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Abstract

Motivation: Many biological data processing problems can be formalized as clustering problems

to partition data points into sensible and biologically interpretable groups.

Results: This article introduces densityCut, a novel density-based clustering algorithm, which is

both time- and space-efficient and proceeds as follows: densityCut first roughly estimates the den-

sities of data points from a K-nearest neighbour graph and then refines the densities via a random

walk. A cluster consists of points falling into the basin of attraction of an estimated mode of the

underlining density function. A post-processing step merges clusters and generates a hierarchical

cluster tree. The number of clusters is selected from the most stable clustering in the hierarchical

cluster tree. Experimental results on ten synthetic benchmark datasets and two microarray gene

expression datasets demonstrate that densityCut performs better than state-of-the-art algorithms

for clustering biological datasets. For applications, we focus on the recent cancer mutation cluster-

ing and single cell data analyses, namely to cluster variant allele frequencies of somatic mutations

to reveal clonal architectures of individual tumours, to cluster single-cell gene expression data to

uncover cell population compositions, and to cluster single-cell mass cytometry data to detect

communities of cells of the same functional states or types. densityCut performs better than com-

peting algorithms and is scalable to large datasets.

Availability and Implementation: Data and the densityCut R package is available from https://bit

bucket.org/jerry00/densitycut_dev.

Contact: condon@cs.ubc.ca or sshah@bccrc.ca or jiaruid@cs.ubc.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Clustering analysis (unsupervised machine learning), which organ-

izes data points into sensible and meaningful groups, has been in-

creasingly used in the analysis of high-throughput biological

datasets. For example, The Cancer Genome Atlas project has gener-

ated multiple omics data for individual patients. One can cluster the

omics data of individuals into subgroups of potential clinical rele-

vance. To study clonal evolution in individual cancer patients, we

can cluster variant allele frequencies of somatic mutations, such that

mutations in the same cluster are accumulated during a specific

stage of clonal expansion. Emerging technologies such as single-cell

sequencing have made it possible to cluster single-cell gene expres-

sion data to detect rare cell populations, or to reveal lineage rela-

tionships (Pollen et al., 2014; Xu et al., 2015). One can cluster

single-cell mass cytometry data to study intratumour heterogeneity

(Levine et al., 2015). As measurement technology advances have

drastically enhanced our abilities to generate various high-through-

put datasets, there is a great need to develop efficient and robust
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clustering algorithms to analyze large N (number of data points),

large D (dimensions of data) datasets, with the ability to detect arbi-

trary shape clusters and automatically determine the number of

clusters.

The difficulties of clustering analysis lie in part with the defin-

ition of a cluster. Of the numerous proposed clustering algorithms,

the density-based clustering algorithms (Fraley et al., 2007;

Fukunaga et al., 1975) are appealing because of the probabilistic

interpretation of a cluster generated by these algorithms. Let D ¼
fxigN

i¼1; xi 2 RD be drawn from an unknown density function

f ðxÞ;x 2 X � RD. For model-based approaches such as Gaussian

mixture models f ðxÞ ¼
PC

c¼1 pcNðxjlc;RcÞ, a cluster is considered

as the points generated from a mixture component, and the cluster-

ing problem is to estimate the parameters of the density function

from D (Fraley et al., 2007). To analyze datasets consisting of com-

plex shape clusters, nonparametric methods such as kernel density

estimation can be used to estimate bf ðxÞ ¼PN
i¼1 Khðx;xiÞ, where

Khð�Þ is the kernel function with bandwidth h. Here, a cluster is

defined as the data points associated with a ‘mode’ of the density

function f ðxÞ (Wishart, 1969). The widely used ‘mean-shift’ algo-

rithm (Cheng, 1995; Comaniciu et al., 2002; Fukunaga et al., 1975)

belongs to this category, and it locates the modes of the kernel

density function bf ðxÞ by iteratively moving a point along the density

gradient until convergence. This algorithm, however, is computa-

tionally expensive, having time complexity OðN2TÞ, where T is

the number of iterations, typically dozens of iterations are suffi-

cient for most cases. A more efficient, non-iterative graph-based ap-

proach (Koontz et al., 1976) constructs trees such that each data

point xi represents a node of a tree, the parent of node xi is a

point xj which is in the direction closest to the gradient direction

rbf ðxiÞ, and the root of a tree corresponds to a mode of bf ðxÞ. Then

each tree constitutes a cluster. This algorithm has been used to re-

duce the time complexity of the mean-shift algorithm to OðN2Þ
(Vedaldi et al., 2008), and has been extended in several ways, e.g.

constructing trees after filtering out noisy modes (Rodriguez et al.,

2014).

Nonparametric clustering methods have been generalized to pro-

duce a hierarchical cluster tree (Hartigan, 1975). Consider the k
level set of a density function f(x):

Lðk; f ðxÞÞ ¼ fxjf ðxÞ � kg:

The ‘high level clusters’ at level k are the connected components

of Lðk; f ðxÞÞ (in the topological sense, the maximal connected sub-

sets of Lðk; f ðxÞÞ). As k goes from 0 to maxf ðxÞ, the high level clus-

ters at all levels constitute the level set tree, where the leaves of the

tree correspond to the modes of f ðxÞ (Stuetzle et al., 2010). The

widely used DBSCAN algorithm (Ester et al., 1996) extracts the

high level clusters at just one given level k. Many original

approaches for level set tree construction in statistics (Menardi

et al., 2013) take the straightforward ‘plug-in’ approach to estimat-

ing the level set tree from bf ðxÞ by partitioning the feature space, i.e.

X . Therefore, they are computationally demanding, especially for

high-dimensional data. Recently, efficient algorithms have been pro-

posed to partition the samples D directly (Chaudhuri et al., 2010;

Kpotufe et al., 2011). Recovering the level set tree from a finite data-

set is more difficult than partitioning the dataset into separate clus-

ters. Correspondingly, theoretical analyses show that for these

algorithms to identify salient clusters from finite samples, the num-

ber of data points N needs to grow exponentially in the dimension

D (Chaudhuri et al., 2010; Kpotufe et al., 2011). Moreover, al-

though the level set tree provides a more informative description of

the structure of the data, many applications still need the cluster

membership of each data point, which is not available directly from

the level set tree.

