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Abstract

Nonrandom selection in one-sample Mendelian Randomization (MR) results in biased esti-

mates and inflated type I error rates only when the selection effects are sufficiently large. In

two-sample MR, the different selection mechanisms in two samples may more seriously

affect the causal effect estimation. Firstly, we propose sufficient conditions for causal effect

invariance under different selection mechanisms using two-sample MR methods. In the sim-

ulation study, we consider 49 possible selection mechanisms in two-sample MR, which

depend on genetic variants (G), exposures (X), outcomes (Y) and their combination. We fur-

ther compare eight pleiotropy-robust methods under different selection mechanisms.

Results of simulation reveal that nonrandom selection in sample II has a larger influence on

biases and type I error rates than those in sample I. Furthermore, selections depending on X

+Y, G+Y, or G+X+Y in sample II lead to larger biases than other selection mechanisms.

Notably, when selection depends on Y, bias of causal estimation for non-zero causal effect

is larger than that for null causal effect. Especially, the mode based estimate has the largest

standard errors among the eight methods. In the absence of pleiotropy, selections depend-

ing on Y or G in sample II show nearly unbiased causal effect estimations when the casual

effect is null. In the scenarios of balanced pleiotropy, all eight MR methods, especially MR-

Egger, demonstrate large biases because the nonrandom selections result in the violation

of the Instrument Strength Independent of Direct Effect (InSIDE) assumption. When direc-

tional pleiotropy exists, nonrandom selections have a severe impact on the eight MR meth-

ods. Application demonstrates that the nonrandom selection in sample II (coronary heart

disease patients) can magnify the causal effect estimation of obesity on HbA1c levels. In

conclusion, nonrandom selection in two-sample MR exacerbates the bias of causal effect

estimation for pleiotropy-robust MR methods.
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Author summary

It is well known that nonrandom selection in one-sample Mendelian Randomization (MR)

can result in biased estimates and inflated type I error rates. Actually, two-sample MR analy-

ses are more prone to be affected by nonrandom selection than one-sample MR analyses,

because two samples for genome-wide association studies (GWAS) may be selected each

under different mechanisms from the source population. Summary-level genetic association

statistics in two-sample MR may be derived from different study designs such as case-con-

trol, case-only and cohort studies, which further inevitably affect the causal effect estimation

of exposure on outcome. In this study, we firstly propose a theorem for causal effect invari-

ance under different selection mechanisms. In the simulation, we design 49 combinations

of nonrandom selection mechanisms in sample I and sample II, which are widespread in

practical applications. The simulation results reveal that the selection mechanisms in sample

II have a larger influence on biases and type I error rates than those in sample I. As an illus-

trative example, we find the nonrandom selection in sample II (coronary heart disease

patients) can magnify the causal effect estimation of obesity on the HbA1c levels.

1 Introduction

Mendelian randomization (MR) uses genetic variants as instrumental variables (IV) to obtain

an unbiased causal effect estimation in the presence of unmeasured confounding [1]. MR anal-

ysis assumes that the genetic variants satisfy instrumental variable assumptions including IV

Relevance (the IV must be robustly associated with the exposure), IV Independence (the IV

must be independent of unmeasured confounders), and Exclusion restriction (the IV must not

have a direct effect on the outcome that is not mediated by the exposure) [2–4]. Two-sample

MR leverages the summary-level genetic associations of exposure and outcome from two non-

overlapping datasets to estimate causal effect. These summary-level genetic associations can be

obtained from published literature provided by consortia of genome-wide association studies

(GWAS), or directly from individual-level participant data [5, 6].

Nonrandom selection in one-sample MR [7] can result in biased estimates and inflated type

I error rates. The magnitude of bias can differ according to the strength of instruments, the

complexity of exposure-instrument association, and the nature of exposure effects. When

selection depends on instrumental variables (G), conducting the analysis on the selected sam-

ple does not lead to biased estimates because, as shown in Fig 1, G is not a collider (or a descen-

dant of a collider) and thus does not induce a new open path between G and exposure (X) or G
and outcome (Y). In contrast, because X is a collider in the path G!X U!Y, when selection

depends on X, conditioning on selection opens up a new path between G and U, which violates

the IV Independence assumption. Similarly, when there is a causal effect of X on Y, Y is also a

descendant of collider X, and selection that depends on Y will also open this path. Thus selec-

tion depending on Y will induce bias only for the non-null causal effect of X on Y [8]. When

there is a null causal effect of X on Y, Y is no longer a descendant of collider X, and nonrandom

selection based on Y does not induce any bias; hence there is no type I error inflation. There-

fore, when selection depends on X, Y, or X and Y, estimates of the causal effect are biased [7].

