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Abstract: Since wireless sensor networks (WSNs) are powered by energy-constrained batteries,
many energy-efficient routing protocols have been proposed to extend the network lifetime. However,
most of the protocols do not well balance the energy consumption of the WSNs. The hotspot problem
caused by unbalanced energy consumption in the WSNs reduces the network lifetime. To solve the
problem, this paper proposes a PSO (Particle Swarm Optimization)-based uneven dynamic clustering
multi-hop routing protocol (PUDCRP). In the PUDCRP protocol, the distribution of the clusters
will change dynamically when some nodes fail. The PSO algorithm is used to determine the area
where the candidate CH (cluster head) nodes are located. The adaptive clustering method based
on node distribution makes the cluster distribution more reasonable, which balances the energy
consumption of the network more effectively. In order to improve the energy efficiency of multi-hop
transmission between the BS (Base Station) and CH nodes, we also propose a connecting line aided
route construction method to determine the most appropriate next hop. Compared with UCCGRA,
multi-hop EEBCDA, EEMRP, CAMP, PSO-ECHS and PSO-SD, PUDCRP prolongs the network lifetime
by between 7.36% and 74.21%. The protocol significantly balances the energy consumption of the
network and has better scalability for various sizes of network.

Keywords: particle swarm optimization; clustering; routing protocol; wireless sensor networks

1. Introduction

Wireless sensor networks (WSNs) have attracted widespread attention in recent years. Due to the
low cost, small size and self-organization of sensors [1], WSNs have been adopted in diverse application
fields, such as military, crime prevention, environmental monitoring, health care services, vehicular
movements, etc. [2–4] As sensor nodes are supplied by non-rechargeable batteries [5], designing an
energy-efficient routing protocol to prolong the network lifetime is a vital issue in WSNs.

A number of routing protocols have been proposed to reduce the energy consumption of WSNs.
Among them, the clustering scheme has better flexibility and scalability, and is considered to be one
of the most effective solutions in this regard. Therefore, most of the current researches on routing
protocols are based on the clustering scheme, such as LEACH (Low-Energy Adaptive Clustering
Hierarchy) [6], PEGASIS(Power-Efficient GAthering in Sensor Information Systems) [7], HEED (Hybrid
Energy-Efficient Distributed clustering) [8], EEMC (Energy-Efficient Multi-level Clustering) [9] and so
on. Clustering can improve energy efficiency, but it can cause hotspot problems [10,11].

Many energy-efficient clustering routing algorithms have been proposed to solve the hotspot
problem. Reference [12] proposed a gravitational search algorithm (GSA) based clustering and routing
algorithm. GSA uses formulae to elect CH nodes and assign nodes to address the hotspot problem.
The UCCGRA (Unequal Clustering and Connected Graph Routing Algorithm) algorithm [13] considers
the clustered network with unequal size based on sensor energy used for the transmission. The work
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highlights the concept of balancing the node energy for inter and intra cluster communication.
In UCCGRA, the vote based selection of CH nodes creates more control message overheads
during re-clustering, which cause unnecessary energy depletion. Grid-based clustering protocols,
such as [14–16], form clusters by dividing the network area into grids. The size of the grids away from
the BS is larger than the size of the grids near the BS, which can alleviate the hotspot problem to some
extent. However, for a network environment with uneven node distribution, grid-based clustering is
unreasonable. Because there may be a large difference in the number of nodes in the same size grids.

The aforementioned protocols improve the energy efficiency of WSNs. However, not all the
protocols carefully consider the distribution of nodes. Moreover, most of these algorithms focus
only on the selection of CH nodes. They do not carefully consider the distribution and scale of
clusters. The protocols suffer from an energy imbalance across the network. The hotspot problem still
exists to a certain extent and some protocols cannot be applied to large-area network environments.
This paper proposes a PSO-based uneven dynamic clustering multi-hop routing protocol (PUDCRP),
which alleviates the hotspot problem and achieves better energy balance. We use an improved PSO
algorithm to determine the circular area where candidate CH nodes are located. We introduce a
multi-objective fitness function to select CH nodes. We also propose a connecting line aided route
construction method to achieve an energy efficient routing. Simulation results proved that PUDCRP
has a better performance in network lifetime and energy consumption of the network. The major
contributions of this paper can be summarized as follows.

• We propose a PSO-based uneven dynamic clustering method which divides the network area into
circles with unequal sizes based on the distribution of nodes. The circles far away from the BS are
larger than the ones near the BS, which can alleviate the hotspot problem.

• We introduce a multi-objective function to select CH nodes from the circles. The function considers
nodes’ residual energy, the number of neighbor nodes, and distances from the nodes to the BS.
Therefore, the intra-cluster energy consumption is minimized.

• Two fitness functions are proposed to determine the optimal positions of the circular areas in our
PSO method. The Gbest fitness function is to achieve the maximum coverage across the network.
The fitness function used to determine Pbesti is the absolute value of the difference between the
actual number of nodes covered by the circular area and the number of ideal coverage nodes,
which makes each circular area contain the number of nodes that match its size.

• A connecting line aided route construction method is proposed to determine a multi-hop route.
The method considers the distance from the candidate CH node to the connecting line between the
source CH node and the BS, the transmission distance from the source CH node to the candidate
CH node, and the residual energy of candidate CH node. Hence, the energy consumption of the
transmission is reduced.

The rest of the paper is organized as follows. The related work is described in Section 2.
The network and energy models are proposed in Section 3. The overview of PSO is introduced in
Section 4. Section 5 introduces the detailed PUDCRP protocol. Experiment results are discussed in
Section 6 by comparing with other protocols. The conclusion is presented in Section 7.

