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Abstract: Peroxisomes are a class of simple organelles that play an important role in plant reac-
tive oxygen species (ROS) metabolism. Experimental evidence reveals the involvement of ROS in
programmed cell death (PCD) in plants. Plant PCD is crucial for the regulation of plant growth,
development and environmental stress resistance. However, it is unclear whether the ROS originated
from peroxisomes participated in cellular PCD. Enzymes involved in the peroxisomal ROS metabolic
pathways are key mediators to figure out the relationship between peroxisome-derived ROS and
PCD. Here, we summarize the peroxisomal ROS generation and scavenging pathways and explain
how peroxisome-derived ROS participate in PCD based on recent progress in the functional study of
enzymes related to peroxisomal ROS generation or scavenging. We aimed to elucidate the role of the
peroxisomal ROS regulatory system in cellular PCD to show its potential in terms of accurate PCD
regulation, which contribute to environmental stress resistance.
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1. Introduction

Peroxisomes are organelles associated with reactive oxygen species (ROS) metabolism,
which is involved in a series of ROS generation and scavenging mechanisms. The main
types of ROS produced in peroxisomes are superoxide anions (O2

.−) and hydrogen per-
oxide (H2O2) [1]. This rank has expanded with the discovery of singlet oxygens (1O2)
in peroxisomes [2]. As a key ROS-related organelle, peroxisome is also involved in pro-
cesses such as programmed cell death (PCD) [3]. In plants, PCD is defined as any form
of cell death involving a series of molecular, biochemical, and cellular changes triggered
by programmed developmental processes (dPCD, developmentally induced PCD) or by
environmental stresses (ePCD, environmentally induced PCD) [4]. Accurate control of
plant PCD is of great significance to the regulation of plant growth, development and
environmental stress resistance. dPCD is involved in various plant developmental pro-
cesses such as xylogenesis, trichome differentiation and leaf senescence, while ePCD is a
vital counterbalance during plant response to abiotic and biotic stress. It is well studied
that programmed developmental processes or environmental stresses disrupt the balance
between ROS production and scavenging, leading to increased cellular ROS levels [5]. The
accumulation of cellular ROS acts as a signaling molecule to modulate gene expression
or triggers oxidative damages to proteins, DNA and lipids, leading to cell damage and
even cell death [4,5]. Therefore, the regulation of ROS level seems to be an effective way to
adjust PCD to regulate plant development and environmental stress resistance.

In most of the studies related to ROS-triggered plant PCD, rough information about
ROS content variation is available. So, in most cases, we acquire pathways that trigger
ROS accumulation to promote plant PCD, but how ROS level changed is easily overlooked.
The dearth of information on ROS regulation mechanism is partly attributed to the lack of
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digging for ROS sources. ROS come from different sources in cells, including peroxisome,
mitochondrion, chloroplast, endoplasmic reticulum, cell membrane and cell wall [6–8].
Peroxisome has strong reactive oxygen generation and scavenging capacity [9] and does
not need to undertake serious tasks such as photosynthesis in chloroplast or energy trans-
formation in mitochondrion. Figure out how peroxisome-derived ROS participated in
cellular PCD contribute to plant PCD control. However, more attention has been paid to
mitochondrion and chloroplast during plant PCD study, it is unclear whether the ROS orig-
inated from peroxisomes participated in PCD. Here, we focus on the relationship between
peroxisome-derived ROS and PCD to highlight accurate control of plant PCD. We hope
our conclusions can be useful to some actual plant production problems such as increasing
gradually abiotic stress caused by global climate change. We also discussed the challenges
that need to be solved.

