothesis that both dominant and subordinate males would
show an increase in serum inflammatory cytokines and
corticosterone concentrations in response to the stress of
social interaction.

Experimental Procedures

Animal Model and Experimental Protocol

The experimental subjects were 32 naive, adult male Balb/c
mice (aged 8-10 weeks). The mice, were born, reared and
housed in same-sex sibling groups (four to eight per cage) in
Plexiglas cages at the Pasteur Institute (Karaj, Iran). When the
subjects became adults (aged 8-10 weeks), they were
obtained from Pasteur Institute. Ambient temperature was
maintained between 22 and 24 °C, and the vivarium was
maintained under a 12:12 h light/dark cycle. Food and water
were available ad libitum. On arrival, all subjects were weighed
and assigned into two groups: 1) control group (n=8); 2) stress
group (n=24). Control animals remained group-housed [22]
while stress mice were housed in cages which were divided in
two parts by a wire-mesh partition and one mouse was placed
in each of the two compartments (so there were 2 male mice
per cage in stress group and both animals had access to water
and food ad libitum and independently of each other). In this
housing arrangement, animals were prevented from fighting,
but they could see, hear, and smell each other. This trans-grid
sensory contact is regarded as passive social contact and may
alleviate symptoms of isolation. However, housing mature male
mice with sensory contact through a grid divider demonstrated
no beneficial effect, but instead led to distress and potential
impairment of their well-being [23]. This model of social stress
sensory contact has been reported to prolong the stress effects
of defeat in the subordinate animals [24].

Although some studies revealed that mice of the Balb/c
inbred strain show relatively low levels of social interaction
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[25-28], other investigations indicated that males of this strain
show inter-strain aggression and form dominant/subordinate
relationships reliably when housed together in cages [29,30].
After two weeks of habituation period the partition was
removed for 10 minutes daily (for a total of 6 days) in stress
group, and the two animals were allowed to interact freely and
attack each other. If the interaction provoked wounds in mice, it
was interrupted by lowering the partition. The dyad was
considered stable when one of the two mice achieved the
dominant social rank (i.e., for 3 consecutive days the dominant
and subordinate roles did not change) [15]. Systematic daily
observations and evaluations yielded 9 dyads which developed
clear and stable dominant-subordinate roles for the constituent
individuals. Three dyads were excluded from the study
because they could not develop a dominant/subordinate
relationship by the end of the week of agonistic encounters.

Twenty four hours after termination of the last direct social
interaction (i.e. at day 7 after starting the stress protocol), the
animals were weighed again and underwent a standard test of
pain responses to subcutaneous formalin injection.

The original research reported herein (involving animals and
their care, experimental protocols and procedures) were
approved by Institutional Animal Care and Use Committee
(IACUC) at the Medical University of Shahed (Iran). This study
was also conducted in accordance with the Guide for the Care
and Use of Laboratory Animals as adopted and promulgated by
the European Communities Council Directive of 24 November
1986 (86/609/ EEC). Additionally, all efforts were made to
minimize animal suffering and to use only the number of
animals necessary to produce reliable scientific data [31].
Twenty four hours after formalin test, mice were anesthetized
slightly with ether. Blood samples were obtained from the heart
ventricle [32] and the mice were subsequently sacrificed in
ether chamber. To measure proinflammatory cytokines and
corticosterone concentrations, blood samples were collected in
tubes and allowed to clot on ice. Then, the samples were
centrifuged immediately at 3000 rpm for 10 minutes and
serums were separated and stored at -70°C.