2. Related Work

2.1. Classical Routing Protocols

Low energy adaptive clustering hierarchy (LEACH) [6] is a well-known clustering protocol.
An important contribution of LEACH is the introduction of the concept of clustering hierarchy for
load balancing among sensor nodes. The operation of LEACH is divided into a number of rounds.
Nodes take turns as CH nodes to balance the energy consumption of the nodes. The main drawback
of the LEACH algorithm is that random selection of CH nodes may result in uneven distribution
of them and cause the imbalance of energy consumption. Moreover, the single-hop transmission of
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LEACH causes the CH nodes to quickly consume energy and die sooner. There have been many
improvements [17] to the shortcomings of LEACH. CogLEACH (Cognitive LEACH) [18] improved
the LEACH deficiency to make the CH distribution more reasonable. Aiming at the problem of
uneven energy consumption of CogLEACH, Latiwesh et al. [19] introduced a centralized cognitive
LEACH (CogLEACH-C). In the protocol, besides idle channels, nodes’ residual energy is also used as a
parameter for the CH selection to balance the energy load of nodes. However, it is not suitable for
large-scale networks because it uses the single-hop transmission during routing. Arumugam et al. [20]
proposed a new idea called EE-LEACH (Energy-Efficient LEACH protocol). It provides an optimal
cluster formation and efficient data aggregation, which saves a significant amount of energy. However,
combination of several technologies increases the complexity of the algorithm.

Grid-based protocols, such as EEBCDA (Energy Efficient and Balanced Cluster-based Data
Aggregation algorithm) [14] and Multi-hop EEBCDA [15], can efficiently address the hotspot problem.
Multi-hop EEBCDA is an improvement based on EEBCDA. It divides the network area into multiple
rectangles where each rectangle has an unequal number of grids and the nodes in each grid form a
cluster. This approach significantly reduces the amount of energy utilization and increases the network
lifetime. Since the number of grids per rectangle is inconsistent, there is unnecessary forwarding
between the layers. There may be a case where the upper layer nodes died and the lower layer
nodes cannot transmit data, which means a lot of energy waste. EEMRP (Energy-Efficient Multi-hop
Routing Protocol) [16] proposed a grid clustering algorithm for creating clusters and introduced
communication management (CM) nodes to relay multi-hop data transmission. The method effectively
balances the energy consumption of the network because the CM nodes share the workload of the
CH nodes. However, the division of each grid needs to be determined in advance, which limits the
scalability of the algorithm. Sajwan et al. proposed the CAMP (Cluster Aided Multi-Path) routing
protocol [21]. The protocol divides the network area into equal virtual areas. Each virtual area is
a cluster. In each round, a node can be either a cluster member or a separate node. The nodes
perform multi-hop transmission to achieve full coverage of the network. However, CAMP divides
the network area into equal areas without taking the hotspot problem into account during data
transmission. Myoupo et al. [22] proposed a fault-tolerant and energy-efficient routing protocol for a
virtual three-dimensional wireless sensor network. The protocol can run on any type of 3D WSNs.
However, the coordinate system divides the sensor network area into equiangular wedges (or sections),
which may cause hotspot problem in the network.

2.2. Swarm Intelligence Based Routing Protocols

Swarm intelligence has an essential idea of self-association and self-organization that can offer
better solution for optimizing routing protocols of WSNs. Ari et al. [23] developed a cluster-based
power efficient routing protocol named as ABC-SD. This protocol utilizes search features of artificial
bee colony (ABC) which is used to design the low power consumption cluster. However, the algorithm
uses a distributed method for cluster head elections, and the threshold energy used to elect CHs is fixed.
If all the energy in the cluster is less than the threshold energy, CHs may not be elected. Yalçın et al. [24]
proposed two algorithms, namely CH selection, based on bacterial interaction, and a cognitive routing
algorithm for energy and transmission boundary. From the simulation results that were obtained from
the Matlab 2016b software (MathWorks, Natick, America). It can be said that the study is more adaptive
and applicable in real WSN scenarios. Karaboga et al. [25] proposed a clustering routing protocol based
on an artificial bee colony algorithm in order to increase network lifetime. The algorithm employs a
QoS (Quality of Service) mechanism to minimize the delays between signals received from the clusters.
However, this protocol does not consider the coverage of the CHs, which leads to unbalanced energy
consumption. Rao et al. [26] proposed a Particle Swarm Optimization based Energy efficient Cluster
Head Selection algorithm (PSO-ECHS) which considers various parameters such as intra-cluster
distance, sink distance and residual energy of sensor nodes to select CH nodes. Due to several factors
being considered at the same time, some nodes far from CH nodes die prematurely when the CH node
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selected by the nodes has more residual energy and is far away from these nodes. Kuila et al. [27] used
a PSO-based clustering algorithm to enhance the lifetime of WSNs. In this method, clustering takes
place based on the average cluster distance and the lifetime of the gateway. The fitness value of each
particle in the swarm is computed by using fitness function and this fitness value is used to judge the
quality of the network. A particle with better fitness function value gives better network structure.
Xiang et al. [28] proposed a PSO-based energy efficient routing algorithm. The fitness function of the
algorithm considers the residual energy of nodes and transmission distance to balance the network
energy consumption to some extent. Wang et al. [29] proposed a special clustering method called
Energy Centers searching using Particle Swarm Optimization (EC-PSO) for heterogeneous WSNs. It
adopted EC-PSO to elect nodes close to the energy center as CHs. However, EC-PSO is only applicable
to network environments with even nodes since it uses geometric method to achieve evenly distributed
CHs during the first period. Kaswan et al. [30] proposed a multi-objective and PSO based energy
efficient path design for mobile sink in wireless sensor networks. The algorithm is presented with
an efficient particle encoding scheme and derivation of a proficient multi-objective fitness function.
Objectives include minimizing the longest path length and minimizing the number of multi-hops.
However, because energy is not considered in objectives, some nodes may die prematurely. Latiff
et al. [31] proposed an energy-aware clustering for wireless sensor networks using particle swarm
optimization, which defines a new cost function to minimize the intra-cluster distance and optimize
the energy consumption of the network. However, CHs directly transmitted data to the BS during
routing. It may cause unbalanced energy consumption. Singh et al. [32] proposed particle swarm
optimization (PSO) approach for generating energy-aware clusters by optimal selection of cluster
heads. The PSO eventually reduces the cost of locating optimal position for the head nodes in a cluster.
The PSO-based approach was implemented within clusters rather than the BS, which makes it a Particle
Swarm Optimization Semi-Distributed method (PSO-SD). However, the distance between nodes and
the BS are not taken into account in the protocol, which may result in excessive energy consumption of
the CHs to transmit data to the BS.

