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Abstract

Background: In ecological situations, threatening stimuli often come out from the peripheral vision. Such aggressive
messages must trigger rapid attention to the periphery to allow a fast and adapted motor reaction. Several clues converge
to hypothesize that peripheral danger presentation can trigger off a fast arousal network potentially independent of the
consciousness spot.

Methodology/Principal Findings: In the present MEG study, spatio-temporal dynamics of the neural processing of danger
related stimuli were explored as a function of the stimuli position in the visual field. Fearful and neutral faces were briefly
presented in the central or peripheral visual field, and were followed by target faces stimuli. An event-related beamformer
source analysis model was applied in three time windows following the first face presentations: 80 to 130 ms, 140 to
190 ms, and 210 to 260 ms. The frontal lobe and the right internal temporal lobe part, including the amygdala, reacted as
soon as 80 ms of latency to fear occurring in the peripheral vision. For central presentation, fearful faces evoked the classical
neuronal activity along the occipito-temporal visual pathway between 140 and 190 ms.

Conclusions: Thus, the high spatio-temporal resolution of MEG allowed disclosing a fast response of a network involving
medial temporal and frontal structures in the processing of fear related stimuli occurring unconsciously in the peripheral
visual field. Whereas centrally presented stimuli are precisely processed by the ventral occipito-temporal cortex, the related-
to-danger stimuli appearing in the peripheral visual field are more efficient to produce a fast automatic alert response
possibly conveyed by subcortical structures.
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Introduction

There is no question that human behaviour is affected by

environmental input. What is less known is that most environ-

mental stimuli are not consciously perceived [1,2], yet they

nevertheless modulate behaviour [2–4]. The processing of

unconsciously perceived stimuli is particularly important for

visually salient or arousing stimuli. Thus, facial emotional

expressions, particularly fear, can be processed in the absence of

awareness [5,6], triggering changes in skin conductance [7,8] and

judgment of subsequent targets [9,10]. As fear is linked to danger,

detecting fear in the environment, even unconsciously, enhances

vigilance and alertness, which is essential to produce fast and

adapted behavioural reactions.

Facial expression detection is mediated by distributed neural

systems [11] including many of the brain structures involved in

processing visual stimuli in general. The main pathway involves

the lateral geniculate nucleus, the striate cortex, and parietal and

temporal extrastriate cortices. Elementary visual feature processing

related to face detection induces occipital activity around 90 ms

[12]. Following temporal cortex reaction is mainly disclosed by

fusiform gyrus related to structural face processing occurring

around 170 ms [13–15] and superior temporal gyrus related to

changeable facial feature analysis, particularly to facial expressions

[16]. More anterior structures like amygdala and orbito-frontal

cortex are reported to be activated later [17].

In parallel to this main visual pathway, a second pathway has

been suggested to process danger-related stimuli, in this case

fearful faces [6,18]. This pathway would involve a retino-tectal

route and subcortical structures, mainly the superior colliculus, the

pulvinar, and the amygdala [19]. This route may bypass the

primary visual cortex and is thought to be limited to a relatively

coarse and automatic processing, especially of visual transient and

highly salient visual features [11]. The residual detection capacities

of blindsight patients in their blind hemifield after a striate visual

cortex lesion validate the existence of a subcortical route [20].

Interestingly, in a forced choice task, a blindsight patient was able

to discriminate emotional faces in his blind hemifield without

explicit knowledge. In this patient, fearful faces produced

amygdala activation mediated by the superior colliculus and the

pulvinar [21]. Another study in a cortically blind patient has

shown a correct guessing for emotional faces and not for other
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emotional stimuli [22]. The patient’s right amygdala was activated

during the unconscious processing of emotional faces. Thus,

behavioural and neuroimaging data suggest that non-consciously

perceived facial expressions may access the amygdala and frontal

cortex via a subcortical visual route bypassing the striate cortex

[23].

Animal studies established that colliculus is largely fed by

magnocellular cells [24,25]. Consequently, the colliculo-thalamo-

amygdalar pathway is particularly sensitive to the visual properties

conveyed by the magnocellular system, i.e. low spatial frequencies

and rapid, dynamic stimuli. Interestingly, recent studies have

demonstrated that low spatial frequencies are particularly

implicated in fearful faces perception [26,27], suggesting an

important role of the magnocellular system in threat-stimulus

perception. The magnocellular system is essentially afferented by

the peripheral retina [28]. Moreover, the colliculus and the

pulvinar are oculomotor structures involved in saccade production

towards targets in the peripheral visual field and are thus

particularly tuned to peripheral stimulations. In ecological

situations, danger often appears first in the peripheral visual field.