For two-sample MR analyses, we assume that genetic association statistics with the exposure

(e.g. beta-coefficient b̂Xj
and standard error (SE) ŝXj

) are obtained from sample I and the genetic

association statistics with the outcome (e.g. beta-coefficient b̂Yj
and SE ŝYj

) are obtained from
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analyses are available in the S9 Text. In our

application, GWAS summary data for BMI, WHR

and WHRadjBMI are from Genetic Investigation of

ANthropometric Traits (GIANT), which can be

download from GIANT consortium (https://portals.

broadinstitute.org/collaboration/giant/index.php/

GIANT_consortium_data_files) or MR base

platform (https://www.mrbase.org/). Genetic data

and individual data for HbA1c can be obtained in

UK Biobank (https://www.ukbiobank.ac.uk/). We

calculated the GWAS summary data for HbA1c in

CHD patients and general population. All the GWAS

summary data used in this paper can be found in

S1 Data.
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sample II. Whether sample I or sample II is a random sample of the target population requires

more attention. Two-sample MR analyses are more prone to be affected by nonrandom selection

than one-sample MR analyses, in that two heterogeneous samples can be selected each under a

different mechanism that differs from the source population [7]. Such sampling mechanisms

include willingness to participate and survival to the participation date [1, 7]. This could lead to

the violation of MR assumption. Recent IV-based estimators in MR studies include consensus

methods, regression-based methods, likelihood-based methods, outlier-robust methods [9–16],

which focus on relaxing the Exclusion restriction. Pleiotropy is characterized by genetic variants

associated with multiple phenotypic variables that is common in MR studies and can lead to the

violation of the Exclusion restriction. The extent to which these pleiotropy-robust methods can

affect causal effect estimations under different selection mechanisms remains unclear.

In this study, we first propose sufficient conditions for causal effect invariance under differ-

ent selection mechanisms using two-sample MR methods. We then consider 49 possible selec-

tion mechanisms in two-sample MR, which depend on G, X, Y and their combination,

respectively. In the simulation, we compare eight pleiotropy-robust methods under different

selection mechanisms. Finally, we use an application to explore the extent to which nonran-

dom selection influences the estimation of the causal effect of obesity on HbA1c levels.

2 Materials and methods

2.1 Modeling assumptions and summary level data

Let G = {G1,G2,. . .,GJ) denote J genetic variants that are mutually independent, and X, Y and U be

the exposure, outcome and unmeasured confounder, respectively. We assume the model of Fig 1 is:

E½YjX;U;G1; . . .;GJ � ¼ yX þ U þ
XJ

j¼1

gjGj

E½XjU;G1; . . .;GJ� ¼
XJ

j¼1

ajGj þ U:

ð1Þ

Fig 1. Illustrative diagram of Mendelian randomization. Gj, j-th genetic variant, with effect ϕj on confounders U,

a direct effect αj on the exposure X and a direct effect γj on the outcome Y.

https://doi.org/10.1371/journal.pgen.1010107.g001
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Each of the valid genetic variants must satisfy the three IV assumptions (Relevance, Inde-

pendence and Exclusion restriction), as well as linearity, homogeneity, monotonicity and non-

overlap assumptions [11, 17].

Linear and homogeneity assumption. Estimating the causal effect of X on Y in the full

study population requires linearity of the IV-X, IV-Y and X-Y relationships. There is no effect

heterogeneity in the X-Y relationships. Linearity for the IV-X association is necessary for point

estimates but not for testing the null hypothesis.

Monotonicity assumption. Monotonicity in the context of MR means that increasing the

number of effect alleles for an individual can only increase the exposure.

No sample overlap. Two-sample MR requires two non-overlapping samples to estimate

causal effects. MR analyses using IV-X and IV-Y associations in the same sample or in partially

overlapping samples may be prone to weak instrument bias towards the X-Y estimate that

would be obtained using conventional methods. A simulation suggested that bias due to sam-

ple overlap is a linear function of the proportion of overlap between samples [17]. More details

of modeling assumptions are shown in S1 Text.