The spectral clustering algorithm (Ng et al., 2002; Shi et al.,

2000) works on an N by N pairwise data similarity matrix S, where

each element Si;j measures the similarity between xi and xj. The simi-

larity matrix can be considered as the adjacency matrix of a

weighted graph G ¼ ðV;EÞ, where vertex vi represents xi and the

edge weight Ei;j ¼ Si;j. Given the number of clusters C, the spectral

clustering algorithm partitions the graph G into C disjoint, approxi-

mately equal size clusters, such that the points in the same cluster

are ‘similar’, while points in different clusters are ‘dissimilar’. In

contrast to density-based methods, the spectral clustering algorithm

does not make assumptions on the probabilistic model which gener-

ates data D (Von Luxburg, 2007). Therefore, selecting the number

of clusters is a challenging problem for spectral clustering algo-

rithms, especially in the presence of outliers or when the number of

clusters is large. In addition, the spectral clustering algorithm is

time-consuming because it needs to compute the eigenvalues and

eigenvectors of the row-normalized similarity matrix S, requiring Hð
N3Þ time. Instead of using single value decomposition to calculate

the eigenvalues and eigenvectors, the power iteration clustering al-

gorithm (PIC) (Lin et al., 2010) iteratively smoothes a random initial

vector by the row-normalized similarity matrix, such that the points

in the same cluster will be similar in value. Then the k-means algo-

rithm is used to partition the smoothed vector into C clusters.

Although PIC has a time complexity of OðN2TÞ, where T is the

number of iterations, PIC may encounter many difficulties in prac-

tice. First, the points from two quite distinct clusters may have very

similar ‘smoothed’ densities, and therefore they may not be distin-

guishable by k-means. Second, the points in a non-convex shape

cluster can break into several clusters. As the number of clusters in-

creases, these problems become more severe (Lin et al., 2010).

In this article, we introduce a simple and efficient clustering algo-

rithm, densityCut, which shares some advantages of both density-

based clustering algorithms and spectral clustering algorithms. As

for spectral clustering algorithms, densityCut works on a similarity

matrix; thus it is computationally efficient, even for high-dimen-

sional data. Using a sparse K-nearest neighbour graph further

reduced the time complexity. Besides, we can use a random walk on

the K-nearest neighbour graph to estimate densities at each point.

As for many density-based clustering algorithms, densityCut is sim-

ple, efficient, and there is no need to specify the number of clusters

as an input. Moreover, densityCut inherits both methods’ advantage

of detecting arbitrarily shaped clusters. Finally, densityCut offers a

novel way to build a hierarchical cluster tree and to select the most

stable clustering. We first benchmark densityCut against widely

used ten simulation datasets and two microarray gene expression

datasets to demonstrate its robustness. We then use densityCut to

cluster variant allele frequencies of somatic mutations to infer clonal

architectures in tumours, to cluster single-cell gene expression data

to uncover cell population compositions, and to cluster single-cell

mass cytometry data to detect communities of cells of the same func-

tional states or types.

2 Methods

The densityCut method consists of four major steps (Supplementary

Algorithm 1): (i) density estimation: given a set of data points

D ¼ fxigN
i¼1;xi 2 RD, form a directed unweighted K-nearest neigh-

bour graph and estimate the densities of data points by using the

K-nearest neighbour density estimator; (ii) density refinement: refine
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the initial densities via a random walk on the unweighted K-nearest

neighbour graph; (iii) local-maxima based clustering: detect local

maxima of the estimated densities, and assign the remaining points

to the local maxima; (iv) hierarchical stable clustering: refine the ini-

tial clustering by merging neighbour clusters. This cluster merging

step produces a hierarchical clustering tree, and the final clustering

is obtained by choosing the most stable clustering as the threshold in

merging clusters varies. Figure 1 demonstrates how densityCut

works on a toy example (Fu et al., 2007). Below we discuss each

step in detail.

2.1 Density estimation
We adopt the K-nearest neighbour density estimator to estimate the

density at x 2 RD (Fig. 1(a)):

fKðxÞ ¼
ðK� 1Þ=N

VKðxÞ
(1)

where VKðxÞ ¼ VD � ðrKðxÞÞD is the volume of the smallest ball cen-

tred at x containing K points from D. VD is the volume of the unit

ball in the D-dimensional space, and rKðxÞ is the distance from x to

its Kth nearest neighbour. Compared to the widely used kernel dens-

ity estimator, K-nearest neighbour density estimates are easier to

compute, and also the parameter K is more intuitive to set than the

kernel bandwidths for kernel density estimators. Here for simplicity,

we only calculate the densities at data points from D, represented by

f0 ¼ ðf 0
1 ; . . . ; f 0

NÞ
T , where f 0

i ¼ fKðxiÞ and the superscript ‘0’ indi-

cates that this is the initial Knn density estimate since we will refine

this density in the next section. Figure 1(b) shows the estimated den-

sities at each data point.

When computing the Knn densities, we can get the K-nearest

neighbour graph G as a byproduct with the following adjacency

matrix:

Wi;j ¼
1 xj 2 KnnðxiÞ

0 otherwise

(
(2)

As xi maps to node vi in the Knn graph G, we next use ‘points’

and ‘nodes’ interchangeably.

The Knn graph G is a directed unweighted graph. While the sets

of in-vertices and out-vertices of many nodes may overlap signifi-

cantly, some outliers may have few, if any in-vertices. In addition,

points at the boundary of density changes may also have quite differ-

ent sets of in-vertices and out-vertices because their in-vertices com-

monly consist of points from low-density regions while out-vertices

are usually from high-density regions.