A rapid reaction would influence survival and thus is likely driven

by a fast and phylogenetically old system. By stimulating mainly

the magnocellular system, peripheral fearful faces would trigger a

fast brain response, possibly conveyed by the subcortical colliculo-

thalamo-amygdalar route. Indeed this last route shows these

properties of rapidity [18], automaticity [6], emotional detection

capacity [27] and peripheral preference [29].

Subcortical structures are activated by fearful faces when their

presentation is subliminal and central [6,18,30,31], but the

questions of how and how fast the brain processes emotional

faces briefly presented in the peripheral visual field have not been

addressed. By automatically recruiting specific brain regions in the

first steps of visual analysis, peripheral threatening stimuli should

allow a fast and adapted defensive reaction. We hypothesized in

this study that fearful faces unconsciously perceived in the

peripheral visual field, by stimulating mainly magnocellular cells,

would particularly trigger a fast neuronal response implicating the

colliculo-thalamo-amygdalar pathway and then, the frontal cortex.

We used the Magnetoencephalography (MEG) which combines an

excellent temporal and good spatial resolution [32] to record brain

reaction to centrally versus peripherally very briefly presented

fearful stimuli.

Results

The 2 by 2 ANOVA (2 spatial positions, 2 facial expressions)

performed on the 3D activation maps resulting from source

activation analysis (see further description in the methods) revealed

statistically significant interactions between the 2 factors in several

brain regions, encompassing a large part of the four cerebral lobes.

The interaction was highly significant in the right frontal lobe, the

central occipital region and in both temporal lobes. The

Interaction was also significant in the left frontal lobe and in the

left inferior and right superior parietal regions. In all regions with a

significant interaction between spatial expressions and spatial

positions, the differences of activations between fearful and neutral

faces were tested (one sampled t test) for the central and the

peripheral presentation. Structures exhibiting a statistically

differential response to stimuli between fearful and neutral faces

are listed in Table 1 and Table 2, respectively for central and

peripheral presentation condition.

Central presentation
Table 1 reports these structures across the three time windows,

for central presentation. In the earliest time window (80 to

130 ms), significantly (p,0.01) higher responses to fear were found

only in the left hemisphere, in the inferior temporal sulcus and the

anterior part of the inferior temporal gyrus. Between 140 and

190 ms, the left inferior temporal region was still more active

(p,0.01) for fearful faces as well as the right post-central gyrus and

right temporal regions including the middle and superior temporal

gyri, the right fusiform gyrus, and finally the left occipital gyrus. In

the third time window (210–260 ms), a statistically significant

difference of activation was maintained in the right middle

temporal region and simultaneously appeared in the left inferior

parietal and middle frontal regions.

Peripheral presentation
Table 2 lists the structures significantly more active for fearful

than for neutral faces in the three latency windows when the

Table 1. Brain areas more activated by fearful than by neutral centrally presented faces in the three analyzed time windows.

Time windows windows
windows windows Brain regions side Talairach coordinates

x y z Student-t Volume

80 to 130 ms Inferior temporal sulcus L 250 239 26 4.82 2

Inferior temporal gyrus L 240 22 238 3.57 4.5

140 to 190 ms Post-central gyrus** R 45 217 47 5.46 11

Middle temporal gyrus** R 64 230 11 5.41 8

Superior temporal gyrus* R 54 262 26 4.89 10.5

Inferior temporal gyrus L 259 225 216 4.47 4.25

Fusiform gyrus R 40 274 217 3.56 2.25

Inferior occipital gyrus L 235 283 213 3.5 4.25

210 to 260 ms Middle temporal gyrus** R 50 230 211 5.91 3.5

Inferior parietal lobule L 264 237 30 4.53 1.25

Middle frontal gyrus L 220 53 27 3.5 1.5

For each activation cluster, the Talairach coordinates correspond to the voxel of maximal intensity obtained after the ERB analyses, the volumes are expressed in cm3.
The threshold is set at uncorrected p,0.01 (*p,0.005, **p,.001).
doi:10.1371/journal.pone.0008207.t001
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unconsciously perceived faces were presented in the peripheral