2.2 Sufficient conditions for causal effect invariance

Our objective is to calculate the causal effect bGjY
=bGjX

of X on Y using two-sample MR meth-

ods at the population-level distribution (i.e., Wald ratio method). The genetic association sta-

tistics with exposure (b̂GjX
, j = 1,2,. . .,J) and outcome (b̂GjY

, j = 1,2,. . .,J) can be obtained from

sample I and sample II, respectively. Sample I and sample II are random samples from popula-

tion I and population II, respectively. S1 and S2 are binary variables indicating whether a par-

ticipant is selected or unselected in sample I and sample II, respectively. Restricting the

analysis to the selected sample implies conditioning on S1 or S2 equal to one, which is repre-

sented by a box around S1 or S2. Due to the preferential selection, the estimation is

b̂GjYjS2¼1=b̂GjXjS1¼1. The natural question to ask is under what conditions the causal effect can be

recovered by sample I and II with preferential selection, that is, bGjY
=bGjX

¼ bGjYjS2¼1=bGjXjS1¼1,

and the extent to which selection may affect the causal effect estimate.

Based on the classical instrumental variable assumptions [2–4], we propose the following

theorem to explore the sufficient conditions for causal effect invariance in two-sample MR

based on the Wald ratio method.

Theorem 1 The sufficient conditions for causal effect invariance under different selection

mechanisms bGjYjS2
=bGjXjS1

¼ bGjY
=bGjX

from two populations are:

a. for each valid instrumental variable Gj, S1?Gj or S1?X|Gj in population I and S2?Gj or

S2?Y|Gj in population II, respectively, or

b. Gj?Y|S2 and Gj?Y for each valid instrumental variable in population II.

Theorem 1 provides sufficient conditions for causal effect invariance under different selec-

tion mechanisms using two-sample MR methods. We also provide Directed Acyclic Graphs

(DAGs) that satisfied condition (a-b) in Theorem 1 (Figs 2 and 3). Three scenarios including

no nonrandom selection mechanism, selection depending on unmeasured confounders and

selection depending on genetic variants (Fig 2), satisfy the condition (a) in sample I or sample

II. Two scenarios including selection depending on the outcome or genetic variants (Fig 3) in

sample II satisfy the condition (b). The proof of this theorem is provided in S2 Text. In the

case of multiple independent instrumental variables with selection (e.g., Gi!S and Gj!S), the

PLOS GENETICS Nonrandom selection mechanisms in two-sample MR

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010107 March 17, 2022 4 / 21

https://doi.org/10.1371/journal.pgen.1010107


selection will result in a spurious association between Gi and Gj. Inverse-variance weighting

(IVW) with generalized least squares can reduce this bias [18].

When the exposure and outcome are binary, traditional MR methods can be used to deter-

mine whether there is a causal effect, but cannot estimate causal effect accurately [11]. In this

case, the Wald ratio can be expressed as logðORGjYjS2¼1Þ=logðORGjXjS1¼1Þ. In other words, beta-

Fig 2. Possible causal diagrams for condition (a) of Theorem 1.

https://doi.org/10.1371/journal.pgen.1010107.g002

Fig 3. Possible causal diagrams for condition (b) of Theorem 1.

https://doi.org/10.1371/journal.pgen.1010107.g003

PLOS GENETICS Nonrandom selection mechanisms in two-sample MR

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010107 March 17, 2022 5 / 21

https://doi.org/10.1371/journal.pgen.1010107.g002
https://doi.org/10.1371/journal.pgen.1010107.g003
https://doi.org/10.1371/journal.pgen.1010107


coefficients in the linear regression are replaced by log(OR)-coefficients in the logistic regres-

sion. We also provide sufficient conditions for the invariance of causal relationship using two-

sample MR methods on the OR scale in Theorem 2 (S2 Text). Because the non-collapsibility

[19], S1?Gj and S2?Gj in condition (a) are replaced by S1?Gj|X and S2?Gj|Y, respectively. In

comparison with Theorem 1, OR can avoid the influence of outcome-dependent selection

bias, especially in case-control study designs [20]. The difference for the DAGs satisfying The-

orem 2 is that selection depending on the unmeasured confounder no longer satisfies the con-

dition (a) in either sample I or sample II. Instead, selection depending on exposure in sample I

or outcome in sample II satisfies condition (a) in Theorem 2. Theorem 2 and its proof as well

as DAGs satisfying conditions (a-b), are provided in S2 Text.