2. Peroxisomal ROS Generation Mechanism and PCD

The mechanism of ROS generation in peroxisome is mainly caused by a series of redox
reactions, in which oxygen molecules accept electrons (e−) and are converted into different
ROS forms (protons also required in some cases) [1,5]. Therefore, the formation of ROS
in peroxisomes is related to a series of oxidoreductases and electron carriers. These key
enzymes involved in peroxisomal ROS generation mechanism are potential PCD regulators
(Figure 1).
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Figure 1. ROS modulation mechanism in peroxisome. PMP, peroxisomal membrane polypeptide;
XDH1, xanthine dehydrogenase 1; UOX, urate oxidase; SO, sulfite oxidase; ACX3, acyl-CoA oxidase
3; IBR3, indole-3-butyric acid-response 3; CSD3, copper/zinc superoxide dismutase 3; CAT, catalase;
APX3, ascorbate peroxidase 3; MDAR4, monodehydroascorbate reductase 4 (also known as SDP2,
sugar-dependent 2); DHAR, dehydroascorbate reductase; GR, glutathione reductase; GOX, glycolate
oxidase; PAO, polyamine oxidase; CuAO, copper amino oxidase; NAD+ , nicotinamide adenine
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dinucleotide; NADH, reduced form of nicotinamide adenine dinucleotide; NADP+, nicotinamide
adenine dinucleotide phosphate; NADPH, reduced form of nicotinamide adenine dinucleotide
phosphate; FAD+, flavin adenine dinucleotide; FADH, reduced form of flavin adenine dinucleotide;
IAA, indole-3-aceticacid; MDHA, monodehydroascorbate; ASC, ascorbate; DHA, dehydroascorbate;
GSH, glutathione; GSSH, glutathione persulfide; ONOO−, peroxynitrite. PMP18, PMP29, PMP32,
APX3 and MDAR4 marked in blue letters are peroxisomal membrane proteins.

2.1. The Purine Base Degradation Pathway and PCD

O2
.− do not participate in plant PCD directly, for they mainly act as a source of

H2O2 [5], which really triggers plant PCD. O2
.− can be quickly dismutated to H2O2 by

superoxide dismutase (SOD) or react with nitric oxide (NO) to produce peroxynitrite
(ONOO−), a radial reactive RNS, to induce post-transcriptional modification (described
below) [10]. O2

.− is formed by the acceptance of e- by an oxygen molecule (O2). This
reaction has been detected in the peroxisomal purine base degradation pathway, which is
part of the nucleotide degradation pathway [11]. Xanthine oxidoreductase (XOR) catalyzes
the oxidation of xanthine to produce uric acid. During this process, electrons donated by
xanthine are transferred to O2 through the Fe-S center and the flavin adenine dinucleotide
(FAD) of XOR to form O2

.−. In addition, downstream urate oxidase (UOX), which catalyzes
the formation of allantoin from uric acid, also catalyzes the formation of O2

.− [12,13].
XOR contributes more than 30% to oxidative environment in plant, meanwhile, its down-
stream metabolite allantoin is an antioxidant [14]. Therefore, when considering the purine
metabolic pathway as a means of regulating PCD, allantoin as a plant antioxidant should
also be taken into consideration. Xanthine dehydrogenase (XDH) is a prominent form of
XOR [11]. Arabidopsis Xanthine Dehydrogenase 1 (AtXDH1) dsyfunction mutant exhibits a
senescence phenotype with increased ROS level, suggesting that allantoin produced in
this pathway as an antioxidant has a stronger effect than the O2

.− production by AtXDH1
activity [14]. Lower organic nitrogen levels were also detected in Atxdh1 mutant, as al-
lantoin also acts as a nitrogen source in plant [15]. It seems that enhancing this metabolic
pathway has the potential to reduce ROS levels as well as enhance nitrogen levels in plants.
In addition, considering that the accumulation of uric acid is harmful to peroxisome [13],
UOX level should also be considered in this pathway to avoid uric acid accumulation.

Another source of O2
.− are the reaction catalyzed by sulfite oxidase [16] and the

electron transport chain embedded in peroxisomal membrane [14]. Pea leaf peroxisomal
membrane polypeptide PMP18, PMP29 and PMP32 are proposed electron carrier that
accepts e− and delivers it to O2 to form O2

.− [17]. However, among studies related to
this kind of electron transport chains, more attention has been paid to mitochondrion and
chloroplast, the peroxisomal part is still missing.