visual field. Only right-hemisphere regions were found in the first

time window (80 to 130 ms): the right anterior temporal region

including the uncus and the amygdala (Figure 1), the right pre-

and post-central gyrus, the precuneus, the medial frontal gyrus and

the anterior cingulate. To specify the time course of the right

amygdala site, virtual sensors power source [33] were calculated

individually and averaged. The resulting time courses of activation

for neutral and fearful faces in the right amygdala (Talairach

coordinates: 21, 24, 215) revealed a peak response in this

structure around 115 ms (Figure 2). Source analyses showed that

the activity around this peak was significantly larger for fearful

faces. In the 140–190 ms time window, the right post and

precentral gyrus and the right medial frontal gyrus remained

significantly more activated for fearful faces (p,0.01), while the

left inferior parietal and middle occipital regions became

significantly more active for fearful faces (Table 2). In the 210–

260 ms time window, two areas, left post-central gyrus and left

supramarginal regions, were significantly more activated by fearful

faces presented in the periphery (Table 2).

Discussion

This study disclosed a quite early (before 130 ms) source

activation difference in response to fearful versus neutral faces in

the right anterior medial temporal region, including the amygdala,

and in the anterior fronto-medial region, when presentation

occurred in peripheral vision. When faces were presented

centrally, regions along the ventral visual pathway (occipital

cortex, fusiform gyrus, bilateral anterior temporal region) were

more activated by fear than by neutral expression between 140

and 190 ms. Only after 210 ms, fronto-medial regions were also

more activated by centrally presented fearful faces.

Early right medio-temporal and medio-frontal cortex
reaction to fear in periphery

Our results reinforce the hypothesis of an early (around 100 ms)

modulation of brain activity by not consciously perceived facial

expressions [34], and the involvement, in this processing, of a large

distributed neural network, including amygdala and frontal

regions [6,18]. Most importantly, our data demonstrate for the

first time that the advantage for fear expression occurs when not

consciously perceived stimuli were presented peripherally. The

network involved in rapid detection of danger is thus preferentially

activated when danger appears in the periphery, stimulating

mainly the magnocellular system. The magnocellular system role

has rarely been studied in the emotional context, a unique study

suggesting that different neural networks could be involved in

emotional processing for central and peripheral vision [35].

However, it is demonstrated that low spatial frequency informa-

tion carried by the magnocellular pathway is preferentially used

for facial expression recognition [26,27]. The present results

provide further converging evidence that a rapid magnocellular

pathway is implicated in fearful facial expression detection. The

colliculo-thalamo-amygdalar pathway, tuned for visual informa-

tion conveyed by magnocellular channels, has been proposed to

carry fear-related stimuli [6,23], and has already been reported to

detect danger in animal studies [19]. The early amygdala response

that we observed around 100 ms could result from this subcortical

pathway activation for peripheral presentations. By stimulating the

magnocellular system preferentially, the peripheral presentation of

a related-to-danger stimulus would be more efficient than central

presentation to activate a subcortical neuronal network able to

quickly identify the potential danger coming from the periphery.

The hypothesis that visual processing could be faster with the

increase of eccentricity has already been formulated with simple

visual stimuli [36], but to our knowledge, it is demonstrated here

for the first time that emotional information can be processed

faster in the peripheral visual field. This fast detection would result

from magnocellular pathway recruitment, consistently with the

subcortical pathway hypothesis.

The different brain regions sensitive to facial expressions in the

first 130 ms are right-sided when the presentation is peripheral but

are left-sided for central presentations. Hemispheric differences have

been observed regarding emotional perception and particularly, a

functional dissociation has been proposed between the right and left

amygdala. The right amygdala would be more implicated than the

left in a fast visual detection through a subcortical route [6]. The

right-sided activity including amygdala’s for detecting peripherally

presented faces is an additional argument to point out a preference of

the rapid subcortical visual pathway for danger coming from the

periphery. The left-sided activity, between 80 and 130 ms for

centrally presented faces, is limited to the inferior temporal region,

confirming its role in a slower cortical visual analysis.

Table 2. Brain areas more activated by fearful than by neutral peripherally presented faces in the three analyzed time windows.