2.2 A random walk based density refinement
As Knn density estimates are based on order statistics and tend to be

noisy, we next introduce a way to refine the initial Knn density vec-

tor f0 ¼ ðf 0
1 ; . . . ; f 0

NÞ
T . Our refinement is based on the intuition that

(i) a high-density vertex belongs to one of the K-nearest neighbours

of many vertices, and (ii) a vertex tends to have high density if its in-

vertices also have high densities. For example, point k in Figure 1(a)

has nine in-vertices, and these vertices are in high-density regions,

and indeed, the density of k is 0.0087 which is higher than average

Fig. 1. Major steps of the densityCut algorithm. (a) Data points in D. (This dataset was introduced by Fu et al., 2007.) The dotted black circles represent the balls

containing K¼8 points from D centred at three example points, i, j and k, whose densities to be estimated. Each point connects to its K¼ 8 nearest-vertices by or-

ange arrows. Other points connect to i, j and k by green arrows if i, j and k are among the K in-vertices of these points. Notice the asymmetry of in-vertices and

out-vertices of a vertex in a Knn graph, e.g. vertex vi has one in-vertex but K¼ 8 out-vertices. (b) Colour coded Knn estimated densities at points from D. The

modes of densities are represented by triangles ‘�’. (c) The refined densities based on a random walk. (d) Initial clustering by assigning data points to modes. (e)

The tree created by merging clusters without adjusting valley heights. (f) The tree created by merging clusters based on the saliency index using the adjusted val-

ley heights. (g) The cluster number frequency plot. (h) The final clustering results
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for this example. Based on the above assumptions, we get the fol-

lowing recursive definitions of densities:

f tþ1
j ¼ a

X
i

Pi;jf
t
i þ ð1� aÞf 0

j (3)

where a 2 ½0; 1� specifies the relative importance of information

from vj’s in-vertices and the initial density estimate f 0
j , which is the

K-nearest neighbour density estimate. If each row of P sums to one,

P is a Markov transition matrix, which contains the transition prob-

ability from a vertex to its K out-vertices. Therefore, Equation 3 de-

fines a random walk with restart. The refined density vector is the

stationary distribution of the random walk on the Knn graph with

adjacency matrix P. We can row-normalize matrix W to get

P ¼ D�1W, where D ¼ diagð
P

jW1;j; . . . ;
P

jWN;jÞ. Compared to

the original Knn densities in Figure 1(b), the refined densities in

Figure 1(c) have fewer ‘local maxima’ (shown as triangle points, see

next section for details). Similar methods have been used in informa-

tion retrieval and semi-supervised learning applications (Page et al.,

1999).

Equation 3 can be solved exactly in the limit by f ¼ ð1� aÞf0

ðI� aPÞ�1 if a < 1. Therefore, the above iterations guarantee con-

vergence. When a¼1, ft converges to a left eigenvector of P with the

maximum eigenvalue of 1. In our computational experiments, when

a < 1, e.g. a ¼ 0:90, Equation 3 typically converges within a few

dozen iterations, and can be much faster than the case when a¼1.

This rough density estimation process is faster than methods which

attempt to solve density estimation to a high degree of precision

since density estimation is well known to be a difficult problem.

Moreover, our method can be applied to data that are presented in

the form of a graph, rather than as data points over the reals.

2.3 Local-maxima based clustering
After obtaining densities for points, we estimate the ‘modes’ of the

underlying probability density function. The modes are the ‘local

maxima’ of the density function with zero gradients. For finite sam-

ples, the modes are rarely located exactly at points xi 2 D, so we use

the points close to the modes instead. Mathematically, modes can be

approximated by points fxijmaxjxj�xi j<�fj � fig, where � is a small

distance threshold. The distance � is dataset dependent and difficult

to choose in practice. Instead, we can define a mode as a vertex

whose density is the largest among all of its in-vertices:

fvjj8Pi;j > 0; fi < fjg (4)

Here, we use in-vertices instead of out-vertices in order to be

able to detect small cluster with less than K data points. As the verti-

ces of a small cluster with less than K vertices can form a clique (or

are highly connected to each other) in the Knn graph, we can detect

this small cluster based on the definition of local maxima above if

these points are not among the K-nearest neighbours of points out-

side this cluster. A potential problem is that some outliers with very

few in-vertices could be detected as local maxima. We simply re-

move those local maxima whose numbers of in-vertices are less than

K=2. In other words, we treat a cluster less than K=2 in size as an

‘outlier’ cluster, and densityCut is unlikely to detect this small

cluster.

Data points that fall into the basin of attraction of each mode

constitute a cluster. This process can be done by moving each point

along its gradient direction to reach a mode. We modify the efficient

graph-based hill-climbing algorithm (Koontz et al., 1976) to build a

unique forest (a set of trees) for a given dataset. The parent of vertex

vi is defined as

ParentðviÞ ¼ arg min
vj2N i

ðjdj � dijjfi < fjÞ (5)

where N i is the set of in-vertices of vi. In other words, the parent of

vi is the vertex which is closest to vi among all of vi’s in-vertices that

have higher densities than vi. From the construction of the trees, we

can see that each vertex is associated with just one tree. Therefore,

each tree can be considered as a cluster. Figure 1(d) shows the clus-

ters by assigning data points to the seven local maxima.

2.4 Hierarchical stable clustering
We then generate a hierarchical cluster tree and select the most sta-

ble clustering. First the density of the root of a tree T generated

above is called the height of this tree, denoted by hT , which has the

largest density among all the vertices in T . Then we define the

boundary points between trees T 1 and T 2:

BðT 1;T 2Þ ¼ fv 2 T 1j9u 2 N v \ T 2; fv < fug (6)

Sets BðT 1; T 2Þ and BðT 2; T 1Þ are not the same: BðT 1;T 2Þ � T 1

and BðT 2;T 1Þ � T 2. The valley separating two trees is:

ValleyðT 1; T 2Þ ¼ BðT 1;T 2Þ [ BðT 2; T 1Þ; (7)

The height of the valley separating T 1 and T 2 is defined as

hValleyðT 1 ;T 2Þ ¼ max
v2ValleyðT 1 ;T 2Þ

fv (8)

The saliency index � of a valley represents the relative height of

the valley compared to the shorter tree:

�ðT 1; T 2Þ ¼
hValleyðT 1 ;T 2Þ

minðhT 1
;hT 2
Þ (9)

Figure 2(a) shows the height of the valley (the length of the grey

arrow) separating two adjacent trees, and the saliency index is the

ratio between the length of the grey arrow and the black arrow.