2.3 Two-sample MR methods

Numerous pleiotropy-robust methods have been proposed in recent years. The third core

assumption of MR would be violated if pleiotropy exists, that is, the pathway between the IVs

and the outcome may not be via the exposure (X). There are two types of pleiotropy: horizontal

and vertical pleiotropy. Vertical pleiotropy is that a single nucleotide polymorphism (SNP)

influences one trait, which in turn influences another. Horizontal pleiotropy occurs when

SNPs influence two traits through independent pathways [21]. For example, if there are selec-

tions depending on X, a noncausal pathway between G and Y via U (G!X U!Y) will be

unlocked. This directly results in the violation of the MR assumption and further make the

instrumental variables invalid. Nowadays, many premiere MR studies feature new instrument-

based estimators that do not, strictly speaking, require that all proposed instruments are valid

instruments. We wonder whether these methods are robust when non-random selections

exist.

We consider eight methods that can be classified into four main types: consensus methods,

regression-based methods, likelihood-based methods and outlier-robust methods. The con-

sensus methods take their causal estimate as a summary measure of the distribution of the

ratio estimates (b̂Yj
=b̂Xj

), including two methods: the weighted median method [10] and the

mode-based estimate (MBE) method [14]. The regression-based methods regress the genetic

associations with outcome against the genetic associations with exposure using a variety of

regression methods, including IVW, MR-Egger [9] and MR-robust method [12]. The likeli-

hood-based methods include the contamination mixture method [15] and MR-Robust

Adjusted Profile Score (RAPS) [16]. We also study methods that remove outliers and then esti-

mate the causal effect of exposure on the outcome, such as MR-Lasso method [22]. The details

of the eight methods are provided in S3 Text.

2.4 Selection mechanisms in two-sample MR

We consider seven possible selection mechanisms which depend on G, X, Y and their combi-

nations in two samples, respectively. A total of 49 nonrandom selection mechanisms are con-

sidered. The DAGs depicted in Fig 4 show the causal relationships among the variables in

sample I and sample II of the MR analysis under different selection mechanisms. Fig 4A-G

correspond to selection depending on X, Y, G, X+Y, G+X, G+Y, and G+X+Y, respectively.

Note that we consider the selection mechanisms depending on Y in the GWAS analysis which

aims to investigate the genetic association with X, and vice versa. For example, nonrandom

selection depends on X in sample II unlocking the path G!X U!Y thus misestimating the

relationship of G-Y. We also consider the selection mechanism depending on G because non-

random selection is based on another phenotype that the genetic variants also affect, that is

pleiotropy, but not non random selection using observed genotyping data.
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Fig 4. Direct acyclic graphs of two-sample Mendelian randomization analysis under seven different selection mechanisms in Sample I (S1)

and Sample II (S2), respectively. A-G corresponding to selection depending on X, Y, G, X+Y, G+X, G+X+Y, respectively.

https://doi.org/10.1371/journal.pgen.1010107.g004
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2.5 Simulation settings

In order to compare the performances of the above eight methods, we generate the following

datasets as shown in Fig 4. For the i-th individual, we have

Gi,j~Binomial(2,0.3) j2(1,� � �,J),

Ui ¼
XJ

j¼1

�jGi;j þ εU;i

Xi ¼
XJ

j¼1

ajGi;j þ bUi þ εX;i

Yi ¼
XJ

j¼1

gjGi;j þ yXi þ cUi þ εY;i

εU,i, εX,i and εY,i~N(0,1)

Si~Binomial(1,πi) where logitðpiÞ ¼ e0 þ exXi þ eyYi þ
XJ

j¼1

eg jGi;j,

where ex, ey and eg are allowed to take values of –2, –1, –0.5, 0, 0.5, 1 and 2. The genetic variants

are modelled as SNPs with a minor allele frequency of 30%, and take on values of 0, 1 or 2. The

error terms εU,i, εX,i and εY,i follow independent normal distributions with a mean 0 and unit

variance. The selection S follows a binomial distribution with selection probability depending

on the exposure, outcome, and genetic variants.

We consider the following four scenarios:

1. No pleiotropy: The Instrument Strength Independent of Direct Effect assumption (InSIDE)

satisfied–valid IVs with no direct effect on the outcome (γj = 0) and the unmeasured con-

founder (ϕj = 0).

2. Balanced pleiotropy, InSIDE satisfied: Invalid IVs (Gj) with direct effects on the outcome

generated from a normal distribution centered at zero, i.e. γj~N(0,0.15), and genetic effects

on the confounder are zero (ϕj = 0).

3. Directional pleiotropy, InSIDE satisfied: Invalid IVs (Gj) with direct effects on the outcome

generated from a normal distribution centered away from zero, i.e. γj~N(0.1,0.15), and

genetic effects on the confounder are zero (ϕj = 0).

4. Directional pleiotropy, InSIDE violated: Invalid IVs (Gj) with direct effects on the outcome

generated from a normal distribution centered away from zero, i.e., γj~N(0.1,0.15), and

indirect effects on the outcome via the unmeasured confounder, i.e., ϕj~U(0,0.1).