2.2. Photorespiratory Cycle and PCD

Compared to other types of ROS, H2O2 owe a longer lifetime, makes it stable enough
to pass through the peroxisomal membrane to contribute to cellular ROS level. It has
been well summarized that the cellular H2O2 acts as signaling molecule to regulate ROS-
specific transcription factors at low content, while triggers oxidative modification of DNA
and proteins at high content, leading to cell damage. [4,5] The main mechanism of H2O2
production is the photorespiratory pathway, since 70% of the total H2O2 generated in
photosynthetic tissues is mainly catalyzed by glycolate oxidase (GOX) in peroxisomes [18].
The photorespiratory cycle involves chloroplast, peroxisome and mitochondrion. The
peroxisomal GOX converts glycolate transferred from chloroplasts into glyoxylate, during
which H2O2 is produced [19]. GOX was involved in cellular PCD regulation. The PCD
phenotype of the CATALASE 2 dysfunction mutant is alleviated by GOX1 abnormal [20],
possibly in part by alleviating cellular ROS pressure. However, a leaf senescence phenotype
can be found in Arabidopsis by simultaneous inhibiting the expression of GOX1 and GOX2,
two major GOXs in the leaf photorespiratory [21]. This indicates that the PCD process
caused by transcriptional level alteration of these enzymes cannot be simply attributed to
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change in ROS, a byproduct of photorespiratory pathways. Although it is energy-costly,
serious blocking of photorespiratory cause leaf senescence phenotype as well [21]. However,
declined H2O2 levels and cell-death associated metabolite levels are detected in Arabidopsis
when only GOX2 gene is functionally abnormal [19]. So, there is a balance between ROS
level variation and photorespiratory cycle maintenance, moderately adjustment of GOX1
or GOX2 may result in ROS level change as well as an appropriate reduction in the energy-
costly photorespiratory cycle.

2.3. The Fatty Acid β-Oxidation Pathway and PCD

Fatty acid β-oxidation is an important part of lipid catabolism, by which fatty acids are
broken down into acetyl-CoA and transferred into mitochondria for glucose metabolism.
Acyl-CoA oxidase (ACX) acts as a flavoprotein oxidase to catalyze the first reaction of
peroxisomal β-oxidation. Two e− from acyl-CoA are transferred to the cofactor FAD of acyl-
CoA oxidase and then to O2 to form H2O2 [22]. Increasing fatty acid flux into peroxisome
for the β-oxidation result in ROS accumulation, vice versa [23]. Furthermore, jasmonic
acid (JA) is also produced by this pathway. 3-oxo-2-(2′-pentenyl)-cyclopentane-1-octanoic
acid (OPC-8:0) go through three cycles of this pathway to form JA [24], which process
may be influenced by GOX2 [19]. Acyl-CoA oxidase also catalyzes the peroxisomal IAA
metabolic pathways and produces H2O2, in which indole-3-butyric acid-response 3 (IBR3)
acts as an acyl-CoA dehydrogenase/oxidase-like protein and catalyze the conversion of
indole-3-butyric acid (IBA) to indole-3-butyric acid (IAA) [25]. The IBR3 dysfunction has
no impact on either fatty acid β-oxidation or JA synthesis, but the IAA synthesis is ACX
involved [25]. Among the three products (H2O2, JA and IAA) of the fatty acid β-oxidation
pathway, H2O2 and IAA trigger peroxisome-induced PCD, while JA exhibits an inhibitory
effect [26]. Accumulation of intermediates cause by serious block of lipid catabolism also
causes cell death. The Arabidopsis acx3acx4 double mutant exhibits embryo lethal phenotype
due to accumulation of toxic levels of acyl-CoAs [27]. However, ACX3 activity suppression
results in a non-fatal plant with reduced IAA and JA synthesis [28].

2.4. The Polyamine Oxidation Pathway and PCD

Another important pathway related to the production of H2O2 is the polyamine oxida-
tion pathway. In this pathway, polyamine oxidase (PAO) converts spermine to spermidine
or spermidine to putrescine and produces H2O2 [29]. Putrescine is then converted to
4-aminobutyraldehyde by copper amino oxidase (CuAO), accompanied by H2O2 pro-
duction [30]. PAOs located in peroxisome has been proved to participate in polyamine
oxidation in Arabidopsis and rice (Oryza sativa) [29,31,32]. Knock out of OsPAO5 in rice
results in reduced H2O2 production [32]. The OsPAO5 expression can be induced by
spermidine [32]. That explain why spermidine supply to tobacco plants result in H2O2
accumulation by enhancing the polyamine oxidation pathway and triggers programmed
cell death [33]. However, like the fatty acid β-oxidation pathway, intermediates from
polyamine metabolism also play important roles in plant senescence or environmental
stress response [29,31]. So, more experimental evidence is needed to connect the polyamine
oxidation pathway-derived ROS with PCD.