The saliency index defined in Equation 9 has several properties.

First, 0 � � � 1, and � is invariant under scaling of the densities by

a positive constant factor. This ‘scale-free’ property is very useful for

us to select a threshold for merging trees. Second, it automatically

scales to the local densities of trees, e.g. to get the same saliency

index, the height of the valley separating two trees in low-density re-

gions is shorter than that separating two trees in high-density

regions.

We can merge two clusters if the saliency index between them is

above a threshold �. When the saliency index �¼1, no clusters get

merged, and when �¼0, all the connected clusters get merged to

form a single cluster. Therefore, by gradually decreasing the saliency

index threshold, we can get a hierarchical clustering tree, which is

useful for us to interpret the structure of data, especially for high-
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Fig. 2. (a) Merging the first two trees (clusters) based on the relative height of

the valley separating the two trees. (b) The time (in seconds, log2 trans-

formed) increases almost linearly with the number of data points (log2

transformed)
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dimensional data. Figure 1(e) shows the cluster tree from merging

neighbouring clusters in Figure 1(d).

For a dataset consisting of clusters whose densities are consider-

ably different, a single K for density estimation may be insufficient.

This is because the points from a high-density cluster need a larger K

to estimate their densities, compared to the points from a low-dens-

ity cluster. The high-density cluster could ‘break’ into several small

clusters when K is small. Instead of picking the parameter K on a

data point basis, we can adjust the height of a valley by:

bhValleyðT 1 ;T 2Þ ¼ 1þ
X

i

fi < hValleyðT 1 ;T 2Þ
N

 !
hValleyðT 1 ;T 2Þ (10)

The intuition behind this density adjustment step is that a high-

density valley could be an artefact caused by splitting a high-density

cluster. Figure 1(f) shows the cluster tree using the saliency indexes

based on the adjusted valley heights. A potential problem of this

step is that it also increases the valley height between two genuine

clusters and increases their likelihood to merge. For example, as can

be seen from Figure 1(e, f), the two clusters merge at saliency index

around 0.30 before valley adjustment, but merge at saliency index

around 0.35 after valley adjustment. We will further investigate the

influence of this density adjustment step on clustering in later

sections.

We finally introduce a method to determine the number of clus-

ters to produce the final clustering from the hierarchical cluster tree.

The basic idea is that by gradually decreasing the saliency index,

clusters will get merged. Noisy, non-salient clusters will get merged

quickly, and true clusters will exist for a long period of time. We

therefore can calculate the length of saliency index change for pro-

ducing a fixed number of clusters, and select the cluster number

which spans the longest saliency index changes. In our current im-

plementation of densityCut, we decrease the saliency index evenly

and therefore we can interpret the saliency index change interval as

‘Frequency’. Figure 1(g) shows the cluster number frequency plot,

and Figure 1(h) shows the final clustering by merging the initial clus-

tering to produce two clusters as selected by the cluster number fre-

quency plot.

2.5 Complexity analysis and implementation
densityCut has been implemented in the statistical computation lan-

guage R. densityCut has a worst-case time complexity of OðNK

þC2Þ and a space complexity of OðNKþ C2Þ, where N is the num-

ber of data points, K is the number of neighbours and C is the num-

ber of clusters (local maxima). In practice, as a majority of clusters

are only adjacent to few clusters, the time and space complexity is

typically of OðNKþ CÞ. We did not consider the time used to com-

pute the Knn graph in densityCut as numerous algorithms have been

developed for efficient Knn search with different complexities, and

typically it takes less time to compute the Knn graph compared to

cluster the data. To build the Knn graph given a data matrix, effi-

cient algorithms such as kd-trees can be used in low-dimensional

spaces (D � 20) with time complexity OðNlogðNÞÞ (Mount, 1998).

To build the Knn graph in high-dimensional spaces (D<1000),

efficient software libraries based on random projection exist to re-

peatedly partition the data to build a tree (https://github.com/spo

tify/annoy). This algorithm can run in O(NDT) time, where T is the

number of trees, and typically dozens of trees are enough to preserve

the accuracy of Knn search.

To demonstrate the scalability of densityCut, we tested

densityCut on a Mac desktop computer running OS X Version

10.9.5. The computer has 32 GB of RAM and a 3.5 GHz four-core

Intel i7 processor with 8 MB cache. We carried out all the experi-

ments presented in the article on this computer.

We sampled f212; 214; 216; 218;220g data points from a mixture

of 64 two-dimensional Gaussian distributions. As can be seen from

Figure 2(b), the running time increased almost linearly in the num-

ber of data points. It took about 127 CPU seconds to cluster a mil-

lion data points (N ¼ 220).

2.6 Parameter setting
Our algorithm has two parameters: the number of nearest neigh-

bours K, and the damping factor a in density refinement. K should

be small enough to detect local maxima, e.g. smaller than the num-

ber of data points in a cluster. However, very small K can result in

poor density estimates and produce large numbers of clusters, thus

‘overfitting’ the data, and there may not exist a ‘gap’ in the cluster

number frequency plot for us to select the number of clusters. On

the contrary, for large K, densityCut may fail to detect detailed

structures thus ‘underfitting’ the data.

Theoretical analysis for spectral clustering shows that K should

be XðlogðNÞÞ to produce a connected graph (Von Luxburg, 2007),

and limit results are obtained under conditions K=logðNÞ ! 1 and

K=N ! 0. K is also dependent on the dimensionality D. For the

density estimate at x (f ðx) is Lipchitz smooth in a neighbour of x)

from its K-nearest neighbours, under conditions k=N2=ð2þDÞ ! 0

and k!1, we can get jbf ðxÞ � f ðxÞj�f ðxÞ=
ffiffiffi
k
p

(Dasgupta et al.,

2014).

