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Abstract

Environmental hypoxia (fraction of inspired oxygen (FIO2) ~ 0.120) is known to trigger a global 

increase in cerebral blood flow (CBF). However, regionally, a heterogeneous response is reported, 

particularly within the posterior cingulate cortex (PCC) where decreased CBF is found after two 

hours of hypoxic exposure. Furthermore, hypoxia reverses task-evoked BOLD signals within the 

PCC, and other regions of the default mode network, suggesting a reversal of neurovascular 

coupling. An alternative explanation is that the neural architecture supporting cognitive tasks is 

reorganised. Therefore, to confirm if this previous result is neural or vascular in origin, a measure 

of neural activity that is not haemodynamic-dependant is required.

To achieve this, we utilised functional magnetic resonance spectroscopy to probe the glutamate 

response to memory recall in the PCC during normoxia (FIO2 = 0.209) and after two hours of 
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poikilocapnic hypoxia (FIO2 = 0.120). We also acquired ASL-based measures of CBF to confirm 

previous findings of reduced CBF within the PCC in hypoxia.

Consistent with previous findings, hypoxia induced a reduction in CBF within the PCC and other 

regions of the default mode network. Under normoxic conditions, memory recall was associated 

with an 8% increase in PCC glutamate compared to rest (P = 0.019); a change which was not 

observed during hypoxia. However, exploratory analysis of other neurometabolites showed that 

PCC glucose was reduced during hypoxia compared to normoxia both at rest (P = 0.039) and 

during the task (P = 0.046).

We conclude that hypoxia alters the activity-induced increase in glutamate, which may reflect a 

reduction in oxidative metabolism within the PCC. The reduction in glucose in hypoxia reflects 

continued metabolism, presumably by non-oxidative means, without replacement of glucose due 

to reduced CBF.
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1. Introduction

The human brain is in a continuous metabolically active state. To precisely serve this 

persistent energetic demand a multicellular orchestra between the neurons, glia and the 

vasculature has developed to attune the cerebral blood flow (CBF) delivery to metabolic 

demand (Duncombe et al., 2017) and neural activity. This neurovascular coupling is 

imperative for neuronal survival and sustaining optimal brain function. Environmental 

hypoxia, a reduction in oxygen availability, provides an eloquent model for understanding 

the perseverance of this coupled relationship during physiological stress.

Upon exposure to hypoxia, global CBF (gCBF) increases concomitantly with falling arterial 

oxygen saturations (Ainslie and Subudhi, 2014). The increase in gCBF is hypothesised 

to maintain the cerebral oxygen delivery sustaining the global cerebral metabolic rate of 

oxygen (CMRO2) (Ainslie et al., 2014). However, regional measurements have revealed 

heterogeneous regional CBF increases and decreases in response to acute hypoxia ranging 

from minutes to hours (Lawley et al., 2017; Nöth et al., 2008; Rossetti et al. 2020). In 

particular, regions in the posterior of the brain that are known to constitute major nodes in 

the default mode network (DMN), the posterior cingulate cortex (PCC) and angular gyri, 

were hypoperfused during hypoxia (Lawley et al., 2017; Rossetti et al., 2020). This finding 

of reduced blood flow may reflect altered metabolism in these regions, even though global 

metabolism is maintained.

When measured globally, cerebral metabolism has been found to increase (Smith et al., 

2013; Vestergaard et al., 2016; Wang et al., 2015), decrease (Jensen et al., 2018) or be 

unchanged (Vestergaard and Larsson, 2019) during periods of acute poikilocapnic hypoxia. 

Regional investigations of cerebral metabolism are less common and have utilised variations 

in intensities and durations of hypoxia. Of such investigations, Hochachka et al. (1996) 

demonstrated that whole brain, and regional, cerebral glucose metabolism in Tibetan 
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high-altitude natives did not significantly differ from that observed in lowlanders using 

2-[18F]deoxy-2-fluoro-D-glucose positron-emission tomography (18FDG-PET). However, 

the phylogenetically younger, less well adapted, high altitude dwelling Quechua natives, 

displayed a near uniform reduction in regional cerebral metabolism compared to lowlanders 

and Tibetan high-altitude natives (Hochachka et al., 1996). Furthermore, lowlanders who 

travel to high altitude have demonstrated both reductions and increases in regional cerebral 

metabolism (Hochachka et al., 1999; Merz et al., 2006). The authors concluded that the 

reduction in regional cerebral metabolism may serve as a defence mechanism in the 

face of hypoxia, akin to that observed in hypoxia-adapted vertebrates (Hochachka et al., 

1996, 1999). More recently, magnetic resonance spectroscopy (MRS) has been used to 

assess the neurochemical profile in response to acute exposure to poikilocapnic hypoxia. 