Nociceptive Assay

Experiments took place between 12:00 and 16:00. Briefly, 20
pl of 2% formalin (a relatively mild concentration - 1:50 dilution
of 37% formalin solution in double deionized H20) was injected
into the plantar surface of the right hind-paw. Mice were
standing on a glass floor within Plexiglas observation cylinders
(30 cm diameter; 25 cm high), and were habituated to these
cylinders for 30 minutes before the formalin injection. The mice
were removed, injected, and replaced in the cylinder [15] and
their pain response was scored every 15 seconds for 60
minutes according to the scale listed below:

No pain: Normal weight born on injected paw

Favoring: Injected paw in contact with the floor, but full
weight not on the paw

Lifting: Injected paw elevated

Licking: Licking or biting the injected paw
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The subcutaneous injection of diluted formalin produces a
biphasic nocifensive behavioral response in mice. The early
phase consists of intense licking and biting of the injected paw
during the first 6 minute interval, and reflects the behavioral
response to acute pain (phase I), while the second phase of
licking and biting occurs 15 to 35 minutes after formalin
injection and represents the behavioral response to chronic
pain (phase Il). In between the two phases, there is an inter-
phase in which pain behavior (paw-licking and lifting) is almost
reduced to zero [33]. Behaviors were measured by two
experienced observers who were blind to the implemented
conditions.

Corticosterone Assay

A commercial serum corticosterone radioimmunoassay kit
(ADI-900-097; Enzo Life Sciences) was used to evaluate
serum concentration of corticosterone in all mice. The assay
had high and low limits of detectability of 5 and 1000 ng/mL,
respectively according to a standard curve. All procedures
were performed according to the manufacturer's instructions.

Immunological Assay

Circulating immunoreactive IL-6 and IL-18 levels were
measured using commercially available quantitative enzyme-
linked immunosorbent assays (R&D Systems Europe,
Abingdon, UK) [34]. The assays did not measure biological
activity of the cytokines. Standard sensivity assays were used
and the manufacturers reported the sensivity thresholds in
serum as 0.7 pg/ml and 1.5 pg/ml for IL-6 and IL-1,
respectively. All measurements were made by a single trained
individual to avoid interobserver variation.

Statistical Analysis

Statistical analyses were performed using the Sigma Stat
software (SystatSofware, Inc., Point Richmond, CA, USA).
Analyses included two-way ANOVA test (the relation of
dominant/subordinate social status with the mean nociceptive
score in acute phase, interphase and chronic phase of the
formalin test) and one-way ANOVA test (statistical significance
for cytokines and corticosterone concentrations) followed by
the post hoc Dunnett’s test and the post hoc Bonferroni’'s test
for multiple comparisons. Additionally, the results of pain
behaviors after formalin injection were analyzed with a one-way
ANOVA for repeated measures (10 blocks) to test the
difference between all blocks in each group. A significance
level of p<0.05 was used in all cases. Data are presented in the
text and in all figures as means + SEM.

Results

Body Weight

Control and all experimental animals were similar in body
weight before the procedure. As shown in Figure 1, body
weight of subordinate subjects was less than their initial body
weight (p<0.05). Dominant social status resulted in weight loss
but this decline was not considerable (p=0.081). This finding
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Figure 1. Body weight changes in mice exposed to
chronic social stress. Experience of subordinate social
status caused significant decrease in their body weight.

*p < 0.05: beginning of study vs. end of chronic social stress
(Data are means + SEM; Controls: n=8, Dominants and
subordinates: n=9).

doi: 10.1371/journal.pone.0080650.g001

served to indicate that subordinate social paradigm has caused
noticeable weight loss.

Comparison of Pain Perception between Control and
Dominant/Subordinate Groups

An one-way ANOVA for repeated measures revealed the
characteristic biphasic curve of the formalin-induced behavioral
response in control group. The first peak of licking behavior
during the first 6 minute block reflects the behavioral response
to acute pain, whereas the second part of this curve from
minute 15 to minute 35 after formalin injection represents
behavioral response to chronic pain. In between these two
phases, there was an inter-phase (from minutes 7 to 14) in
which licking behavior was almost reduced to zero [15,33]. The
observational period was divided into twenty 3-minute blocks
(the average scale of each minute for each groups was
calculated, and the mean of 3 minutes was regarded as one
block). A repeated measure one-way ANOVA was used to
compare 3-minute blocks with each other in a group and this
analysis revealed statistical difference between these blocks
during formalin test. As shown in Figure 2, a significant
difference (p<0.05) was observed between control and
dominant mice in all blocks except for blocks 3, 5, 6, 7, 8, 9 and
11. Moreover, significant differences (p<0.05) between
subordinate and control groups were observed in blocks of 2,
3,4,6,7,8,9,10, 11,12, 13 and 15 (Figure 2).