Time windows Brain regions side Talairach coordinates

x y z Student-t Volume

80 to 130 ms Precuneus** R 15 262 26 5.23 5

Post and pre-central gyrus* R 54 213 24 4.72 8.5

Uncus and amygdala R 31 211 233 4.43 3.75

Medial frontal gyrus/anterior cingulate R 1 54 11 4.19 2.75

140 to 190 ms Medial frontal gyrus* R 0 59 6 4.99 1.75

Post and pre-central gyrus* R 59 29 14 4.6 8.5

Inferior parietal lobule L 259 237 34 4.02 1.25

Middle occipital gyrus L 235 292 0 3.78 4

210 to 260 ms Post-central gyrus L 259 218 219 7.19 1.25

Supramarginal gyrus L 259 242 34 3.62 1.25

For each activation cluster, the Talairach coordinates correspond to the voxel of maximal intensity obtained after the ERB analyses, the volumes are expressed in cm3.
The threshold is set at uncorrected p,0.01 (*p,0.005, **p,.001).
doi:10.1371/journal.pone.0008207.t002
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A possible limitation of our study could be the confidence of the

MEG ability to detect sources as deep as the amygdala. Although

some older papers have questioned the capacity of MEG to

accurately detect and localize signals from deep neural structures

[37–39], source reconstruction models are now routinely used to

detect activity in deep structures including thalamic region [40,41]

and amygdala [42–47]. Thus, current whole-scalp sensor arrays

are able to capture magnetic flux signals represented across the

entire array that are also generated by deep sources [41]. The low

MEG sensitivity to deep sources is a limit to study amygdala

activations, but is also an argument that the observed sources

correspond to strong activations, strong enough to be detected by

MEG system despite its low sensitivity for this region. We cannot

exclude an amygdala activity for central presentation, as reported

in previous neuroimaging studies. But whether or not there is an

amygdala activity for central presentation, this activity is too small

to be detected by MEG, and so is smaller than the activity

observed for peripheral presentation.

The frontal activation related to peripheral presentation of

fearful faces before 130 ms could be driven by subcortical

structures directly connected to the frontal lobe [48]. The frontal

activation was located in the medial frontal gyrus but also

encompassed the anterior part of the cingulate cortex (ACC). The

ACC is involved in a wide range of cognitive functions including

orientation of attention [49,50], modulation and control of

emotion [51]. Its implication has been demonstrated in the

perception of task-irrelevant fearful faces [52] and in non-

conscious facial expression perception [53], but its role remains

debated. On the one hand, the ACC is activated only if the

emotional information has to be ignored, which supports its role in

the control of attention to affective stimuli [52]. On the other

hand, its activation by very brief presentation of emotional faces is

interpreted as its role in attention orientation [53]. Our results

show ACC activation only for peripherally presented faces, when

the emotional information was outside the usual attentional field.

Figure 1. Group source analysis. The student-t statistic 3D map
resulting for the group source analysis are thresholded by the
corresponding p-value,0.01. During the first 130 ms, not-consciously
perceived peripheral fearful faces enhanced the neuronal activity in the
right anterior medial temporal lobe, including parahippocampal gyrus
and amygdala.
doi:10.1371/journal.pone.0008207.g001

Figure 2. Time courses of activities at the right amygdala site.
The activity elicited at the right amygdale site (21, 24, 215) by
peripherally presented stimuli is depicted in black for fearful faces, in
grey for neutral faces. The first peak appearing around 115 ms is
stronger for fearful faces. The reported pseudo-Z values are taken from
the subtraction of time course activities related to fearful faces minus
those related to neutral faces in the corresponding voxels.
doi:10.1371/journal.pone.0008207.g002
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This supports the hypothesis that rostral ACC plays a role in

directing attention toward the emotional information. The medial

prefrontal cortex also participates in the regulation of emotional

behaviours and autonomic response [54]. Early neuronal

enhancement is reported in the frontal region in reaction to

fearful faces [17,55,56] or other related-to-danger stimuli [57].

The ACC and medial prefrontal cortex activation only for

peripheral fearful faces reinforces the hypothesis of their role in

automatic response to danger [57] and is consistent with their

function in shifts of spatial attention [58]. Emotionally salient

stimuli would be more efficient than neutral stimuli to attract

visual attention by recruiting the ACC and medial prefrontal

cortex. Interestingly, the prefrontal cortex activity appears before

130 ms for peripherally presented faces but only after 210 ms for

centrally presented faces, suggesting facilitation for attracting

visual attention by peripheral apparition of danger. Thus the

attentional shift may be triggered more rapidly and more

efficiently by emotional stimuli occurring in the peripheral visual

field better processed by a subcortical route and then by frontal

structures.