In practice, K should be dataset dependent. For example, if the

Euclidean distance is used, K should be sufficiently small such that

the Euclidean distance is a good measure of the distance between

two close data points even the data lie in a manifold. If the number

of clusters is small, K should increase to prevent generating too

many local maxima. We therefore conducted an empirical study of

the influence of K and a on clustering the data in Figure 1, for which

N¼240 (Supplementary Figs S1 and S2). First, when K ¼ log2

ðNÞ ¼ 8, densityCut correctly detected the two clusters given differ-

ent values for a (Supplementary Fig. S1). Small K ¼ log2ðNÞ ¼ 4

produced ‘spiky’ density estimates and resulted in many local max-

ima (Supplementary Fig. S1). On the contrary, large K produced flat

density estimates, and the two true clusters tended to merge because

of no deep valley between them (Supplementary Fig. S1). We there-

fore used a default value of K ¼ log2ðNÞ. In addition, when a ¼ 0:9

or 0.99, densityCut correctly detected the two clusters given differ-

ent values for K. Increasing a produced better clustering results but

it took much longer for the density refinement step to converge, e.g.

median 176 iterations when a ¼ 0:99 compared to 41 iterations

when a ¼ 0:90. We set the default value for a ¼ 0:90 as it made a

good compromise between accuracy and execution time.

The valley height adjustment step plays a role of ‘smoothing’ the

density estimates. This functionality is especially useful for small K.

For example, even when K ¼ 0:5log2ðNÞ ¼ 4, densityCut correctly

detected the two clusters after adjusting the heights of valleys

(Supplementary Fig. S2). For all the results presented in this article,

we used the default parameter setting (K ¼ log2ðNÞ and a ¼ 0:9)

with the valley height adjustment step.

3 Results

3.1 Benchmarking against state-of-the-art algorithms
3.1.1 Synthetic datasets

We benchmarked densityCut against state-of-the-art clustering algo-

rithms for biological datasets (Wiwie et al., 2015) on synthetic
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datasets that have been widely used to evaluate clustering algo-

rithms. Specifically, we compared densityCut with three best algo-

rithms reported in Wiwie et al. (2015) (Supplementary Materials), i.

e. the hierarchical clustering algorithm (HC, from the R stats pack-

age) with average linkage, the partitioning around medoids (PAM,

from the R cluster package) algorithm and the density-based cluster-

ing algorithm OPTICS (from the R dbscan package). We also com-

pare densityCut with the Gaussian mixture model (GMM, from the

R mclust package) based clustering algorithm and the normalized

cut (NCut, from the R kernlab package) spectral clustering algo-

rithm. We used ten synthetic datasets (the eight ‘shape’ datasets and

the two most challenging ‘S-sets’), downloaded from http://cs.joen

suu.fi/sipu/datasets/. Seven out of the ten datasets were also used in

Wiwie et al. (2015) (except for the most challenging case ‘S4’ from

the S-set, the challenging ‘Jain’ dataset and the ‘D31’ dataset with

large number of clusters – 31 clusters). For the algorithms requiring

the number of clusters as a input parameter (PAM, GMM and

NCut), we set the number of clusters as the ground truth cluster

number for each dataset. For HC, we cut the dendrogram to pro-

duce the ground truth number of clusters for each dataset.

To measure clustering performance, we compared the clustering

results from each algorithm to the ground truth to compute the max-

imum-matching measure (MMM, range from 0 to 1), the normal-

ized mutual information (NMI, range from 0 to 1) and the adjusted

Rand index (ARI, with expected value of zero and maximum value

of one). For all these measures, high values mean high similarity be-

tween two sets. More information about these measures can be

found in Supplementary Materials.

As shown in Supplementary Figure S3, densityCut performed the

best in terms of the above evaluation measures (with mean MMM,

NMI and ARI of 0.911, 0.897 and 0.854). Overall, the clustering re-

sults on these synthetic benchmark datasets demonstrated that

densityCut can produce excellent results if the high-density clusters

were separated by low-density valleys. For the datasets in

Supplementary Figure S3(a, c–e, g–j), densityCut detected the right

number of clusters and revealed the structures of these datasets. The

red colour cluster in Supplementary Figure S3(b) was considered as

two separated clusters originally (Zahn, 1971). However, the sparse

background points and the centre high-density points could be con-

sidered as from the same cluster for density-based clustering. For the

dataset in Figure 3(f), densityCut failed to detect the three clusters

because there were no ‘deep’ valleys between the outer arc cluster

and the two Gaussian clusters. Therefore, the outer arc cluster got

merged to the right Gaussian cluster. Without the valley height ad-

justment step, densityCut generated the same clustering

(Supplementary Fig. S4). The density-based clustering algorithm

OPTICS ranked second with mean MMM, NMI and ARI of 0.840,

0.717 and 0.685, respectively (Supplementary Fig. S3, last column;

Supplementary Fig. S5(a)).

PAM and GMM performed poorly on the datasets consisting of

irregular shape clusters (Supplementary Fig. S3(a–f), last column).

PAM results on these datasets had mean MMM, NMI and ARI of 0.

687, 0.492 and 0.414, respectively, and GMM results on these data-

sets had mean MMM, NMI and ARI of 0.617, 0.441 and 0.311, re-

spectively. However, PAM did very well on the datasets where the

points in each cluster were sampled from a two-dimensional

Gaussian distribution with mean MMM, NMI and ARI of 0.908, 0.

870 and 0.828 (Supplementary Fig. S3(g–j), last column). In con-

trast, GMM performed inferior to PAM on these datasets with

mean MMM, NMI and ARI of 0.787, 0.826 and 0.716. For ex-

ample, for ‘D31’ in Supplementary Figure S5(e), cluster two con-

sisted of only a single data point, and cluster nine consisted of two

data points. Cluster three and 18 consisted of points from multiple

Gaussian distributions. One major reason for the failure of GMM

was that the relatively large number of clusters (31) compared to the

limited number of data points (3100) and the overlapped clusters re-

sulted in many local maxima in its objective log-likelihood function,

while the Expectation–Maximization algorithm for fitting GMM

only searched for a local maximum of the objective function. By

contrast, densityCut directly located the high-density peaks and se-

lected the most stable clustering, and thus it was less likely influ-

enced by spurious density peaks.