Mean nociceptive scores of each group were reported for
each phase of formalin test (Figure 3). The average scale of
each minute for each group was calculated using data
presented in Figure 2. Subsequently, the mean and SEM of
these average numbers from minute 1 to 6 was considered as
acute phase, from minute 7 to 14 as interphase, and from
minute 15 to 35 as chronic phase. As shown in Figure 3,
chronic pain perception was affected by subordination, but
dominant status in a dyad caused no difference between
control and dominant mice. Specifically, Figure 3 reveals that
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Figure 2. Effect of social dominant/subordinate social status in the model of formalin-induced pain.

Pain scores as a

function of time. The observation period is divided into twenty 3-minute blocks (the average scale of each minute for each groups
was calculated, and the mean of each 3 minutes was regarded as one block). Data are means + SEM (Controls: n=8, Dominants

and subordinates: n=9).

*p < 0.05: significant difference between dominant and control groups in 3-minute Blocks.
# p < 0.05: significant difference between subordinate and control groups in 3-minute Blocks.

doi: 10.1371/journal.pone.0080650.g002

implementing such stressor caused significant decrease of
chronic pain sensation (hypoalgesia) in formalin test of
subordinate mice compared to control group (control:
1.38940.0822 vs. subordinate: 0.785+0.0633; p<0.001). No
statistical difference was observed between the dominant and
the control groups in the chronic phase of the formalin test
(control: 1.389+0.0822 vs. dominant: 1.464+0.0988; p=0.556).
Due to observed significant differences in the final blocks
between the dominant and control groups, we compared pain
response of from minute 36 to 60 after formalin injection (data
is not displayed in Figure 3); this analysis revealed that pain
perception in dominant mice during this time was significantly
higher than controls (control: 0.768+0.057 vs. dominant:
1.455+0.0732; p<0.001). A comparison of dominant and
subordinate mice in chronic phase of the formalin test revealed
a significance of p<0.001, in which pain perception of
dominants was higher as compared to subordinate mice.
Moreover, this figure shows no difference in the acute phase of
the formalin test between control and both dominant (control:
1.636+0.236 vs. dominant: 1.69410.174; p=0.979) and
subordinate groups (subordinate: 2.069+0.186 vs. control:
1.636+0.236; p=0.181). Significant difference was found,
however, between the subordinate and the dominant mice in
acute pain sensation after formalin injection (p=0.028) with the
subordinate animals displaying higher pain perception. A
repeated measure one-way ANOVA to compare pain phases
with each other within a group; results of this statistical analysis
are shown in Table 1 (these statistical differences are not
shown in Figure 3).
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Comparison of Serum Corticosterone Level between
Control and Dominant/Subordinate Groups

Evaluation of corticosterone concentration in serum of
experimental subjects (Figure 4) revealed that corticosterone
level was increased significantly in both dominant (mean %
SEM: 13.201+0.732 ng/ml) and subordinate (mean * SEM:
14.463+1.27 ng/ml) mice as compared to controls (mean *
SEM: 9.522+1.149 ng/ml; p<0.05), and there was no difference
between dominant and subordinate mice (p=0.724).