Cerebral lactate concentrations have been found to increase in response to hypoxia (Edden 

et al., 2010; Jensen et al., 2018; Vestergaard et al., 2016; Vestergaard and Larsson, 2019) 

suggesting an increase in anaerobic glycolysis. This lactate is not a result of increased lactate 

in the blood, and instead likely reflects production within the brain tissue itself (Harris et al., 

2013). Furthermore, occipital lobe glutamate concentration was found to increase along with 

global measures of CMRO2 (Vestergaard et al., 2016), suggestive of increases in metabolic 

activity. This finding was not replicated in a follow-up study, with the authors citing the 

individual responses to poikilocapnic hypoxia and the subsequent vascular and metabolic 

alterations involved with the superimposed chemostimuli of hypoxaemia and hypocapnia 

(Vestergaard and Larsson, 2019).

Although earlier work that suggested metabolic suppression as a defence mechanism in 

the face of hypoxia (Hochachka et al., 1996; Hochachka et al., 1999) could provide an 

explanation for the regional perfusion reductions reported (Lawley et al., 2017; Nöth et 

al., 2008; Rossetti et al., 2020), regional investigations using MRS during acute hypoxic 

exposure currently do not support a reduction in resting metabolic activity (Vestergaard 

et al., 2016; Vestergaard and Larsson, 2019). Therefore, alternative explanations, such as 

hypoxia inducing a change in vascular signalling mechanism within the PCC, that either 

overrides typical neurovascular coupling or reverses it (Rossetti et al., 2020) require further 

investigation. These previous findings suggest the response of regional cerebral vascular 

coupling to hypoxia is more nuanced than observed globally.

Without directly probing metabolism in the brain regions undergoing reductions in blood 

flow during hypoxia, it is unclear whether the brain is suppressing neural activity and 

metabolic rate during hypoxia to ensure oxygen supply suffices demand, or if there is an 

alteration in the standard coupled relationship. To further investigate this possible change 

in metabolic coupling, a recent investigation by Rossetti et al. (2020) utilising a memory 

association task, revealed an alteration in the task-induced BOLD responses during hypoxia. 

Specifically, regions that during normoxia showed a positive BOLD signal in response to the 

task reversed, showing a negative BOLD signal in hypoxia, and the opposite also happened 

– whereby a task induced negative BOLD in normoxia became a positive BOLD response 

in hypoxia (Rossetti et al., 2020). Generally, negative BOLD measures are interpreted to 

suggest regions where neural activity has been actively suppressed. However, reversal of 

the BOLD response to task-based neural activation has been observed in the infant brain 

(Kusaka et al., 2004; Yamada et al., 2000). Neonatal rat models indicate this infantile 
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reversal in BOLD response to task results from insufficient hyperemia in response to neural 

activity and post-stimulus pial vasoconstriction (Kozberg et al., 2013; Kozberg and Hillman, 

2016). Indicating that the mechanisms of the negative BOLD response may depend on 

the specific temporal characteristics and metabolic conditions involved. The findings of 

Rossetti et al. (2020) suggest hypoxia is one such plausible metabolic condition. The 

unusual haemodynamic response in these conditions is hypothesised to be the result of 

neural activation stimulating local vasoconstriction, impeding CBF delivery, in a reversal 

of standard neurovascular coupling. Nevertheless, as the study of Rossetti study did not 

utilise any additional, non-vascular related techniques as a measure of metabolism or neural 

activity in conjunction with the BOLD signal, it is difficult to conclusively disentangle 

vascular effects from neural activity, and so this phenomenon requires further investigation.