Both HC and NCut can cluster datasets consisting of arbitrary

shape clusters. On the datasets consisting of non-convex shape clus-

ters, HC (with mean MMM, NMI and ARI of 0.788, 0.589 and
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Fig. 3. Clustering variant allele frequencies (VAF) of somatic mutations. (a, b)

Clustering multi-time sample data from initial primary myelofibrosis (PMF),

later acute myeloid leukaemia (AML) and after treatment relapsed PMF using

densityCut. (c, d) Clustering the somatic mutations from sequencing a pri-

mary/relapse pair of an AML patient. (e) Clustering the somatic mutations

from sequencing a lung/pancreas metastasis pair of a melanoma patient. The

possible ‘driver’ mutations in each cluster are labeled with a black plus sign

‘þ’. The clustering validation indices (MMM, NMI and ARI) were from com-

paring densityCut results with sciClone results or the results reported in the

original studies. (a) Three-dimensional VAF plot. The mutations in each clus-

ter were assigned a unique colour. The mutations with a circle ‘	’ were con-

sidered as outliers in the original publication (Engle et al., 2015) before

clustering analysis. (b) The number of clusters produced by densityCut as we

gradually increased K from log2ðNÞ to 10log2ðNÞ. (c) The mutation assigned

to the violet colour cluster by sciClone but assigned to the red colour cluster

by densityCut was labeled with a circle ‘	’. (d) densityCut and sciClone execu-

tion time based on repeated ten runs. The hierarchical clustering trees and

the cluster number frequency plots are in Supplementary Figure S7
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0.577) and NCut (with mean MMM, NMI and ARI of 0.771, 0.628

and 0.55) performed slightly better than PAM and GMM

(Supplementary Fig. S3(a–f), last column). On the datasets consist-

ing of convex shape clusters, HC (with mean MMM, NMI and ARI

of 0.810, 0.841 and 0.746) and NCut (with mean MMM, NMI and

ARI of 0.746, 0.814 and 0.678) performed slightly worse than PAM

and GMM (Supplementary Fig. S3(g–j), last column). Compared to

HC and NCut, densityCut performed better in both the datasets

consisting of arbitrary shape clusters (with mean MMM, NMI and

ARI of 0.922, 0.919 and 0.886) and the datasets consisting of con-

vex shape clusters (with mean MMM, NMI and ARI of 0.895, 0.

863 and 0.807). Moreover, densityCut had low complexity and was

scalable to large datasets.

3.1.2 Microarray gene expression data

Gene expression data have been used to stratify cancer patients into

biologically or clinically meaningful subtypes, e.g. different subtypes

of patients have distinct prognosis. Here, we tested densityCut on

the two microarray gene expression datasets as in Baek et al. (2011)

(Supplementary Materials). The results in Supplementary Figure S6

show that densityCut performs the best on these two datasets (with

MMM, NMI and ARI of 0.926, 0.780 and 0.853 on dataset one,

and 0.981, 0.860 and 0.924 on dataset two) compared with PAM,

HC, OPTICS, NCut and GMM.

Although OPTICS produced good results on the previous two

dimensional synthetic datasets, it performed poorly on these high-

dimensional gene expression datasets (ten dimensions are considered

as high dimensions for density-based clustering in Kriegel et al.,

2011). OPTICS produced just one cluster for each dataset. Although

the absolute distances between data points are not discriminative in

high-dimensional spaces (the curse of dimensionality, the distances

between any two points are approximately the same), the relative

distances (the order of closeness) could still be meaningful, and

could be captured by the Knn graph. densityCut explores the top-

ology of the Knn graph thus performed better on high-dimensional

spaces than OPTICS. GMM (with MMM, NMI and ARI of 0.626,

0.621 and 0.408 on dataset one, and 0.962, 0.765 and 0.850 on

dataset two) and PAM (with MMM, NMI and ARI of 0.714, 0.583

and 0.411 on dataset one, and 0.952, 0.727 and 0.815 on dataset

two) performed relatively well on these datasets. The results were

consistent with the results from the previous study that GMM and

PAM (more precisely, the k-means algorithm) performed well on

clustering gene expression data (de Souto et al., 2008).

3.2 Inferring clonal architectures of individual tumours
Cancer cells are heterogeneous, and a subpopulation of cancer cells

of the same patient could harbour different sets of mutations (Miller

et al., 2014). Moreover, cancer cells frequently accumulate add-

itional mutations after treatment or in metastasis. Understanding

the clonal architecture of each tumour provides insights into tumour

evolution and treatment responses. We used densityCut to cluster

the somatic variant allele frequencies (VAF) measured from DNA

sequencing of multiple tumour biopsies. The mutations in each clus-

ter were accumulated during a specific stage of clonal expansion.

The clustering results provide valuable information of the clonal

architectures of tumours.

We first tested densityCut on the mutation data from a primary

myelofibrosis (PMF) patient (Engle et al., 2015). This patient was

first diagnosed with PMF, and seven years later, this patient’s tu-

mour transformed to acute myeloid leukaemia (AML). After chemo-

therapy treatment, the patient underwent complete remission.

However, 1.5 years later, the patient redeveloped PMF but no evi-

dence of AML relapse. A total of 649 single nucleotide variants de-

tected in whole genome sequencing of either PMF, AML or relapse

PMF genomes were validated by targeted high-coverage sequencing.

We used densityCut to jointly cluster the targeted sequencing VAFs

from PMF, AML and relapse PMF tissues. Figure 3(a) shows that

densityCut grouped the mutations into four clusters. The hierarch-

ical clustering trees and the accompanying cluster number frequency

plots are in Supplementary Figure S7(a).