The causal effect of exposure on the outcome is either taken as null (θ = 0) or positive (θ =

0.2). Genetic associations with exposure αj are drawn from a uniform distribution. Parameters

are chosen such that the total proportion of variance explained in the exposure by direct effects

of the genetic variants is approximately 10%. We simulate data on J = 50 and 100 genetic vari-

ants, and the proportion of invalid instrumental variables is 30% and 70%. We firstly generate

two populations with 1,000,000 individuals, respectively. For each selection mechanism,

10,000 individuals are selected from above two populations. We generate 1,000 simulated data-

sets for each scenario.

In each scenario, we consider the following seven selection mechanisms (Fig 4A-G) with e
denoting the selection effect in sample I and sample II, respectively.
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A. The selection S depends on exposure (X), i.e. ex = e, ey = egj = 0;

B. The selection S depends on outcome (Y), i.e. ey = e, ex = egj = 0;

C. The selection S depends on genetic variants (G), i.e. egj = e, ex = ey = 0;

D. The selection S depends on exposure (X) and outcome (Y), i.e. egj = 0, ex = ey = e;

E. The selection S depends on exposure (X) and genetic variants (G), i.e. ex = egj = e, ey = 0;

F. The selection S depends on genetic variants (G) and outcome (Y), i.e. ey = egj = e, ex = 0;

G. The selection S depends on exposure (X), outcome (Y) and genetic variants (G), i.e. ex = ey
= egj = e.

A total of 49 nonrandom selection mechanisms are considered. For each scenario, we assess

the performances of eight pleiotropy-robust methods based on biases, SEs, type I error rates

and powers. The nominal level is set to 0.05.

2.6 Application example

Coronary heart disease (CHD) is the leading cause of death and disability and its prevalence is

increasing worldwide [23]. Its modifiable risk factors, including obesity and HbA1c play impor-

tant roles in CHD prevention [24–26]. Obesity, typically defined based on body mass index

(BMI), as well as waist-to-hip ratio (WHR), is a leading cause of CHD in the population. WHR

adjusted for BMI (WHRadjBMI) is a surrogate measure of abdominal adiposity and has been

correlated with direct imaging assessments of abdominal fat. Emdin et al. found that a genetic

predisposition to higher WHR adjusted for BMI is associated with an increased risk of CHD

[26]. A MR study using UK Biobank revealed that HbA1c caused CHD [25]. A Network MR

analysis inferred that a higher BMI conferred an increased risk of CHD, which was partially

mediated by HbA1c [24]. We aim to explore whether the causal estimation of obesity on HbA1c

are different in patients with CHD and the general population. The realistic causal diagram is

shown in Fig A in S4 Text. Fig A1 in S4 Text shows the DAG for sample I. Figs A2 and A3 in S4

Text are the DAGs for sample II in general population and CHD patients respectively.

We use GWAS summary data on BMI [27], WHR and WHRadjBMI [28] for European

descent from the Genetic Investigation of ANthropometric Traits (GIANT) by GWAS meta-

analyses of 339,224 and 224,459 individuals, respectively. GIANT is an international collabora-

tion that seeks to identify genetic loci that modulate human body size and shape by performing

meta-analysis of GWAS data and other large-scale genetic datasets. We choose the SNPs with

significant association with obesity (p<5×10−8), minor allele frequency (MAF) more than 5%

and satisfying Hardy–Weinberg equilibrium (p>0.05). We prune the variants by linkage dis-

equilibrium (LD) (r2>0.001).

We retrieve the individual data for HbA1c from the UK Biobank with a sample of 487,314

Europeans. The UK Biobank [29] is a prospective cohort study with rich genetic, physical and

health data collected from more than 500,000 individuals (age range 40–69 years) across the

United Kingdom in 2006–2010. To examine the bias of the causal effect estimation under a

nonrandom selection mechanism, we also use a selected sample enriched for CHD patients

with 26,765 individuals as the selected population. The HbA1c levels is measured by HPLC

analysis on a Bio-Rad VARIANT II Turbo and is natural log-transformed to approximate nor-

mal distributions. CHD is defined by ICD-10 I20–I25.9 and self-reported as 1066. We per-

formed GWAS analysis in both the general and CHD populations. Results are available for

BMI, WHR and WHRadjBMI-associated leading SNPs for HbA1c. GWAS summary data for

application can be found in S1 Data.
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3 Results