3. Network and Energy Model

The aim of the proposed protocol in this paper is to provide the more appropriate distribution
of cluster heads and the better scalability for different scale network environments, and effectively
improve the energy efficiency for WSNs. We mainly consider the clustering method, the algorithm for
selecting CH nodes, and the routing algorithm to balance the energy consumption and prolong the
network lifetime.

3.1. Network Model

This paper considers randomly deploying n sensor nodes in a square area of size M×M, The square
area is represented by symbol A. The assumptions of the network environment are as follows:

• All sensor nodes are homogeneous and have the same initial energy.
• Each sensor nodes are aware of its own location by using GPS (Global Positioning System) or

some other localization mechanisms.
• After all the sensor nodes are deployed, they are fixed.
• All the sensor nodes are aware of their residual energy and have same transmission range.
• Sensor nodes can adjust their own energy consumption based on the distance to the receiver.
• Each node has a unique ID.
• The BS is static and positioned at the boundary of the square area.

3.2. Energy Model

The energy model of this paper is the same as literature [33] and [34]. The energy consumption
of nodes mainly occurs at the transmitter, the power amplifier, and the receiver to run the radio
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electronics. The model adopts the free space and the multi-path fading channel, depending on the
distance between the transmitter and receiver. The energy consumption of a node is proportional to d2

when the propagation distance d is less than the threshold distance d0, otherwise it is proportional to
d4. The total energy expended to deliver an l-bit packet from the transmitter to its receiver over a link
of distance d is calculated by Equation (1):

ET(l, d) =
{

l× Eelec + l× ε f s × d2, d < d0

l× Eelec + l× εmp × d4, d ≥ d0
(1)

where Eelec is the energy consumed by a sensor node to transmit or receive 1-bit data, and εfs and εmp are
two amplifier coefficients of free-space model and multi-path fading model respectively. The threshold
distance d0 is calculated by Equation (2):

d0 =
√
ε f s/εmp (2)

where εfs and εmp are two parameters of the amplifier. When d < d0, the energy consumption of the
sensor nodes uses the Free-space model, and the amplifier parameter is εfs. When d ≥ d0, the energy
consumption of the sensor nodes uses the multi-path fading model, the amplifier parameter is εmp.

In this paper, the maximum transmission distance of a node is controlled not to exceed d0,
which ensures that nodes in the same cluster are within the transmission range of the proposed
PSO-based uneven dynamic clustering method.

4. Overview of PSO

Before presenting the proposed algorithm, we give an outline of the particle swarm optimization
(PSO) (Kennedy et al. 1995) algorithm [35]. PSO is based on a swarm of particles of a predefined number
(say Np). Each particle Pi (1 ≤ I ≤ Np) provides a complete solution to a multidimensional optimization
problem. Dimension D of all the particles is equal. Particle Pi has position Xi,d (1 ≤ d ≤ D) and velocity
Vi,d in the dth dimension of the multidimensional space. Let the ith particle Pi of the population be
represented by Equation (3) as follows.

Pi = [Xi,1(t), Xi,2(t), Xi,3(t), . . . , Xi,D(t)] (3)

A fitness function is used to evaluate each particle to judge its quality of the solution to the
problem. The personal best called Pbesti is the best position of each particle Pi. The global best called
Gbest is the best position of all particles. In order to reach the global best position, each particle Pi
follows its own best, i.e., Pbesti and Gbest to update its own velocity and position. In each iteration,
its velocity Vi,d and position Xi,d in dimension D is updated by using Equations (4), (5), respectively.

Vi,d(t) = w×Vi,d(t− 1) + c1 × r1 × (Pbesti,d −Xi,d(t− 1)) + c2 × r2 × (Gbestd −Xi,d(t− 1)) (4)

Xi,d(t) = Xi,d(t− 1) + Vi,d(t− 1) (5)

w = wmax −
wmax −wmin

TR
× t (6)

where TR is the maximum number of iterations, w (wmax = 0.9, wmin = 0.4) is self-adapting parameter,
c1 and c2 (0 ≤ c1, c2 ≤ 2) are the acceleration coefficients, and r1 and r2 (0 < r1, r2 < 1) are the randomly
generated values. The update process is repeated until an acceptable value of Gbest is obtained or a
fixed number of iterations (tmax) is reached. After getting a new updated position, the particle evaluates
the fitness function and updates Pbesti as well as Gbest for the minimization problem as follows.

Pbesti =

{
Pi, i f (Fitness(Pi) < Fitness(Pbesti))

Pbesti, otherwise
(7)
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Gbest =
{

Pi, i f (Fitness(Pi) < Fitness(Gbest))
Gbest, otherwise

(8)

Figure 1 shows how a particle explores in the multi-dimensional search space to achieve a global
best solution. A particle Pi occupies position Xi,d(t) with velocity Vi,d(t) at a point of time and it is
moving in a certain direction. Later the particle changes the direction and moves to another position
using its memory. It then changes its direction again by the influence of the swarm and occupies a new
position Xi,d(t+1).
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5. Proposed Algorithm

Similar to the existing hierarchical routing protocols, the operation of PUDCRP also is broken up
into rounds. Each round is divided into a set-up phase and a steady-state phase. In the set-up phase,
an improved PSO is used to determine the circular area where the candidate CH nodes are located.
The PSO-based method operates at the BS. CH nodes are selected by a multi-objective fitness function.
Non-CH nodes join the cluster where the nearest CH node is located. In the steady-state phase,
a connecting line aided route construction method was proposed to achieve an energy efficient routing.

5.1. Terminologies

For the ease of understanding of the proposed algorithm, we first define some terminologies
as follows.