Visual ventral pathway reacts to fear in the center
Centrally presented fearful faces activated only the inferior

temporal region in the first 130 ms of latency, and a larger

neuronal network along the visual ventral pathway between 140

and 190 ms. During this time window, inferior occipital lobes,

fusiform gyrus, superior temporal gyrus and inferior temporal lobe

were sensitive to facial expressions only for central presentation.

Those regions are part of a network known to be involved in face

and facial expression processing [16]. Enhancement of activity for

negative versus neutral expressions has been observed with

different neuroimaging techniques in occipital lobes [59–62],

fusiform gyrus [63–66], and superior temporal gyrus [67]

particularly implicated in processing face changeable features like

emotional expressions [16]. Even when they were subliminally

presented, faces have been reported to activate this visual ventral

network [34,57,68]. The present results confirm the sensibility of

those regions to fearful faces, in particular faces presented in the

central visual field. Contrarily to the fast and crude analysis

performed by the subcortical route and the dorsal visual pathway,

the ventral pathway proceeds to a detailed analysis of the stimulus.

This analysis conveyed by the parvocellular pathway is slower

than the visual magnocellular system to reach the cortex [69,70].

Thus a double functional dissociation is observed between the

ventral visual cortical pathway which slowly and precisely

processes centrally presented fearful faces and the subcortico-

frontal route implicated in a crude and fast analysis of peripherally

presented danger related stimuli.

Other activities
During the 80–130 ms time window, a significant difference

between fear and neutral face related activities was revealed in the

right precuneus for peripherally presented faces only. This region

is classically implicated in mental imagery [71], in visuo-spatial

attentional shift [72,73] and in processing emotional valence

[74,75]. The precuneus has abundant reciprocal connections with

the anterior cingulate cortex, the dorso-lateral-prefrontal lobe and

the temporal lobes [76], regions functionally linked to emotional

valence rating [75].

The enhancement of activity in the precuneus for peripheral

fearful faces can be interpreted as attentional resource recruitment.

The important neuronal connection between precuneus and the

ACC on the one hand, and their co-activation in the first stage of

visual processing on the other hand, suggest that they belong to a

same network, activated by emotional information in the

peripheral visual field, allowing an early shift of attention to the

stimulus and assessing its emotional valence.

The post-central gyrus showed stronger responses to fearful than

to neutral faces in both spatial locations. However, for peripheral

stimuli, the post-central gyrus is activated by fearful faces from 80

to 260 ms while for central presentation this activity appears only

in the 140–190 ms time window. This somatosensorial region

appears to play a role in emotion processing. Indeed, anatomical

lesions or functional disturbance induced by transcranial magnetic

stimulation of the right somatosensory cortex may be associated

with impaired recognition of facial expressions, particularly fear

[77,78]. It remains debated whether the somatosensory cortex

contribution to the emotional recognition is part of an early

perceptual process. The somatosensory cortex has been found to

be activated during explicit recognition of facial expression but not

during gender judgment of expressive faces [79]. In our study, the

somatosensory activity has been observed before 130 ms even

though the emotional information was not consciously perceived.

This result reinforces the hypothesis of an early perceptual role of

the somatosensory cortex for emotional stimuli [80]. The early and

sustained activation for peripherally presented faces suggests an

implication of somatosensory areas not only in internal somatic

representation of the emotion [77] but also in fast detection and

reaction to danger.

Overall, the present data describe the spatiotemporal neuronal

processing of fearful faces, not consciously perceived, presented in

the peripheral visual field compared to central visual field. The fast

reaction of the right medial temporal area is consistent with a role

of the right amygdala in rapid and coarse detection of aversive

stimuli coming from peripheral vision. This fast alert may convey

subsequent frontal reaction crucial to shift attention towards

peripheral threatening stimuli. This network preference for fear

expression in the peripheral visual field may allow a more rapid

behavioural response in dangerous situations, even without

consciousness. An adaptive advantage is conferred by the fast

automatic detection of potential threat outside the focus of

attention, as danger in the external world mostly appears in the

peripheral vision, requiring a rapid behavioural reaction before a

conscious control.