3.1 Results of simulation

When the causal effect is zero (θ = 0), Fig 5 shows the tendency of estimations under different

selection mechanisms while varying across the selection effects of X, Y or G (ex, ey, or eg) in sce-

nario 1. Each row represents one of the seven different selection mechanisms in sample I, and

the columns represent seven different selection mechanisms in sample II. The first row of Fig

5 illustrates the simulation results when the selection mechanism depends on X in sample I

and all selection mechanisms in sample II, respectively. The biases of all methods are negative

and increase as the selection effect increases when the selection depends on G, X+Y, G+X, G
+Y, G+X+Y in sample II. Among these eight methods, MR-Egger shows less biases than other

methods, especially when selection depends on G+X, G+Y and G+X+Y. On the contrary, selec-

tions depending on Y and G in sample II show nearly unbiased causal effect estimations.

When the selections depend on Y, G, X+Y, or G+Y in sample I, the biases of estimations show

a similar tendency as that when selection depends on X. However, selections depending on G
+X and G+X+Y in sample I show different results. When the selections depend on Y or G in

Fig 5. Simulation results for causal estimations of eight Pleiotropy-robust MR Methods varying across selection effect from -2 to 2 under different

selection mechanisms with Null causal effect in scenario 1 (50 genetic variants). Sel I and II represent selection in sample I and sample II, respectively.

https://doi.org/10.1371/journal.pgen.1010107.g005
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sample II, all eight models also show unbiased causal effect estimations. When the selection

depends on X, X+Y and G+X in sample II, the biases firstly increase then decrease with the

selection effect increasing. In addition, the biases when selection depends on G+Y and G+X+Y
firstly increase and then reduce to zero, and finally rise in the opposite direction with the selec-

tion effect increasing. In summary, the biases of selections depending on X+Y, G+Y and G+X
+Y in sample II are larger than those of other selection mechanisms. When the selection mech-

anism in sample II is fixed, the different selection mechanisms in sample I show similar trends.

Fig 6 shows the tendency of the SEs under different selection mechanisms. In general, the

SEs of the MBE model are larger than those of other models. The SEs of selection depending

on G+Y and G+X+Y in sample II are larger than those of other selection mechanisms regard-

less of the selection mechanism in sample I. Fig 7 displays the tendency of type I error rates

under different selection mechanisms and simulation situations. Consistent with Fig 5, the

type I error rates of selections depending on Y and G in sample II are close to 0.05 regardless

of the selection mechanism in sample I. Furthermore, the type I error inflation can be observed

under other selection mechanisms due to the biased causal effect estimations of X on Y.

When the causal effect is positive (θ = 0.2), Figs 8 and 9 display a similar tendency of estima-

tions and SEs with Figs 5 and 6. Note that when the selection depends on Y in Sample I, the biases

Fig 6. Simulation results for standard error of eight Pleiotropy-robust MR Methods varying across selection effect from -2 to 2 under different selection

mechanisms with Null causal effect in scenario 1 (50 genetic variants).

https://doi.org/10.1371/journal.pgen.1010107.g006
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are larger than those in the case of null causal effect. Fig 10 shows the tendency of the power under

different selection mechanisms. The eight methods cannot effectively reject the null hypothesis due

to nonrandom selection. For SE, MBE has the worst performance among the eight methods.

We further investigate the impact of different proportions of invalid IVs (30% and 70%),

different numbers of total IVs (50 and 100 variants) and different pleiotropy scenarios (scenar-

ios 1–4, described in section 3.1) on biases, SEs, type I error rates and statistical power. The

results and details are displayed in S5–S8 Texts. When pleiotropy exists, the eight MR methods

show large biases and the type I error inflation. Even in the scenarios of balanced pleiotropy,

all the eight MR methods especially MR-Egger demonstrate large negative bias regardless of

the null and positive causal effect. We have provided four spreadsheets (S1–S4 Tables) as sup-

plementary materials giving the data points for all the Figs.

3.2 Results of application example

After the quality control process described in section 2.6, 33, 24 and 67 independent loci asso-

ciated with BMI, WHR and WHRadjBMI, respectively, are included in our study. These SNPs

can explain 0.41%, 0.14% and 0.15% (F statistics>>10) of the variance of the three exposures,

Fig 7. Simulation results for type I error rates of eight Pleiotropy-robust MR Methods varying across selection effect from -2 to 2 under different

selection mechanisms with Null causal effect in scenario 1 (50 genetic variants).

https://doi.org/10.1371/journal.pgen.1010107.g007
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respectively. We use the same SNPs in the general population and the selected population, for

the latter population we select individuals who are CHD patients. We then retrieve the GWAS

summary results on HbA1c from the UK Biobank. We consider the causal effects of BMI,

WHR, and WHRadjBMI on HbA1c levels in the general population and patients with CHD,

respectively. All analyses in our study are implemented by R package TwoSampleMR.