1. S: The set of sensor nodes, i.e., S= {s1, s2, . . . , sn}.
2. A: The area of the network.
3. d0: The threshold distance.
4. E0: The initial energy of nodes.
5. Ei: The residual energy of sensor node si, 1 ≤ I ≤ n.
6. P: The set of particles, i.e., P= {P1, P2, . . . , PNp}, Np is the number of particles.
7. D: The dimension of particle characteristics.
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5.2. Particle Representation and Initialization

In PSO, a particle swarm represents a complete solution. For the clustering process of the proposed
algorithm, a particles represents optimal positions of the center of the circular areas where candidate
CH nodes are located. Each component Pi(t) = (Xi,1(t), Xi,2(t)) = (xi(t), yi(t)) denotes the coordinates of
the center of a circular area.

5.2.1. Determination Radius of Circular Area

In multi-hop routing protocols, the CH nodes closer to the BS undertake more data forwarding
tasks, which causes nodes near the BS area to die prematurely and generates undetectable hotspots.
This is the so-called hotspot problem. To address the problem, an effective solution is to make the
clusters closer to the BS smaller and make the clusters farther away from the BS larger. Small clusters
near the BS are with fewer nodes and have short transmission distance to the BS. Therefore, this approach
can compensate for the energy consumption of the nodes near the BS for forwarding data from the
other CH nodes. Since in the proposed algorithm the distribution of the circular areas determines the
location of CH nodes, the area of the circular areas near the BS should be smaller than the ones farther
away from the BS, which can help to achieve the reasonable distribution of the above clusters to a
certain extent. The radius of a circular area is calculated by Equation (9).

Ri =
disi

dismax
× (Rmax − d1) + d1, d1 ≤ Ri ≤ Rmax (9)

where Ri is the radius of the ith circular area, disi is the distance between the center of the ith circular
area and the BS, dismax is the maximum distance between circular area centers and the BS, and Rmax is
the maximum radius of the circular areas. The maximum radius Rmax is d0/2 in this paper. d1 is the
minimum radius of circular areas, which is calculated by Equation (10).

d1 =

√
A
πn

(10)

The value of d1 is the average radius of the area covered by a node in the network, which can
ensure that the node closest to the BS can form a cluster.

5.2.2. Determination Optimal Number of Circular Areas

The proper number of clusters is essential for clustering effectiveness, otherwise the network
cannot benefit from clustering advantages. The optimal number of clusters is defined as C. If the value
of C is too large, there will be many circular areas that overlap. If the value of C is too small, the circular
area cannot cover as much of the network environment as possible. In this paper, in order to determine
the C value, it is assumed that the clusters distribute the entire network environment evenly by layer,
as shown in the Figure 3. There are partial overlaps between the circular areas in the figure. Because
the network area cannot be filled with circles, and partial overlap of the circular areas can offset the
unfilled network area. r is the sum of 2Ri which is calculated by Equation (11). The radius of the circle
of the kth layer is Rk (assuming that the network area is divided into K layers). The number of circles
of the kth layer is nk. According to the above conditions, Equation (12) can be obtained.

r =
∑K

i=0
2Ri (11)

A ≈
K∑

k=1

nk ×πR2
k (12)

where A is the area of the whole network environment.
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Thus, the optimal circular area number C can be obtained by cyclic calculation. The following is
the calculation process for calculating the C value. The algorithm to calculate the optimal circular area
number is illustrated in Algorithm 1.

Algorithm 1: The calculation process of optimal circular area number C

Input: The radius of cluster: R = d1/* R is initialized to d1*/.
The area of the network: A.
The maximum distance between circular area centers and the BS: dismax.
The farthest distance from the base station to the boundary of the circle where R has been calculated: r=0/* r is
initialized to 0. r is the sum of 2Ri which are calculated */

Output: the optimal number of circular areas: C

1. while A>0 do
2. A = A−π

[
(2R + r)2

− r2
]

3. C = C +
π(2R+r)2

−πr2

πR2

4. r = r + 2R
5. R =

r(Rmax−d1)+d1×dismax
dismax−Rmax+d1

6. endwhile
7. C = C×H /* H is determined by the location of the BS*/

H is determined by the location of the BS. As shown in Figure 4, H in (a) where the BS is located
on the boundary of the monitoring area is 1/2. H in (b) where the BS is located in the monitor area is 1.
H in (c) where the BS is located on a vertex of the rectangle network area is 1/4. H depends on the
angle between the two boundaries intersecting the BS.
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5.3. Derivation of Fitness Function

The proposed PSO-based clustering algorithm is clustered according to node distribution.
The fitness function is used to determine the distribution of the circular areas where the candidate CH
nodes are located. The derivation of the fitness function depends on the two parameters: coverage rate
and Intersection-over-Universal.

5.3.1. Coverage Rate

Coverage rate is the ratio of the number of nodes in a circular area where candidate CH nodes
are located to the total number of nodes. Obviously, the more nodes that are covered, the more
candidate CH nodes can be obtained, so that local optimization can be avoided when selecting CH
nodes. Moreover, it can avoid the situation where CH nodes are gathered in a certain corner. Therefore,
we need to maximize the coverage rate.

rCov =
nCov

n
(13)

where nCov is the number of nodes covered by the circular areas and n is the number of nodes in the
network.

5.3.2. Intersection-Over-Universal

Based on the concept of Intersection-over-Union in target detection [36], we propose an
Intersection-over-Universal (IoU). IoU is the ratio of the number of candidate CH nodes in the
overlapping portion of the circular area to another circular area to the total number in the network.
Figure 5 shows the intersection set I and universal set U. The more nodes in the overlapping portion
among the circular areas where candidate CH nodes are located, the more likely that only one shared
CH node is selected among these circular areas. It causes the CH node to bear a heavy forwarding load
during the transmission phase. Excessive overlap of the circular areas also reduces the coverage of the
candidate CH nodes. Therefore, it is wise to minimize IoU. That is, we need to maximize its reciprocal.