Materials and Methods

Ethics statement
Each subject provided informed written consent. The study was

conducted in accordance with the Declaration of Helsinki and was

approved by the french ethics committee, Comité de protection

des personnes SUD-EST IV, centre Leon Bérard.

Subjects
Eleven healthy, right-handed subjects (6 women), aged 18 to 29

years (mean 22.9 yrs) participated in the study. None had a history

of neurological or psychiatric disorders, and all had normal or

corrected-to-normal vision. All provided informed written consent.

The study was conducted in accordance with the Declaration of

Helsinki and was approved by the local ethics committee.

Stimuli and task
Each stimulus included three pictures, aligned horizontally, one

picture in the center, one on the left and the right side, with 8u
separating the central picture center from the peripheral picture

center. The pictures were either faces or scrambled faces. We used

eighty-four pictures of faces from the NimStim Face Stimulus Set

[81] and ten scrambled faces. The selected faces consisted of 26
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PLoS ONE | www.plosone.org 5 December 2009 | Volume 4 | Issue 12 | e8207



different individual faces (11 women), each with three different

emotional expressions: neutral, happy and fear. The selected

emotional faces had been categorized by emotion with more than

70% of accuracy, according to the NimStim validation table. In

addition, five neutral faces, from other individuals, were used as

masks (see protocol design below for details). The ten scrambled

images were modified from the selected faces, scrambled with

Adobe Photoshop software using a ripple distortion filter.

All pictures were black and white, resized and cropped to an

oval shape. For face pictures, the oval crop was made inside the

contour line of the face and all extra-facial information (hair

around the face) was numerically erased. Eye position was

controlled to ensure the same location within the oval across

pictures. Mean luminance across pictures was equated. The final

size of all the pictures was 5.6 to 7.5 cm subtending a visual angle

of 4u to 5.2u at the viewing distance of 80 cm.

Each trial was beginning by a stimulus containing one face plus

two scrambled faces. The stimuli were presented for 33 ms. In

each stimulus, the face was presented centrally (50% of trials) or

peripherally (50% of trials), half of them being a neutral face, the

other half a fearful face Fifty percent of the faces presented in the

periphery were in the right hemifield and 50% in the left one. The

first stimulus was immediately followed by a mask, consisting of

three neutral faces presented simultaneously and randomly chosen

among the five neutral faces dedicated to the mask. The mask was

presented for 200 ms and followed by a fixation cross presented in

the center of the screen. There was a total of 624 trials, presented

in 4 blocks using Presentation 6.0 H software. The four conditions of

156 trials (neutral or fear expression, central or peripheral position)

were randomly presented.

To ensure that subjects paid attention, a target stimulus was

presented for 150 ms, 300 to 400 ms after the mask (Figure 3).

The target stimuli contained one face and two scrambled images;

50% of the target faces were presented centrally and 50%

peripherally. Three different expressions were presented as target

stimuli: neutral, fear or happy, with equal probability. Subjects

were asked to fixate the cross in the center of the screen and press

a button when they detected a happy face in the target stimulus.

Subjects were informed that each of the target stimuli were

preceded by three faces (the mask), and were asked to focus their

attention on the target stimuli to correctly perform the task. Only

brain responses to the first stimulus (33 ms presentation) are

presented in this paper.

The total inter-trial interval varied randomly between 1400 and

1600 ms. A fixation cross was present between the end of each

target and the beginning of next trial. After the study, subjects

were debriefed on what they had perceived. They all reported

seeing only the 3 neutral faces (the masks) followed by the target

stimulus. After we have informed them that in fact expressive faces

were presented just before the three neutral faces, all subjects

reported that they did not perceive this emotional stimulus,

confirming that the analyzed stimuli, presented for 32 ms, were

not consciously perceived by the subjects.

MEG recording and co-registration with MRI
MEG signals were recorded on a CTF Omega 275 channel

whole head system (VSM MedTech Ltd., Canada) in CERMEP,

Lyon, France (www.cermep.fr). Continuous signals were recorded

at 600 Hz using a third-order spatial gradient noise cancellation

with an online bandpass of 0–300 Hz. Three fiducial coils (nasion,

left and right pre-auricular points) were placed for each subject to

determine the head position within the MEG helmet, and to

provide co-registration with the anatomical MR images. Refer-

ence head position was recorded before the first block. Head

Figure 3. Example of trial. Each trial started with two scrambled faces and a fearful or neutral face presented for 33 ms, centrally or peripherally,
immediately masked by 3 neutral faces. After a variable delay the target stimulus was appearing. The subject was asked to press a button when a
happy face was occurring.
doi:10.1371/journal.pone.0008207.g003
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position was controlled online during each block, and was

readjusted to the reference position before each block, if necessary.