2.5. Other ROS Generation Mechanism
1O2 signal was newly detected in Arabidopsis root peroxisome in dark environment

conditions using 1O2-specific fluorescence probe [2]. 1O2 is mainly produced in chloroplast
for its light-motivated generation pathway [34]. However, Dark condition and the short
lifetime of 1O2 avoid the possibility that the 1O2 detected in peroxisome may diffuse from
chloroplast. This indicates that peroxisome also has a 1O2 generation pathway. The mecha-
nism of 1O2 generation in plant peroxisome has not been reported. Miyamoto et al. [35]
studied the possibility of producing 1O2 from hydroperoxides under the condition of metal
ions or ONOO−. In peroxisome, biological membrane are potential targets of ROS or nitro-
gen species (RNS) to form lipid hydroperoxides or amino acid hydroperoxides, suggesting
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that this is a potential 1O2 generation pathway in peroxisome. It is predicted that 1O2,
which accumulated in chloroplast, controls nuclear gene activities through intermediate
components such as lipids or fatty acids, resulting in cell damage [36]. However, more
experimental evidence is needed to clarify the relation between peroxisome-derived 1O2
with PCD.

3. Peroxisomal ROS Scavenging Mechanism and PCD

The ROS scavenging mechanism in peroxisome is supported by SOD, catalase (CAT)
and ascorbate–glutathione (ASC–GSH) cycle (Figure 1), among which, SOD and CAT
catalyze independent reactions. So, compared with peroxisomal ROS generation enzymes,
which are involved in different metabolic pathways, ROS scavenging enzymes seems to be
more appropriate for peroxisome-derived plant PCD study (Figure 2).
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Simulating Disease 1; ATG2/PEUP1, Autophagy-related 2/Peroxisome Unusual Positioning 1; SDP1,
sugar-dependent 1; ICS1, isochorismate synthase 1; TSB1, Tryptophan Synthase Beta-Subunit 1;
GSNO, S-nitrosoglutathione; NO, nitric oxide; ONOO−, peroxynitrite; ·OH, hydroxyl radical; MI,
myo-inositol; SA, salicylic acid; ABA, abscisic acid; IAA, indole-3-butyric acid; JA, jasmonic acid.

3.1. SOD and PCD

SOD is known to catalyze O2
.− to H2O2 with its cofactor (metal ion) as an intermediate

electron carrier [37]. Therefore, this process also contributes to H2O2 accumulation. The
Arabidopsis copper/zinc SOD3 (AtCSD3) has been proved take part in peroxisomal O2

.− and
H2O2 conversion [38]. Although other two CSD (AtCSD1 located in cytoplasm, AtCSD2
located in chloroplasts) in Arabidopsis has been reported involved in H2O2-mediated cell
death [39], the AtCSD3 part of data is still missing. However, the AtCSD3 activity reduced
to 65% by the nitration effect caused by ONOO− [40], which produced by the quickly
chemical reaction between O2

.− and NO [41]. The ONOO− production reaction can be
enhanced under stress conditions [41]. Further, in Arabidopsis, the enzyme activity of GOX1,
CAT2, CAT3 and MDAR4 (described below) are also inhibited by the nitration action of
ONOO−. However, little is known about the balance among O2

.−, H2O2, ONOO− and
peroxisomal SOD, as well as their effect on plant PCD.
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3.2. CAT and PCD

CAT is the principal H2O2 scavenging enzyme. Its cofactor heme acts as an inter-
mediate electron carrier in redox reactions to convert H2O2 to H2O [42]. Knockout of
the dominant CAT in Arabidopsis, peroxisomal CAT2, resulted in decreased growth and
increased cell death [43]. H2O2 can be quickly converted to hydroxyl radical (·OH), a toxic
molecule that can break DNA hydrogen bonds. Peroxisomal CAT contributes to cellular
H2O2 regulation to protect the plant genomes against H2O2-induced DNA damage [44,45].
Mass spectrometry-based proteomic analysis revealed that both peroxisomal CAT2 and
CAT3 can physically interact with PCD negative regulator Lesion Simulating Disease1
(LSD1) in Arabidopsis [3]. The LSD1 dysfunction mutant showed a similar phenotype to
catalase-deficient plants with reduced catalase activity [46], suggesting that LSD1 may
suppress PCD by positively regulating CAT2 and CAT3 activity to scavenge ROS. Addi-
tionally, the increased cell death phenotype in lsd1 mutant can be rescued by blocking
salicylic acid (SA) accumulation [43]. In consistent, increased peroxisomal H2O2 trigger
isochorismate synthase ICS1 to promote SA synthesis [47]. This pathway is myo-inositol
(MI) involved [48]. The high oxidative stress in cat2 represses the production of MI, break
the inhibition of MI on ICS1 transcription [43]. In Arabidopsis Autophagy-related 2 mutant
atg2, aggregated peroxisomes filled with inactive catalase were detected, which exhibited
elevated H2O2 level and had an SA-dependent early senescence phenotype and sponta-
neous cell death [49]. Additionally, accumulation of peroxisomes was also detected in
cat2 mutant, implying that ATG2 dysfunction may lead to inactivation of CAT2, thereby
inducing H2O2 to trigger peroxisome aggregation and ultimately SA-induced PCD [49,50].
The experimental evidence suggests that the peroxisome-derived H2O2 regulation of plant
PCD is SA dependent.