IoU =
nInter

n
(14)

where, nInter is the number of nodes in the overlapping portion of the circular areas.
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After iterations, if a circular area’s IoU is greater than a certain threshold T (0 < T < 1, T = 0.7 in
this paper), the center of this circular area should be deleted from the global best positions. The circular
area where the center is located will also be deleted. Hence, the number of CH nodes is less than or
equal to C. Figure 6 is the schematic diagram of the distribution of the circular areas. The circular
areas cannot cover all the nodes in the network. We select CH nodes based on these circular areas.
Since the circular areas are formed according to the number of nodes, the area of the whole network
and the distribution of nodes, we can achieve a reasonable distribution of CH nodes. The reasonable
distribution can efficiently balance the energy consumption of the whole network.
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Figure 7 shows the circular area distribution of the proposed algorithm in simulation experiments.
The network environment is a 200 m × 200 m area with 100 nodes. The dotted circle in Figure 7 is
the circular area that needs to be deleted because their IoU is greater than 0.7. The solid circles are
the circular areas obtained after iterations. The number 0.86 at the top of the figure is the final node
coverage after iterations. Figure 8 shows the circular areas with IoU less than 0.7 in the network after
iterations. As can be seen from Figures 7 and 8, the circular areas cover as many nodes as possible.
The distribution of the circular areas is based on the distribution of nodes. The selection of CH
nodes is based on the distribution of the circular areas, the residual energy of the nodes, the distance
from the nodes to the BS, and the number of neighbor nodes covered in the communication range.
The distribution of CH nodes directly selected by multi-objective functions [37] may be too dense or
too sparse. In addition, the circular areas close to the BS are smaller than the ones farther away from
the BS, which is beneficial to balance the energy consumption of the network.
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5.3.3. Proposed Fitness Function

In order to determine the optimal positions of the circular areas in our PSO method, it is best to
maximize the linear combination of the above two parameters instead of maximizing them individually,
since the two parameters do not conflict with each other. Therefore, we use the following fitness
function Equation (15) to determine Gbest.

Fitness = α× rCov +
1− α
IoU

, 0 < α < 1 (15)

where, α is 0.9 in this paper, which is determined by experiments. Because the algorithm removes
the circular areas with high IoU. Hence, the coverage of the circular areas is mainly considered in the
fitness function.
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For a single circular area, there is no concept of IoU. Therefore, in our PSO approach, the fitness
function to determine Pbesti is the absolute value of the difference between the actual number of nodes
covered by the circular area and the number of ideal coverage nodes.

f itnessi =
∣∣∣nCovi − nideali

∣∣∣, 0 < i < m (16)

where nCovi is the number of the nodes covered in a circular area and nideali is the ideal number of the
nodes covered in a circular area. m is the number of circular areas.

nideali in a circular area is related to the density of nodes in the network and the size of the circular
area. nideali is calculated by Equation (17).

nideali = Ai ×
n
A

(17)

where Ai is the area of the ith circular area and A is the area of the whole network.

Ai = πR2
i (18)

where, Ri is the radius of the ith circular area.
In each iteration, the velocity and the positions of particles are updated using Equations (4) and (5).

5.4. Set-Up Phase

After determining circular areas where the candidate CH nodes are located, CH nodes are selected
by a multi-objective function. The CH nodes in each circular area are determined according to the
residual energy of nodes, the distance from the nodes to the BS, and the number of neighbor nodes
covered in the communication range. The multi-objective function is as follows.

Weighti j = ω1 ×
Ei j

E0
+ω2 ×

nnbi

n
+ω3 ×

dmin j

dsi

, 0 ≤ i ≤ n, 0 ≤ j ≤ m (19)

where, we assign each factor the corresponding coefficient w1, w2 and w3, weighing the importance
of each factor to CH election. w1 + w2 + w3 = 1, 0 ≤ w1, w2, w3 ≤1, Eij is the residual energy of a
candidate CH node si in the jth circular area, E0 is the initial energy of nodes, nnbi is the number of
neighbor nodes in the communication range of the node si, dminj is the minimum distance between
the BS and candidate CH nodes in the jth circular area, and dsi is the distance between the candidate
CH node si and the BS. Eij divided by E0, nnbi divided by n, and dminj divided by dsi are normalized to
adjust their values in the range [0,1]. The purpose of normalization is to adjust the values measured on
different scales into a common scale so that there will be the same impact when multiple objectives
are superposed. The node with the largest Weightij in the candidate circular area is selected as the
CH node.

The experimental results in a 200 m × 200 m network with 100 nodes are shown in Figures 9–11.
Where FND indicates the round in which the first dead node occurs. HND indicates the round in
which half of nodes die. LND indicates the round in which 80% nodes die. According to above
experimental results, w1, w2 and w3 are set to 0.8, 0.05 and 0.15. After CH nodes are determined,
each sensor node determines which cluster it wants to join by choosing the CH that requires the
minimum communication energy. Once all the nodes are organized into clusters, each CH creates a
schedule for the nodes in its cluster. This allows the radio components of each non-cluster head node
to be turned off at any time, except at its transmission time, thereby minimizing the energy consumed
by a single sensor. Once the CH node has all the data from the nodes in its cluster, it aggregates the
data and then transmits the compressed data to the BS. Because the distance between the CH nodes
near the BS is smaller than the ones farther away from the BS, the area of clusters which near the BS
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can be smaller than the ones farther away from the BS, which can alleviate the hotspot problem due to
forwarding data and balance the energy consumption of the network.
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The pseudocode of the PSO-based CH selection algorithm is given in Algorithm 2.
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Algorithm 2: Pseudocode of PSO-based CH selection

Input: Set of sensor nodes: S = {s1, s2, . . . , sn}.
Optimal number of circular areas: C.
Number of dimensions of a particle: D = 2.

Output: Optimal positions of cluster heads: CH = {CH1, CH2, . . . , CHm}.