Comparison of Serum Proinflammatory Cytokines
Levels between Control and Dominant/Subordinate
Groups

As displayed in Figure 5-A, evaluation of IL-6 concentration
in serum of experimental subjects showed that IL-6 levels in
dominant (mean + SEM: 275.75+40.07 pg/ml) and subordinate
(mean * SEM: 446.55+98.8 pg/ml) mice have increased
significantly compared to control mice (mean + SEM:
6.371+3.239 pg/ml; p<0.05); and this increase was observed
significantly more in the subordinate group than the dominant
group (p=0.05). In addition to the high levels of IL-1B
concentration (Figure 5-B) in subordinate (mean + SEM:
55.275+17 pg/ml; p=0.01) and dominant (mean * SEM:
22.7545.053 pg/ml; p<0.05) mice compared to controls (mean
+ SEM: 0.16710.167 pg/ml), IL-1B concentration was more in
serum of subordinate mice than dominant animals (p<0.05).
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Figure 3. Effect of social dominant/subordinate social status in the model of formalin-induced pain. Cumulated pain scores
during the acute phase (cumulated pain scores from 0 to 6 min), interphase (cumulated pain scores from 7 to 14 min), and late
phase (cumulated pain scores from 15 to 60 min). Symbols/bars represent mean + SEM pain scores per group. (Controls: n=8,
Dominants and subordinates: n=9).

*p <0.05, p <0.001:: significant difference between dominant/subordinate animals and controls.

#p < 0.05, # p < 0.001: significant difference between dominant and subordinate animals.

doi: 10.1371/journal.pone.0080650.g003
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Figure 4. Effect of social status on serum concentration of corticosterone in mice. Data are means + SEM (Controls: n=8,
Dominants and subordinates: n=9).

* p < 0.05: significant difference between dominant/subordinate animals and controls.

doi: 10.1371/journal.pone.0080650.g004
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Figure 5. Effect of social status on serum concentration of proinflammatory cytokines in mice.
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Table 1. Statistical differences between the acute,
interphase, and chronic phase in experimental groups in a
model of formalin test.

Acute Phase vs Interphase vs

Chronic Phase p  Chronic Phase p Acute Phase vs

Groups value value Interphase p value
Controls 0.047 0.012 <0.001

Dominants 0.082 0.039 0.027

Subordinates <0.001 0.154 <0.001

A significance level of p<0.05 was used in all cases.
doi: 10.1371/journal.pone.0080650.t001

Discussion and Conclusion

Animals as well as humans sense differences in social
situations via a bio-psycho-neuro-social phenomenon [35-39].
In the current study, we investigated whether behavioral
response to pain could be modulated in a model of dominant-
subordinate relationships between pairs of conspecifics in a
cage [15]. Additionally, we evaluated the health effect of this
dominant and subordinate social status through measures of
serum concentration of corticosterone, proinflammatory
cytokines IL-6 and IL-1B. The behavioral analysis showed that
subordinate Balb/c mice were hypoalgesic in the chronic phase
of formalin test compared to control and dominant mice. On the
other hand, dominant mice were hypoalgesic compared to
subordinate mice during acute phase of formalin test (i.e., this
is true only for the first time point assessed during this acute
phase and the whole acute phase showed that subordinate
mice are hyperalgesic). Both dominant and subordinate mice
had elevations in corticosterone, IL-1 and IL-6 concentrations
in serum compared to control group.
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Body weight gain changes were investigated as chronic
social stress is often associated with body weight loss [40,41].
This trend was confirmed in the present study. The subordinate
mice displayed a significant decrease in body weight at the end
of the stress period compared to control animals. The dominant
mice also showed reduced body weight at the end of the stress
experience but this decrease was not statistically significant.
This finding is contradictory to the study by Savignac et al. in
which body weight loss was more pronounced in animals with a
dominant status [40]; such a discrepancy to the literature may
be due to different social stress protocols and further
investigations are needed in this regard. In general, our data
suggest that dominant mice may develop a better coping
strategy to deal with stress as compared to subordinates.