The three coil positions were marked with radiology markers for

the individual high resolution T1-weighted anatomical image (1.5

Tesla scanner, Siemens Sonata Maestro Class, 1 mm axial slices),

ensuring an accurate MEG-MRI co-registration for source

analyses.

During the task, eye movements were recorded by electrooc-

ulogram (EOG) to ensure that subjects were fixating the centre of

the screen during the stimuli presentation. For all recorded

subjects, the total number of eye blinking and horizontal eye

movements during the 500 ms following the stimuli onset do not

exceed 1% of the total number of presented trials.

Source analyses
Event-related beamformer (ERB) source analyses [32,33] were

conducted on each subject’s data for each of the four stimulus

conditions (peripheral or central, neutral or fearful). In the present

study, we used an adapted synthetic aperture magnetometry

(SAM) beamformer algorithm [82]. As in other beamformer

approaches, the SAM algorithm defines the signal of interest by

the forward solution for a current dipole source at each target

voxel. ERB uses the minimum-variance SAM beamforming

algorithm on each trial and the forward solution for optimal

current dipole direction to calculate a spatial filter for each voxel.

The filters are noise-normalized, based on the spatial correlation

present in the data. For each voxel, the resulting filter is then used

to calculate the difference of source power between the baseline

and the active window across time. We used the 100 ms pre-

stimulus interval for the baseline. Finally, the resulting power

source for the different analyzed time windows is expressed in a

pseudo-Z value, defined as the difference of activity between the

analyzed time window and the baseline, normalized by the noise.

Contrary to the original SAM algorithm, the ERB method

presently used allows analyses on narrow time windows, and is

consequently adapted for early steps of cerebral processing

analyses.

We applied the ERB analyses to three different time windows:

80–130 ms, 140–190 ms, and 210–260 ms. These time windows

were chosen after a visual inspection of the average MEG signal.

They corresponded to the three principal MEG components

detected and the size of the windows (50 ms) encompassed the

major part of these peaks (Figure 4).

For each condition, each subject and the three time windows, a

3-D power distribution map was calculated for the 1–30 Hz

frequency band, using a 5 mm resolution reconstruction grid that

encompassed the entire brain volume. The forward model for the

beamformer calculation was based on a multi-sphere model fit to

the inner skull surface extracted from the individual anatomical

image with Brainsuite2.0 software [83]. The 3-D ERB images were

Figure 4. Sensor responses averaged across subjects and conditions. Event-related beamformer source analyses were performed in three
50 ms time windows (grey) surrounding the three major peaks. Magnetic activity maps represent the sensor activity for each maximum peak
amplitude.
doi:10.1371/journal.pone.0008207.g004
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spatially normalized in an average brain (MNI 152), and put into

Talairach stereotaxic space, using SPM2 (www.fil.ion.ucl.ac.uk/

spm/software/spm2/), allowing statistical analysis and the com-

putation of a group average of activation volumes. To take into

account the brain anatomy variability and the individual brain

normalization, group average activation maps were overlaid onto

the average brain used for normalization.

Group analyses were completed with AFNI software [84]. A 2

by 2 within-subject ANOVA was performed on each analysed

window to test the interaction effect between the spatial position

factor (centre or periphery) and the facial expression factor (neutral

or fearful faces). The resulting 3D map of the F values was used as

a spatial mask for the comparison of the two facial expressions in

the central or the peripheral presentation condition. For those 2 by

2 comparisons, only voxels with a significant interaction effect

(uncorrected F,0.01) were analysed.

For each subject, each time window and for both stimulus

spatial positions, contrast images between fearful and neutral faces

were calculated voxel by voxel on the difference in power ratio

between these two conditions. By subtracting the two conditions,

uncorrelated noise was factored out of the resulting power ratio

map. Resulting contrast images were tested by a one-sample t-test

against zero. Differentially greater activation by fear relative to

neutral condition was defined in the voxels with a significant factor

interaction effect and a Student t-statistic exceeding an alpha level

of 0.01.
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