In addition to SA, other hormones are involved in peroxisomal catalase-regulated PCD.
Kaurilind et al. [26] used 56 cat2 double/triple mutants to analyze the regulatory mechanism
of the plant PCD induced by peroxisomal H2O2. As a result, either inhibition of the abscisic
acid (ABA), IAA or SA signaling pathway moderates the PCD phenotype of cat2, while
the suppression of the JA synthesis pathway enhanced the PCD phenotype, suggesting
that these hormones were involved in peroxisomal H2O2-triggered PCD. Furthermore,
either dysfunction of PCD related transcription factor MYC2 or WRKY70 alleviated the
PCD phenotype of cat2. It has been proved that the expression of WRKY70 is activated by
SA and repressed by JA [51], while the expression of MYC2 is strongly induced by ABA
but repressed by JA [52]. The above results indicate that the downstream ABA and SA
signaling pathways, triggered by elevated peroxisomal H2O2 level [26], promote PCD by
activating MYC2 and MRKY70 expression, respectively, and the JA signaling pathway may
suppress PCD by reducing MYC2 and MRKY70 transcripts.

The feedback regulation of hormones to CAT2 and antagonism action between hor-
mones has also been reported. A feedback expression suppression of JA to CAT2 is newly
found in a MYC2-dependent model [53]. Moreover, SA reduces CAT2 activity, leading to in-
creased H2O2 levels, which triggers the sulfenylation of Tryptophan Synthase Beta-Subunit
1 (TSB1) to inhibit IAA synthesis [28]. The elevated H2O2 level suppressed the interaction
between CAT2 and ACX3, resulting in a decline in ACX3 activity and reduced IAA and
JA synthesis. However, these two hormones are affected to different degrees. IAA level
in cat2 mutants dropped significantly under normal environments, while no observable
change was found in JA level [28]. SA also deregulates the physical interaction between
peroxisomal GOX and CAT to coordinate H2O2 levels in rice [54]. Therefore, when trying
to regulate PCD through the CAT pathway, hormone level regulation is inevitable.

3.3. The ASC–GSH Cycle and PCD

Due to its small size and long lifetime, H2O2 can easily pass through biomembrane.
Membrane-bound peroxisomal ascorbate peroxidase (APX) has a higher affinity for H2O2
than CAT and is able to degrade H2O2 that attempts to escape from peroxisome to H2O [55].
The stability of this reaction is dependent on the ASC–GSH cycle. Four enzymes, APX,
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monodehydro-ascorbate reductase (MDAR), dehydroascorbate reductase (DHAR) and
glutathione reductase (GR), compose this cycle to ensure that the ascorbate (ASC) con-
sumed by APX activity can be replenished [56,57]. No direct experimental evidence of
the involvement of peroxisomal APX in plant PCD has been reported. In Arabidopsis and
rice, peroxisomal APX expression was elevated during exogenous H2O2 treatment and de-
creased during plant senescence [58,59]. Elevating ascorbate levels in Arabidopsis stimulates
the production of ABA, IAA and JA [60], suggesting a potential participation of peroxiso-
mal APX in PCD. In terms of other ASC–GSH cycle members, H2O2 from peroxisome that
are MDAR4 functionally deficient diffuse to nearby oil body, causing oxidative damage
to lipids and suppressing the triacylglycerol lipase activity of sugar-dependent 1 (SDP1)
by carbonylation modification, resulting in blocked carbon source and seedling-lethal
phenotype [56,61]. However, the phenotype of sdp1 is less severe when compared with the
MDAR4 dysfunction mutant [62]; the triacylglycerol accumulation in sdp1 even protects the
cell from oxidative stress, implying that the lethal phenotype in the MDAR4 dysfunction
mutant may be contributed to by significant elevated lipid peroxidation induced by H2O2
released from peroxisome, which has been reported to be cell death related [5]. Alteration
of the peroxisomal ASC–GSH cycle is just like installing a release switch to control H2O2
emission to other parts of the cell.