1. Initialize particles Pi, ∀i, d, 1 ≤ I ≤ m, 1 ≤ d ≤ D
2. Pi (0) = (Xi,1(0), Xi,2(0)) = (xi(0), yi(0))/* The deployed positions of the sensor nodes */
3. for i=1 to Np do
4. Calculate fitness(Pi)/*Using Equation (15) */
5. Pbesti = Pi

6. end for
7. Gbest = {Pbesti}, 1 ≤ I ≤ Np

8. for t = 0 to TR do/*TR = Max. number of iterations */
9. for I = 1 to NP do
10. Updata velocity and position of Pi using Equations (4) and (5)
11. Calculate fitness(Pi)
12. Calculate Fitness(Pi)
13. if fitness(Pi) < fitness(Pbesti) then
14. Pbesti = Pi

15. endif
16. if Fitness(Pi) < Fitness(Gbest) then
17. Gbest = Pi

18. endif
19. endfor
20. endfor
21. for I = 1 to Np do
22. if IoU(Pi) > 0.7 then
23. delete Pi from Gbest
24. endif
25. endfor
26. while Pi in Gbest
27. Calculate Ri using Equation (9)
28. CHi = {Sk| Weight(Sk) = max(Weight(Sj)), ∀j,k,1 ≤ j,k ≤ n, dSj ≤ Ri)}/* dSj is the distance between node j and

Pi */
29. endwhile
30. stop

5.5. Steady-State Phase

Before sending data to the BS, energy-efficient transmission routes from sensor nodes to the BS
must first be established. This paper proposes a connecting line aided route construction method to
address the issue. Intra-cluster communications are based on single-hop transmission. If the distance
between non-CH nodes and the BS is less than d0, non-CH nodes directly send data to the BS via
single-hop transmission. Each cluster member transmits data directly to its respective CH node.

Based on the distance from CH nodes to the BS, inter-cluster communication uses single-hop or
multi-hop transmission. If the distance between CH nodes and the BS is less than d0, CH nodes send
data directly to the BS via single-hop transmission. Otherwise, CH nodes transmit data to the BS via
a multi-hop route established by the connecting line aided route construction method to reduce the
energy consumption of multi-hop transmission. When the CH node selects the next hop node of a
multi-hop route, it comprehensively considers the distance from the next hop to itself, the connection
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line connecting the CH node and the BS and the residual energy of next hop. Figure 12 shows how to
establish a specific transmission route from CH node i to the BS.Sensors 2019, 19  15 of 25 
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CH node i selects CH node j as the next hop. CH node j is selected according to Equation (20).

W j = u1 ×
dv

d0
+ u2 ×

d j

d0
+ u3 ×

E0

E j
, u1 + u2 + u3 = 1, 1 ≤ j ≤ m (20)

dv =

∣∣∣(BSy −CHyi) ×NHxj + (CHxi − BSx) ×NHyj + BSx ×CHyi − BSy ×CHxi
∣∣∣√

(BSy −CHyi)
2 + (CHxi − BSx)

2
(21)

where Wj is the weight used to determine the next hop. The node with the smallest weight is selected as
the next hop. m is the number of CH nodes, the coordinate of CH node i is (CHxi, CHyi), the coordinate
of the candidate next hop node j is (NHxj, NHyj), dj is the distance between CHi and the candidate node
j, dv is the vertical distance from the candidate node j to the connecting line, which is calculated by
Equation (21). u1, u2 and u3 are three corresponding coefficients. After a large number of experiments,
the sums of normalized FND and normalized LND under different u1, u2 and u3 are obtained. MATLAB
is used to cubic fitting to get Figure 13. According to the position of the highest contour line in Figure 13,
it can be determined that u1 = 0.1 to 0.25, u2 = 0.75 to 0.8 or u1 = 0.2 to 0.25, u2 = 0.45 to 0.6, or u1 = 0.25
to 0.35, u2 = 0.3 to 0.35 or u1 = 0.35 to 0.45, u2 = 0.45 to 0.55 that FND and LND are better. In this paper,
u1 = 0.2, u2 = 0.6, u3 = 1−u1−u2 = 0.2. From Figure 13, it can be seen that the distance to the next hop
has a greater impact on the route selection when selecting the next hop.
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Figure 13. The distribution schematic of Normalization sum of FND and LND with different u1, u2.

The candidate node with minimum weight would be selected as the next hop. Figure 14 is the
routing process in simulation environment. It can be seen that the transmission path of each CH node
is as close as possible to the linear distance to the BS, and the CH node close to the BS mainly acts as a
relay. The routing method minimizes the energy consumption for the routes and balances the energy
consumption between the CH nodes. The connecting line aided route construction method can ensure
that the transmission distance between the CH nodes is as short as possible and the transmission
distance from the CH nodes to the BS is as close as possible to the linear distance from the CH node to
the BS. The residual energy of next hop is considered to prevent the nodes to die prematurely. Hence,
the energy consumed by data transmission is significantly reduced and balanced.
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6. Simulation and Results

To evaluate our proposed protocol, MATLAB is used to perform simulations. In order to simplify
the entire simulation process, it is assumed that the network has an ideal MAC (Medium Access Control)
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layer. The data link communication is reliable and the energy of the BS is not restricted. In the network
control process, there is no any energy load for sending control messages and receiving data. Only the
energy consumption of the sensor nodes is considered during the experiments. The parameters of the
network areas are pre-set.

The simulation parameters of the network area are shown in Table 1.

Table 1. Simulation parameters.

Parameter Value

Area of network M ×M (M = 200 m,
400 m)

Co-ordinate of sink ( M
2 , M)

Number of sensor nodes (n) 100 to 500
Initial energy of sensor nodes (E0) 0.5 J
Energy consumption on circuit (Eelec) 50 nJ/bit
Free-Space channel parameter (εfs) 10 pJ/bit/m2

Multi-path channel parameter (εmp) 0.0013 pJ/bit/m4

Distance threshold (d0)
√

ε f s
εmp

Data packet size 4000 bits
Control packet size 50 bits
Number of iterations 2500
The particle Velocity (v) −35 ≤ v ≤ 35
the acceleration coefficients (c1,c2) c1 = 2, c2 = 2

Simulation experiments were carried out on UCCGRA, multi-hop EEBCDA, EEMRP, CAMP,
PSO-ECHS, PSO-SD and PUDCRP in the corresponding network circumstances. The proposed
algorithm is based on region partitioning. Therefore, this paper mainly compares the algorithm with
the algorithms based on grid region partitioning and PSO based clustering algorithm. Nodes’ death
states of the protocols are shown in Table 2.

Table 2. The average rounds of PUDCRP in the 400 m × 400 m network area (n = 200).