The results are shown in Fig 11. In the general population, there are strong evidences for

positive causal associations of BMI, WHR and WHRadjBMI on HbA1c levels. This means that

a high BMI and WHR can improve the HbA1c levels. And the eight MR methods demonstrate

consistent results. The effect estimates are magnified in the patients with CHD. This verifies

that the nonrandom selection in sample II bias the effect estimation.

4 Discussion

The goal of this study is to explore the influence of nonrandom selection mechanisms on

causal effect estimation in two-sample MR methods. Our simulation results indicate that non-

random selection mechanisms will lead to substantial bias in the MR estimation and inflated

type I error rates. When all the instrumental variables are valid, the different selection

Fig 8. Simulation results for causal estimation of eight Pleiotropy-robust MR Methods varying across selection effect from -2 to 2 under different

selection mechanisms with Positive causal effect in scenario 1 (50 genetic variants).

https://doi.org/10.1371/journal.pgen.1010107.g008
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mechanism in sample II are found to have larger influence on estimation than sample I. Selec-

tions depending on the combination of Y and other variables (G or X) in sample II lead to

larger biases of estimation than other selection mechanisms. The type I error inflation can be

observed under 49 different selection mechanisms. Notably when the causal effect is positive,

selection depending on Y leads to a larger bias than the case of a null causal effect. None of the

eight methods can effectively reject the null hypothesis due to selection bias. In particular, the

MBE has the worst performance as its large SE. When pleiotropy exists, eight MR methods

perform poorly. Even in the scenarios of balanced pleiotropy, all eight MR methods especially

MR-Egger demonstrate large negative bias regardless of the null and positive causal effect.

In sample I, the nonrandom selection depending on Y has less impact on the relationship

between G and X. On the contrary, the relationship between G and Y is largely biased the non-

random selection depending on X in sample II, regardless of null or positive causal effect. This

is because X is a collider in the pathway G!X U!Y and S is the descendant node of collider

X. Conditioning on S also unlocks the pathway G!X U!Y and violates the assumption of

IV Independence and Exclusion restriction. To some extent, all the eight MR methods can

minimize the impact of violating the assumption of Exclusion restriction. However, the IV

Fig 9. Simulation results for standard error of eight Pleiotropy-robust MR Methods varying across selection effect from -2 to 2 under different selection

mechanisms with Positive causal effect in scenario 1 (50 genetic variants).

https://doi.org/10.1371/journal.pgen.1010107.g009
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Independence assumption is difficult to test and relax because of the unmeasured confounder

U.

Selections depending on the combination of Y and other variables (G or X) in sample II

lead to larger biases of estimation than other selection mechanisms. Figs 5 and 8 show that the

selections depending on X+Y, G+Y and G+X+Y in sample II lead to large biases of estimation.

Selection depending on G and Y simultaneously, induces a spurious association between G
and Y due to conditioning on collider S, that is, a horizontal pleiotropy. Selection depending

on X and Y simultaneously, not only induces a spurious association between X and Y, but also

unlocks the pathway G!X U!Y [8]. Selection depending on G, X and Y simultaneously

combines the above two cases. Hartwig et al. [30] also have found that the causal structure in

the second sample had a larger influence on causal effect estimation. Their work aimed to

assess whether different covariable-adjusted summary associations in two-sample MR could

distort causal effect estimation. They found that using covariable-adjusted summary associa-

tions may bias the MR analyses. Particularly, the presence of an unmeasured confounder

between the covariate and outcome in the second sample would render the covariate a collider.

This type of collider bias is called the analytical colliding bias [31]. Their work is similar to our

Fig 10. Simulation results about statistic power of eight Pleiotropy-robust MR Methods varying across selection effect from -2 to 2 under different

selection mechanisms with Positive causal effect in scenario 1 (50 genetic variants).

https://doi.org/10.1371/journal.pgen.1010107.g010
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work’s conclusion in that S is also a collider and restricting the analysis to the selected popula-

tion will lead to another type of collider bias sampling colliding bias [31]. Both types of collider

bias will distort the true relationship between the common causes of collider.