Overall, densityCut clustering results matched those presented in

the original study. However, to produce the results, the authors

(Engle et al., 2015) used different algorithms and several pre-pro-

cessing steps. For example, the authors used DBSCAN (Ester et al.,

1996) to detect outliers (the mutations with circles ‘	’ in Fig. 3(a)),

and then used Mclust (Fraley et al., 2007) for model selection and

final clustering analysis. The maximum number of clusters was lim-

ited to four, and each cluster had to contain at least seven mutations

(Engle et al., 2015). In contrast, we directly used densityCut to clus-

ter the VAFs and produced exactly the same results (MMM¼1, the

outliers were not considered in calculating MMM.) We also changed

the parameter K from the default log2ðNÞ ¼ 10 to 2log2ðNÞ until

10log2ðNÞ. Only after K was set to 8log2ðNÞ, the red colour cluster

and the violet colour cluster got merged, as can be seen from

Figure 3(b). For K < 8log2ðNÞ, densityCut produced the same four

clusters. OPTICS, PAM, HC, NCut and GMM produced the same

results as densityCut results (to be exact, only PAM assigned one

point to different clusters, Supplementary Fig. S8(c)). However, ex-

cept for OPTICS, these algorithms either need the number of clusters

as input parameters or cut the dendrogram to produce the desired

number of clusters (HC).

Next, we tested densityCut on the acute myeloid leukaemia sam-

ple AML28 (Ding et al., 2012). We jointly clustered the VAFs from

sequencing both the primary tumour and the relapse tumour after

26 months of chemotherapy (Ding et al., 2012). Figure 3(c) shows

that densityCut grouped the 804 detected somatic mutations into

five clusters. The results matched those predicted by sciClone

(Miller et al., 2014), a variational Bayesian mixture model based

clustering algorithm. Only one mutation (with circle ‘	’ in Fig. 3(c))

was assigned to the red cluster by densityCut, but originally assigned

to the cyan cluster by sciClone (MMM¼0.999). densityCut is much

more efficient than sciClone as can be seen from Figure 3(d).

sciClone took a median of 48.12 s to run on the AML28 dataset

while densityCut took a median of 0.074 s to run. Because it took

less than a CPU second to run densityCut, we ran both algorithms

ten times to get a more accurate estimation of the time used. For

competing algorithms, PAM split the large cluster into two clusters

because it tends to generate equal-size clusters (with MMM, NMI

and ARI of 0.619, 0.509 and 0.767; Supplementary Fig. S8(g)). HC

assigned some ‘outliers’ to a distinct clusters, and merged the points

from two clusters (with MMM, NMI and ARI of 0.939, 0.964 and

0.929; Supplementary Fig. S8(h)). Similarly, GMM modelled the

outliers using a Gaussian component (with MMM, NMI and ARI of

0.925, 0.865 and 0.891; Supplementary Fig. S8(j)). OPTICS results

differed from densityCut results by the assignment of only one data

point (Supplementary Fig. S8(f)), and NCut produced the same re-

sults as densityCut results (Supplementary Fig. S8(i)).

Finally, we used densityCut to cluster the somatic mutations

from whole genome sequencing of the lung/pancreatic metastasis

pair from the same melanoma patient MEL5 (Ding et al., 2014).

Compared to blood cancer genomes, melanoma genomes are much

more complex, frequency harbouring copy number alterations. The

combinations of copy number alterations, homozygous mutations
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and heterozygous mutations make it a challenging task to develop a

model to uncover the clonal structure of these cancer genomes (Roth

et al., 2014). The densityCut clustering results in Figure 3(e) show

that the mutations in MEL5 could be grouped into 12 clusters, pro-

viding the starting point for detailed inspection of the clonal struc-

ture of this cancer genome. Additional information such as copy

number alterations would be required to fully interpret the clonal

architectures. We also ran sciClone, which produced ten clusters

(Supplementary Fig. S9). Both algorithms agreed in clustering 84.

8% of the mutations (MMM: 0.848, Fig. 3(e)). densityCut cluster-

ing had an average silhouette width of 0.58 (Supplementary Fig.

S10), which was higher than sciClone clustering average silhouette

width of 0.55 (Supplementary Fig. S11). Other competing algo-

rithms performed inferrer to densityCut with PAM and OPTICS per-

formed second and third with average silhouette widths of 0.548

and 0.539, respectively (Supplementary Fig. S8(m, k)).

3.3 Clustering single-cell gene expression datasets
We used densityCut to cluster two single-cell mRNA gene expres-

sion datasets. The first dataset consists of the low-coverage mRNA

expression of 23 730 genes in 301 cells from 11 populations (Pollen

et al., 2014). The second dataset consists of the single-cell mRNA

expression of 43 309 genes in 223 stem cells from the subventricular

zone of eight-week-old male mice (Llorens-Bobadilla et al., 2015).

We did several pre-processing steps to only select a subset of genes

(Pollen et al., 2014) for clustering analysis because the high tech-

nique noise in single-cell gene expression data (e.g. loss of cDNA in

reverse transcription and bias in cDNA amplification) and Knn

search in high dimensional spaces is still time-consuming.

Specifically, we only kept the genes expressed in more than five cells

because it is difficult to detect clusters less than five in size given the

relatively large number of cells. Here, a gene was considered to be

expressed in a cell if its reads per kilobase per million (RPKM) value

(or fragments per kilobase per million (FPKM) value for dataset two

(Llorens-Bobadilla et al., 2015)) was greater than or equal to one in

the cell. We then further normalized the RPKM values by log trans-

formation: log2ðxþ 1Þ. Here, x was the original RPKM value of a

gene in a cell. A small value of one was added to prevent taking the

log of zero or generating very small numbers.

Figure 4(a) shows that densityCut produced nine clusters for

dataset one (MMM: 0.917, NMI: 0.953 and ARI: 0.918).

densityCut cannot distinguish the cells from GW16, GW21 and

GW21.2 based on the 1000 genes. These cells were quite similar as

they were all from the human cortex (GW16 cells were from the ger-

minal zone of human cortex at gestational week 16, GW21 cells

were from GW21 and GW21.2 cells were cultured cells of a subset

of the GW21 cells (Pollen et al., 2014)). These cells could possibly

be separated by selecting a better set of features for clustering ana-

lysis. In addition, one GW21 cell was misclassified as a neural pro-

genitor cell (NPC), and one NPC was in the human-induced

pluripotent stem (iPS) cell cluster. For the other seven types of cells,

densityCut perfectly put them into separate clusters. Supplementary

Figure S12 shows the hierarchical cluster trees and the cluster num-

ber frequency plots. Other clustering algorithms such as OPTICS,

PAM, HC, NCut and GMM had inferior performance compared to

densityCut results with PAM ranked second with MMM, NMI and

ARI of 0.877, 0.916 and 0.854, respectively (Supplementary Fig.