Despite the evidence that dominant and subordinate animals
show different hormonal, physiological and behavioral profiles,
data on whether these animals respond similarly to the same
stressor are sparse and entangled [42-44]. Social stress in
animal models is also known to induce increased serum
corticosterone in chronically stressed animals regardless of the
social status [40,45].In the present investigation, both dominant
and subordinate subjects displayed a distinct increase in
corticosterone levels compared to control group, confirming
that both groups of animals were stressed by the chronic social
interaction. This result suggests that while functional
Hypothalamic-Pituitary-Adrenal (HPA) axis response to
repeated stressor is an increased negative feedback leading to
reduced corticosterone response [40], dominant and
subordinate mice may have an impaired HPA axis response.

Similarly, the proinflammatory cytokines concentrations in
serum showed an increase of both IL-6 and IL-1(3 levels in both
subordinate and dominant mice compared to controls, with the
subordinates displaying higher increases than dominants. It
has been widely described that social stress can impair
immune response in a status-dependent way, with subordinate

November 2013 | Volume 8 | Issue 11 | e80650



mice being the most susceptible to immune alteration, an effect
which can be explained by the immunosuppressive effect of
increased corticosterone levels [40]. In this regard, social
defeat has been shown to affect inflammatory immune
processes, including variations of pro-inflammatory cytokines
IL-1B, IL-6, and TNF-a in blood, lung, spleen, and brain [46]. IL-
1 and IL-6 are the most important cytokines that can stimulate
the HPA axis independently or synergistically, and these
cytokines have autocrine effects in that they stimulate their own
secretion from the cells that produce them. However,
glucocorticoids inhibit the production of IL-1 and IL-6 by a
negative feedback mechanism [47,48]. Social stressors may
not only increase proinflammatory activity, but also alter the
regulation of this response. Indeed, social stressors may
interfere with the glucocorticoid-driven inhibitory process, and
thereby lead to simultaneous elevations in glucocorticoid and
proinflammatory activity. In other words, social stressors can
decrease the ability of glucocorticoids to reign in
proinflammatory response [47]. The increased IL-6 and IL-1
concentrations in both the subordinates and the dominant mice
in the present study seem to confirm such findings.

Studying the effects of social stressors may be important to
all social species, especially considering the robust social
factors affecting pain sensitivity in humans, and in light of
recent evidence suggesting the impact of social factors in
rodent pain models [15,49,50]. The impact of stress on pain
sensitivity is well established; stress has been observed to
inhibit or exacerbate pain perception depending on the nature
and/or parameters of the stressor. Indeed, it would be
advantageous to inhibit pain behavior in a potentially
dangerous situation in order to facilitate escape, whereas in
other circumstances vigilance to painful stimuli might be more
beneficial [51]. Formalin test as a model of chronic
inflammatory pain in which hind paw injection of formalin is
used to assess intense, short-lasting (minutes to tens of
minutes) persistent pain. The distinction between visceral and
peripheral pain, however, is important to the discussion for
behavioral studies, in which an understanding of pain
mechanisms is the ultimate goal [52]. During formalin test,
peripheral activation of nociceptors, through a reduction in their
transduction thresholds leads to hyperalgesia [53]. Moreover,
stress is able to directly or indirectly activate visceral sensitive
and/or nociceptive afferents inducing visceral hyperalgesia
[54]; as it can initiate inflammatory changes or enhance the
severity of pre-existing mucosal lesions. Alternatively, chronic
stress affects peripheral pain perception differently in a model
of formalin test [55]. To our knowledge, no previous studies
have reported the effect of social status on the late chronic
phase of formalin test in mice. This study, however, revealed
status-mediated differences in the late phase of formalin test.
The dominants’ response in the chronic phase of the formalin
test (from minute 15 to 35) was similar to control group.
Subordinate mice, however, were hypoalgesic in the chronic
phase of formalin test compared to dominant and control
subjects. Neurobiological mechanisms that are thought to be
involved in chronic nociceptive experience have been shown to
differ markedly from those activated by acute pain [15]. The
findings of this study suggest that impaired negative feedback
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of the HPA axis in subordinate animals may be the explanation
for the hypoalgesia observed in the chronic phase of their
formalin test. The overexpression of endogenous opiate after
stress exposure has been suggested to participate in the
regulation of stress reactivity [56]. Social stressors like
subordination attenuates sensivity of immune cells to
glucocorticoids, as inflammation of peripheral tissue leads to
increased synthesis and axonal transport of opioid receptors in
dorsal-root ganglion neurons, thus resulting in their up-
regulation. Under such conditions, the number of nociceptor
endings increases, and the perineural barrier is disrupted,
which facilitates the access of opioid agonists to their receptors
[57], and all these effects lead to enhanced hypoalgesic
efficacy at the level of peripheral receptors in inflammation [58].
Although this study did not evaluate endogenous opiates
changes in response to such social stressors, and the exact
mechanisms of hypoalgesia induced by social defeat stress are
currently not clear, it may be reasonable to suppose that the
effect of social defeat stress on pain behaviors imply the
activation of descending pain modulatory system for prolonged
stress by an increase of proinflammatory cytokines.