For all eight pleiotropy-robust methods, performance is poor under nonrandom selection

mechanisms, even when the extra pleiotropy exists. When the nonrandom selection depends

on multiple independent genetic variants (G), spurious associations among these genetic vari-

ants would be induced. This may disturb the selection of valid IVs or make the valid IVs

invalid. The proportion of invalid IVs caused by nonrandom selection is difficult to measure,

which influences the performance of pleiotropy-robust methods to different extents. For

example, IVW requires that all the IVs are valid, weighted median allows 50% IVs are invalid,

weighted MBE allows 50%-100% IVs are invalid and MR-Egger allows 100% IVs are invalid.

In addition, unlocking the pathway G!X U!Y violates the InSIDE assumption, which is

necessary for MR-Egger [14].

We provide a short review of the relevant selection mechanisms in GWASs and examples

corresponding to selection mechanisms in published two-sample MR studies, as well as exist-

ing methods to correct for selection in these situations (Table 1). Because the two samples used

in MR analysis are both from GWAS analysis, we only list possible selection mechanisms in

one GWAS sample, including three cases: selection depending on genetic variants, phenotype

(exposure X or outcome Y in MR analysis) and both. In our application, we restrict analysis to

CHD patients to reveal the significant influence of nonrandom selection on the causal effect

estimation of obesity on HbA1c levels. Several MR studies have found that obesity and HbA1c

levels play important roles in CHD prevention [24–26]. HbA1c is the outcome of interest and

S is a binary variable indicating whether a participant is a CHD patient in sample II (Fig A in

S4 Text). In other words, we restrict the analysis to CHD patients, that is, conditioning S = 1,

which depends on the outcome and exposure. In this situation, this selection mechanism can

magnify the causal effect estimation of obesity on HbA1c levels.

Fig 11. Results of MR analysis of obesity on the risk of HbA1c levels. Three columns from left to right represent MR results of body mass index (BMI), waist-

to-hip ratio (WHR) and WHR adjusted for BMI (WHRadjBMI) on HbA1c levels, respectively. The red and blue nodes represent MR analysis in general

population and coronary heart disease (CHD) patients, respectively.

https://doi.org/10.1371/journal.pgen.1010107.g011
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In conclusion, nonrandom selection mechanisms in two-sample MR exacerbate the estima-

tion bias for pleiotropy-robust MR methods. The biases tend to be exaggerated in the presence

of pleiotropy.
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Table 1. Possible selections in published analysis and existing methods to correct for selection bias.

DAGs Relevant selection mechanisms in GWASs Examples corresponding to selection

mechanisms in published two-sample MR

studies

Selection-corrected methods

Gj ! X=Y

#

S

Survival bias, that is, survival until study

inclusion [32]; When considering a secondary

disease outcome, such as disease progression

[33]; Case-control study [8]; Differential loss to

follow up in cohort studies [34]; Participant

dropout [7]; Case-only study[7].

Identifying risk factors for brain tumors using a

case-control design [37]; A case-only study is used

to explore the causal effect of BMI on breast

cancer survival for ER-positive breast cancer [38];

Lp(a) was not associated with future

cardiovascular mortality in the population of

individuals who already established CHD [39];

Genetic associations of alcohol-related variants

with esophageal cancer have been considered

separately in non-drinkers, moderate drinkers

and heavy drinkers [40].

Consistent estimators of the causal relative risk

and odds ratio if a priori knowledge is available

regarding either the population disease

prevalence or the population distribution of the

IV [43]; Causal effect estimation under a quasi-

empirical likelihood framework [44]; Inverse

probability weighting method [7,33,45,46];

Inverse probability-of-censoring weighted

estimation [34]; Bayesian approach [47,48];

Heckman’s Two-Step Method [48,49].

Gj ! X=Y

#

S

A misalignment in time zero [35]; Non-random

selection based on another phenotype that the

genetic variants also affect.

A mendelian randomization study revealed that

low blood HDL-C is a potential causal risk factor

for impaired cognition during aging in non-

Hispanic whites of European ancestry [41]; A

Mendelian randomization study of the effects of

late-life cholesterol levels on dementia risk could

be biased if earlier cholesterol levels affect living

long enough to be at risk of dementia [35].

Inverse probability weighting method

[7,33,45,46]; Bayesian approach [47,48];

Heckman’s Two-Step Method [48,49].

Gj ! X=Y

& .

S

Restrict population by specific features [36]. If a genotype and maternal folate status affect

embryo failure, the selection bias will occur in the

population with embryo failure. [36,42]

Inverse probability weighting method

[7,33,45,46]

https://doi.org/10.1371/journal.pgen.1010107.t001
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