Death State UCCGRA Multi-Hop EEBCDA EEMRP CAMP PSO-ECHS PSO-SD PUDCRP

FND 639 124 238 564 120 463 754
HND 1011 824 1184 826 637 873 1334
LND 1040 916 1441 888 733 911 1547

Where FND indicates the round in which the first dead node occurs. HND indicates the round in
which half of nodes die. LND indicates the round in which 80% nodes die.

Table 2 shows that the PUDCRP protocol runs more rounds than the other six protocols under
the same network conditions. In the 400 m × 400 m network, compared with UCCGRA, multi-hop
EEBCDA, EEMRP, CAMP, PSO-ECHS and PSO-SD, the time of the first death node in PUDCRP was
delayed by 18.00%, 508.06%, 216.81%, 33.69%, 528.33% and 62.85%, respectively. HND of PUDCRP is
increased by 31.95%, 61.89%, 12.67%, 61.50%, 109.42% and 52.81%, respectively. The number of running
rounds of PUDCRP is increased by 48.75%, 63.21%, 68.89%, 7.36%, 74.21% and 69.81%, respectively.
PUDCRP more effectively balances the energy consumption of the network and prolongs the network
lifetime than the other six protocols.

Table 3 shows the average and standard deviation of residual energy of nodes in the 500th round
in the 400 m × 400 m network with 200 nodes. AVE indicates the average residual energy of nodes.
STD indicates the standard deviation of residual energy of nodes. The more average residual energy
of nodes, more effective the energy efficiency of the algorithm. Lower the standard deviation of
residual energy of nodes, more balanced energy consumption. The average residual energy of nodes in
PUDCRP is 22.16%, 121.30%, 8.92%, 33.73%, 197.28% and 21.05% higher than the other six algorithms,
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respectively. The standard deviation of residual energy of nodes in PUDCRP is 18.82%, 41.37%, 10.99%,
5.14%, 14.22% and 12.57% lower than the other six algorithms, respectively. (a)-(g) in Figure 15 are
the residual energy of nodes in the 500th round in UCCGRA, multi-hop EEBCDA, EEMRP, CAMP,
PSO-ECHS, PSO-SD and PUDCRP, respectively. Figure 15 visually indicates that the minimum residual
energy of nodes in PUDCRP is more than 0.1 J. The minimum residual energy of nodes in other six
algorithms are all less than 0.05 J. It shows that the energy consumption per node in PUDCRP is less
than other algorithms. And it can be seen from Figure 15 that the energy histogram of the nodes
in PUDCRP is denser than other six algorithms, which shows the balanced energy consumption of
PUDCRP. The results from Table 3 and Figure 15 show that PUDCRP is much more energy-efficient
and achieve more balanced energy consumption of the entire network.

Table 3. Average and standard deviation of residual energy of nodes in the 500th round in the
400 m × 400 m network area (n = 200).

UCCGRA Multi-Hop EEBCDA EEMRP CAMP PSO-ECHS PSO-SD PUDCRP

AVE 0.2509 0.1385 0.2814 0.2292 0.1031 0.2532 0.3065
STD 0.0728 0.1008 0.0664 0.0623 0.0689 0.0676 0.0591
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The simulation experiments also compare the number of surviving nodes and energy consumption
of the seven protocols in each round in network. The results are shown in Figures 16 and 17.

Figure 16 shows how the number of surviving nodes of the seven routing protocols varies with the
number of operation rounds in 400 m × 400 m networks. It can be seen that the number of surviving
nodes of PUDCRP begins to decrease later than the other six protocols and the round when the first
dead node occurs is significantly delayed. The number of surviving nodes in PUDCRP decreases more
slowly than the other six protocols. The results mean that PUDCRP balances the energy consumption
of the sensor nodes more effectively than the other protocols.Sensors 2019, 19  20 of 25 
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Figure 17 shows how the energy consumption of the seven routing protocols in each round varies.
The PUDCRP protocol consumes less energy than the other protocols per round. It can be concluded
that compared with other six protocols, the PUDCRP can significantly reduce the energy consumption
of nodes.
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Figure 18 shows the total number of packets received by the BS of the seven routing protocols.
With increasing simulation rounds, the number of packets received by the BS is different in
these protocols.

In the PUDCRP algorithm, the BS receives far more data packets than EEMRP and other algorithms
with the same rounds. In the 400 m × 400 m network, packets sent to the BS in PUDCRP are saturated
at 1200th round and the BS has received 88,820 packets. However, EEMRP is saturated at 1200th round
and the BS has only received 53,960 packets. The experimental results show that due to the longer
network lifetime and the more balanced energy consumption, the number of packets received by the
BS in PUDCRP is much higher than that of the other six protocols. The number of packets received by
UCCGRA and PUDCRP during the network operation period is similar, but since the network lifetime
of PUDCRP is longer than UCCGRA, PUDCRP receives more packets than UCCGRA. Balanced energy
consumption delays the death of the nodes, which ensures that the number of packets received by the
BS remains high for a long time. Therefore, our algorithm has a significant improvement in the data
transmission performance and interactive capabilities. It also shows that under the same experimental
conditions, PUDCRP can collect more data and have higher network energy efficiency.
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We also compared the scalability of the network nodes number and network areas of the seven
protocols, the LNDs of UCCGRA, multi-hop EEBCDA, EEMRP, CAMP, PSO-ECHS, PSO-SD and
PUDCRP were tested in the 200 m × 200 m and 400 m × 400 m network environments with different
number of nodes, respectively. Figure 19 shows the LNDs of the seven protocols in 400 m × 400 m
networks with different number of nodes. Table 4 shows specific measurement data of LNDs of the
seven protocols in 400 m × 400 m networks with different number of nodes. Figure 20 shows the
LNDs of the seven protocols in 200 m × 200 m networks with different number of nodes. Table 5
shows specific measurement data of LNDs of the seven protocols in 200 m × 200 m networks with
different number of nodes. As can be seen from Figures 19 and 20, in the network environments
with different numbers of nodes, the LNDs of PUDCRP occurred significantly later than the other
six protocols. The results show that PUDCRP has better scalability for network environments with
different nodes and different sizes. This is due to the high energy efficiency of nodes and the balanced
energy consumption of whole network achieved by the PSO-based uneven dynamic clustering method.
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Table 4. LND of different algorithms in the 400 m × 400 m network area.