Stress can also cause hyperalgesia depending on the type of
stressor, as well as its intensity and duration [59]. Our results
showed that chronic pain perception in dominant mice was
much higher than controls during the last 25 minutes (from
minute 36 to 60) of formalin test. This elevated pain response
lasted about 54 minutes after the initiation of the chronic phase
of the formalin test in dominant animals (data is not displayed
in Figure 3). Recent studies have led to a clearer
understanding of possible mechanisms by which the host
response to environmental and social stresses is mediated
[60]. One modulator of stress and important variable in the link
between the environment and individual body is serotonin. The
effect of serotonin changes has been linked to aggressive
behavior, chronic pain, and social dominance [61].
Pronociceptive or hyperalgesic effects of prolonged stress
result in habituation or hyperactivity of the pain modulation
system, in which serotonergic neurons in nucleus raphe
magnus and endogenous opioid system may be modified [62].
It is well known that serotonin is a neurotransmitter for
inhibitory neurons and is involved in the pain-modulation
system [63]. Low blood serotonin levels are found in patients
experiencing migraines and fibromyalgia syndrome. Brain
serotonin is depleted in the area of the dorsal raphe nucleus,
and it seems that this accounts for chronic pain [63]. Individuals
that are more prone to aggression may be characterized by a
serotonin deficiency [64], and it seems that the increase of
chronic pain scores in formalin test of dominant mice is related
to a decrease in serotonin levels during and after the
confrontations.

In animals, repeated exposure to stressors like social
subordination was shown to affect acute pain and produce
hyperalgesia. While the mechanisms of stress-induced
analgesia have been widely described, those underlying stress-
induced hyperalgesia remain poorly understood [65].
Additionally, this study displayed some effects of social status
on acute pain. We found that the experience of repeated defeat
caused hyperalgesia in the subordinate subjects, which was
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different from dominant mice. Such results are contrary to
Gioiosa et al. study that reported hypoalgesia in defeated
intruders and hyperalgesia in dominants [15]. These
differences may be explained by the type of pain evaluated:
i.e., we scored pain behaviors whereas Gioiosa utilized the
licking time during formalin test. Additionally, there were
differences in the strains of mice and the dosage of formalin.
Further investigations are needed to explanation of this
disparity in results.

Taken together, the present study adds to the knowledge
regarding the relationship between social subordination and
pain, showing a negative association with chronic pain.
Additionally, our data displayed a correlation with
proinflammatory cytokines and an increase in corticosterone
concentration. In addition to this type of behavioral and
physiological modification in subordinates, there was an
increase in chronic pain perception in dominant mice despite
the fact that proinflammatory cytokines and corticosterone
levels were increased. Therefore, further investigations are
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