S13(a)). densityCut grouped the 223 stem cells of dataset two into

four clusters (Fig. 4(b)). Glutamate aspartate transporterþ/

Prominin1þ (GP) cells and polysialylated-neural cell adhesion

moleculeþ (PSA) cells were in separate clusters (except for one PSA

cell). The GP cells were subdivided into three clusters, consistent

with the original finding that the GP cells consisted of at least three

subtypes of stem cells. We next used t-SNE (Van der Maaten et al.,

2008) to project the 1000-dimensional single-cell gene expression

data to a two-dimensional space (Supplementary Fig. S14). The re-

sults also show four very distinct clusters. Compared with the ori-

ginal analysis using hierarchical clustering coupled with principle

component analysis feature section (Llorens-Bobadilla et al., 2015),

densityCut can be used in a more unbiased way to cluster single-

cell gene expression data and produce the same results. On this

dataset, densityCut, PAM, HC and GMM results had average sil-

houette widths of 0.190, 0.190, 0.191 and 0.189, respectively

(Supplementary Fig. S13(b))

3.4 Clustering single-cell mass cytometry datasets
Finally, we used densityCut to cluster two benchmark single-cell

mass cytometry (aka CyTOF) datasets (Levine et al., 2015). The first

dataset consists of CyTOF data of bone marrow mononuclear cells

from a healthy individual. Manually gating assigned 81 747 cells to

24 cell types based on 13 measured surface protein markers (Bendall

et al., 2011). Dataset two contains CyTOF data from two healthy

adult donors H1 and H2. For H1, manual gating assigned 72 463

cells to 14 cell types based on 32 measured surface protein markers.

Manual gating assigned 31 721 cells to the same 14 cell populations

from H2 based on the 32 surface protein markers. These manually

identified cell populations were used as ground truth to test

densityCut.

We compared densityCut to the recently proposed algorithm, the

PhenoGraph algorithm (Levine et al., 2015), in clustering the bench-

mark single-cell CyTOF datasets. As both densityCut and

Cell type
Cluster
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Fig. 4. Clustering single-cell gene expression data. Each row is a gene and

each column is a cell. The cell type and cluster membership of each cell are

colour coded. Heatmaps show clustering (a) 301 cells from 11 populations

and (b) 223 stem cells from the subventricular zone of eight-week-old male

mice
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PhenoGraph first build a Knn graph, we used the same K ¼ log2ðNÞ
for both algorithms. As can be seen from Figure 5, densityCut de-

tected 12 distinct cell types (clusters) in dataset one, 9 cell types in

H1, and 12 cell types in H2 (the hierarchical clustering trees and the

cluster number frequency plots are in Supplementary Fig. S15). The

PhenoGraph algorithm detected 18, 24 and 20 clusters in dataset

one, H1 and H2, respectively. Based on MMM, NMI and ARI,

densityCut performed slightly worse on dataset one (MMM: 0.879

versus 0.883, NMI: 0.878 versus 0.900 and ARI: 0.857 versus 0.

893), but performed better on H1 (MMM: 0.941 versus 0.682,

AMI: 0.935 versus 0.833 and ARI: 0.96 versus 0.669) and H2

(MMM: 0.953 versus 0.67, NMI: 0.945 versus 0.829 and ARI: 0.

977 versus 0.638). As for efficiency, densityCut was around

two times faster than PhenoGraph based on the current implemen-

tations (Supplementary Fig. S16). Other clustering algorithms such

as PAM, HC, NCut and GMM are not scalable to these relatively

large datasets. For example, we can only run OPTICS on the

first dataset (OPTICS took about 17 minutes while densityCut took

only 24 s).

4 Conclusions and discussion

We developed densityCut, a simple and efficient clustering algo-

rithm. densityCut effectively clustered irregular shape synthetic

benchmark datasets. We have successfully used densityCut to cluster

variant allele frequencies of somatic mutations, single-cell gene ex-

pression data and single-cell CyTOF data. densityCut is based on

density estimation on graphs. It could be considered as a variation

of the spectral clustering algorithms but is much more time- and

space-efficient. Moreover, it automatically selects the number of

clusters and works for the datasets with a large number of clusters.

In summary, densityCut does not make assumptions about the

shape, size and the number of clusters, and can be broadly applic-

able for exploratory data analysis.

A recent study has shown that current strategies for whole gen-

ome sequencing studies missed many somatic mutations (Griffith

et al., 2015). By increasing the sequencing depths from 30� in their

original study (Ding et al., 2012) to 300� and using a consensus of

somatic single nucleotide variant (SNV) callers, the number of iden-

tified SNVs increased from 118 to 1343. Based on the 1343 SNVs,

they identified two extra sub-clones (Griffith et al., 2015).

Moreover, an additional 2500 SNVs were highly likely to be genuine

somatic SNVs but still without enough evidence even at 300� cover-

age. For more complex genomes such as melanoma and breast can-

cer genomes, the number of SNVs could be much larger. Therefore,

efficient algorithms such as densityCut are necessary to infer the clo-

nal structures in individual tumours as more genomes are sequenced

at higher coverage in the near future.

In recent years, single-cell techniques have empowered scientists

to investigate cellular heterogeneity. Computational tools are neces-

sary to analyze these single-cell measurements with high dimension-

ality and large numbers of cells. Efficient algorithms such as

densityCut whose computational complexities are independent of

the dimensionality of data, and can cluster millions of points in a

few minutes can be valuable tools to process these datasets to distill

single cell biology.
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