Number of Nodes 100 200 300 400 500

UCCGRA 991 1040 1030 1024 1014
Multi-hop EEBCDA 974 916 888 867 856

EEMRP 1385 1441 1290 1251 1213
CAMP 767 888 935 959 985

PSO-ECHS 560 705 726 794 784
PSO-SD 691 957 1024 1074 1022

PUDCRP 1545 1547 1423 1311 1294

Table 5. LND of different algorithms in the 200 m × 200 m network area.

Number of Nodes 100 200 300 400 500

UCCGRA 1043 1070 1086 1096 1102
Multi-hop EEBCDA 1043 1022 1011 1002 1003

EEMRP 1482 1129 1098 1055 1092
CAMP 1053 1064 1070 1088 1099

PSO-ECHS 726 792 803 839 826
PSO-SD 1029 1257 1296 1323 1336

PUDCRP 1881 1537 1398 1364 1408

Sensors 2019, 19  22 of 25 

 

Table 5. LND of different algorithms in the 200 m × 200 m network area. 

Number of 
nodes 

100 200 300 400 500 

UCCGRA 1043 1070 1086 1096 1102 
Multi-hop 
EEBCDA  

1043 1022 1011 1002 1003 

EEMRP  1482 1129 1098 1055 1092 
CAMP 1053 1064 1070 1088 1099 

PSO-ECHS 726 792 803 839 826 
PSO-SD 1029 1257 1296 1323 1336 

PUDCRP 1881 1537 1398 1364 1408 

 
Figure 19. The nodes number scalability of the nodes number in 400 m × 400 m network area. 

 
Figure 20. The nodes number scalability of the nodes number in 200 m × 200 m network area. 

Compared to multi-hop EEBCDA and EEMRP, PUDCRP has good performance in any shape 
(not just in a rectangular network) and size network environment. Multi-hop EEBCDA, EEMRP and 
other rectangular meshing clustering algorithms are more suitable for rectangular network 
environments. Compared with CAMP, in PUDCRP, the farther the distance between the nodes and 
the BS, the larger the size of the clusters, the better the hotspot problem can be alleviated. Compared 
with PSO-ECHS and PSO-SD, the distribution of CH nodes in PUDCRP is more reasonable, which is 
determined by the distribution of nodes. Among these protocols, only PUDCRP considers the 
distribution of nodes in the clustering process. 

 

Figure 19. The nodes number scalability of the nodes number in 400 m × 400 m network area.

Sensors 2019, 19  22 of 25 

 

Table 5. LND of different algorithms in the 200 m × 200 m network area. 

Number of 
nodes 

100 200 300 400 500 

UCCGRA 1043 1070 1086 1096 1102 
Multi-hop 
EEBCDA  

1043 1022 1011 1002 1003 

EEMRP  1482 1129 1098 1055 1092 
CAMP 1053 1064 1070 1088 1099 

PSO-ECHS 726 792 803 839 826 
PSO-SD 1029 1257 1296 1323 1336 

PUDCRP 1881 1537 1398 1364 1408 

 
Figure 19. The nodes number scalability of the nodes number in 400 m × 400 m network area. 

 
Figure 20. The nodes number scalability of the nodes number in 200 m × 200 m network area. 

Compared to multi-hop EEBCDA and EEMRP, PUDCRP has good performance in any shape 
(not just in a rectangular network) and size network environment. Multi-hop EEBCDA, EEMRP and 
other rectangular meshing clustering algorithms are more suitable for rectangular network 
environments. Compared with CAMP, in PUDCRP, the farther the distance between the nodes and 
the BS, the larger the size of the clusters, the better the hotspot problem can be alleviated. Compared 
with PSO-ECHS and PSO-SD, the distribution of CH nodes in PUDCRP is more reasonable, which is 
determined by the distribution of nodes. Among these protocols, only PUDCRP considers the 
distribution of nodes in the clustering process. 

 

Figure 20. The nodes number scalability of the nodes number in 200 m × 200 m network area.



Sensors 2019, 19, 1835 22 of 24

Compared to multi-hop EEBCDA and EEMRP, PUDCRP has good performance in any shape
(not just in a rectangular network) and size network environment. Multi-hop EEBCDA, EEMRP
and other rectangular meshing clustering algorithms are more suitable for rectangular network
environments. Compared with CAMP, in PUDCRP, the farther the distance between the nodes and
the BS, the larger the size of the clusters, the better the hotspot problem can be alleviated. Compared
with PSO-ECHS and PSO-SD, the distribution of CH nodes in PUDCRP is more reasonable, which
is determined by the distribution of nodes. Among these protocols, only PUDCRP considers the
distribution of nodes in the clustering process.

7. Conclusions

In this paper, we proposed PUDCRP, an energy-efficient multi-hop routing protocol based on
particle swarm optimization (PSO) algorithm to form clusters adaptively. The PSO-based uneven
dynamic clustering method divides the network area into circles with unequal sizes according to the
number and distribution of nodes. The radius of the circles is determined by the distance between
the center of the circles and the BS. The farther the distance from clusters to the BS, the larger the
clusters, which can effectively solve the hotspot problem of WSNs. The proposed protocol improves
the way clusters are created in a wireless sensor network. The key idea is to divide the network area
into multiple clusters adaptively based on distribution of nodes to achieve more balanced energy
consumption. Compared with the rectangular grid clustering method and the formula selection CH
clustering method, the PSO-based uneven dynamic clustering method can significantly reduce the
energy consumption of nodes. We further proposed a connecting line aided route construction method
to improve the energy efficiency of data transmission between the BS and CH nodes. Simulation
experiments showed that compared with UCCGRA, multi-hop EEBCDA, EEMRP, CAMP, PSO-ECHS
and PSO-SD, PUDCRP achieves more balanced energy consumption, significantly prolongs the network
lifetime, and has better scalability in both the various number of nodes and different size networks.
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