In addition, GSH from the ASC–GSH cycle can react with NO to form GSNO. This kind
of RNS tends to act on the sulfhydryl group of protein to complete S-nitrosation action [63].
The enzyme activity of CAT and MDAR can be suppressed by GSNO-induced S-nitrosation,
leading to more efficient degradation of CAT by peroxisomal proteases [64–66], indicating
that the ASC–GSH cycle may take part in CAT level regulation.

4. Challenges and Future Perspectives

Existing studies have shown that the regulation of ROS metabolism-related enzymes is
a general strategy to modulate ROS-induced PCD. However, exploring the function of ROS
in peroxisomes is difficult because ROS can freely pass through biomembrane, and other
subcellular structures such as chloroplasts and mitochondria are also important sources of
ROS. Furthermore, ROS detection methods are mostly limited to histochemical staining,
though transmission electron microscopy is a higher-resolution option for visualizing ROS
at the subcellular level, and finding ROS receptors remains a challenging task. Therefore, it
is not easy to trace the source of ROS during the study of ROS-triggered PCD. In this case,
the deficiency can be partially compensated by using mutants of peroxisomal enzymes
involved in ROS metabolism. However, experimental evidence mainly came from studies
of the model plant Arabidopsis. How these enzymes work in other plants such as poplar and
rice needs more attention (Table 1) and more information is needed for pathways related to
peroxisomal polyamine oxidation and 1O2 generation.

Inspired by the peroxisomal ROS regulation pathway, Qin et al. [67] immobilized
lactate oxidase and CAT into the Fe3O4 nanoparticle/indocyanine green co-loaded hybrid
nanogels to regulate the intracellular ROS level in cancer cells by manipulating the ratio of
lactate oxidase and CAT. To establish rice plants with increased photosynthesis efficiency,
Shen et al. [68] introduced a GOC bypass into rice chloroplasts by replacing the subcellular
location signal of peroxisomal glycolate oxidase, oxalate oxidase and catalase with chloro-
plastic transit peptide. These ideas encourage a way of modularized assembling of related
enzymes to regulate intracellular ROS levels more precisely. In addition, with the rapid
development of genome editing technology, the CRISPR/Cas9 system has also become
an efficient way to study the function of the ROS metabolism pathway. Moreover, the
development of higher-precision multi-omics technology will also provide the possibility
to explore the molecular regulation mechanism of ROS-derived PCD.
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Table 1. Genes involved in Arabidopsis peroxisomal ROS metabolism and their homologous genes in
poplar and rice.

Gene Name
(Arabidopsis

thaliana)

Gene ID

Dicotyledon Monocotyledon
(Oryza sativa)Arabidopsis thaliana Populus trichocarpa

ACX3 AT1G06290 [28] Potri.019G092600 LOC_Os06g24704 [69]
APX3 AT4G35000 [58] Potri.009G134100 LOC_Os08g43560 [70]
CAT2 AT4G35090 [43] Potri.002G009800 LOC_Os03g03910 [68]
CAT3 AT1G20620 [3] Potri.005G251600 LOC_Os02g02400
CSD3 AT5G18100 [38] Potri.019G035800 LOC_Os07g46990

CuAO2 AT1G31710 [30] Potri.008G151900 LOC_Os07g38440
CuAO3 AT2G42490 [30] Potri.015G082900 LOC_Os04g40040
DHAR1 AT1G19570 [60] Potri.008G049300 LOC_Os05g02530 [71]
GOX1 AT3G14420 [20] Potri.011G112700 LOC_Os07g05820 [54]
GOX2 AT3G14415 [19] Potri.011G112700 LOC_Os07g05820 [54]
IBR3 AT3G06810 [25] Potri.T030600 LOC_Os07g47820

MDAR4/SDP2 AT3G27820 [56] Potri.001G346200 LOC_Os02g47800
PAO2 AT2G43020 [29] Potri.005G207300 LOC_Os04g53190 [72]
PAO3 AT3G59050 [29] Potri.002G055300 LOC_Os04g53190 [72]
PAO4 AT1G65840 [29] Potri.004G075800 LOC_Os04g57560 [32]
UOX AT2G26230 [13] Potri.010G242600 LOC_Os01g64520
XDH1 AT4G34890 [14] Potri.009G054600 LOC_Os03g31550
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