Adapting static MRS to allow for high-frequency repeated acquisitions in the order of 

seconds provides a method to probe the dynamic changes in neurochemicals during 

functional activation. This functional MRS (fMRS) technique has been used to measure the 

functional dynamics of the neurotransmitter glutamate to a variety of tasks (Mullins, 2018). 

The measured functional change in neurotransmitters has also been found to regionally 

correlate with the direction of change in the BOLD-weighted MRI contrast (Bednařík 

et al., 2015; Boillat et al., 2020; Ip et al., 2017, 2019; Martínez-Maestro, Labadie and 

Möller, 2018), serving as a complimentary measure of neural activity. Critically, this 

technique provides a measurement of neural activity that unlike the BOLD signal, is 

not haemodynamically-dependant. Thus, when alterations in neurovascular coupling are 

suspected, fMRS serves as a reliable and direct measurement of neural activity (Stanley and 

Raz, 2018).

The current experiment employed an event-related fMRS protocol during a paired associate 

memory recall task to measure task-related glutamate dynamics during normoxia and 

hypoxia. This investigation allowed the probing of task-related neural activity in the PCC 

independent of haemodynamic responses. In doing this we aimed to understand if the 

observation of Rossetti et al. (2020) during exposure to environmental hypoxia is the result 

of a reversal in neurovascular coupling or suppression of neural activity during hypoxia. 

Our hypothesis therefore was twofold. 1: In response to a memory recall task, glutamate 

concentration within the PCC will increase during normoxia. 2. Hypoxia will not change this 

task-induced glutamate response. A lack of a task induced glutamate response in hypoxia 

however would suggest that hypoxia alters the typical neuronal response, and may be one of 

the reasons for the change in CBF previously reported.

2. Methods

2.1. Participants

Fifteen healthy adults (5 females) were recruited into the study ((mean ± SD); age, 25 ± 

4 years; height, 177 ± 10 cm; body mass, 77.3 ± 12.3 kg). Participants had not traveled 

to altitude (> 1500 m) in the preceding six months and had no medical contraindications. 

Female participants were studied during the early follicular phase of their cycle, or the 

placebo phase of oral contraceptives. All participants provided written informed consent. 

Ethical approval was granted by the Ethics Committee of the School of Psychology at 
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Bangor University, and carried out in accordance with the WMA Declaration of Helsinki. 

All scanning procedures were scrutinized and approved by the Bangor Imaging Unit steering 

committee. (Ethical approval number 2019–16489).

2.2. Study design

The study followed a repeated-measures, counterbalanced cross-over design. See 

Supplementary Fig. 1 for a design and procedure schematic. Experimental sessions were 

separated by at least five days and the procedures in each session were exactly matched with 

all physiological data collected covertly so participants would not detect which condition 

they were in. Participants completed an encoding and familiarization session for the paired 

associate memory task the day before each experimental session. Experimental sessions 

consisted of 3.5 h exposure to normoxia (fraction of inspired oxygen; FIO2 = 0.209) or 

hypoxia (FIO2 = 0.120). At the 2 h time point, MRI was commenced allowing T1-weighted 

structural images, arterial spin labelling (ASL) measures of resting perfusion, and fMRS to 

measure task-induced changes in neurochemicals detectable in the 1H spectrum during a 

paired associate memory task, all to be obtained.

2.3. Experimental protocol

All procedures were performed within 50 m of sea level. Participants completed the first 2 h 

of each session in a temperature and humidity controlled environmental chamber (Hypoxico 

Inc; NY), and the final 1.5 h of each session in a 3T MRI scanner. Throughout transportation 

between the chamber to the MRI suite and subsequent MRI scanning session, participants 

wore a leak-free face mask connected to a two-way Hans Rudolph valve with an inspiratory 

port connected via Falconia tubing to a 1000 L Douglas bag containing FIO2 = 0.209 or 

FIO2 = 0.120 (dependent on session condition).

2.4. Physiological monitoring

Physiological monitoring was conducted throughout the experiment. Heart rate and oxygen 

saturation (SpO2) were measured at thirty-minute intervals for the first two hours. Heart rate 

was measured using a 3-lead electrocardiogram (ECG) (Acuson X300, Siemens Healthcare 

GmbH; Erlangen: Germany), and SpO2 was measured using pulse oximetry (9550 OnyxII; 

Nonin Medical Inc, Minnesota). Expired carbon dioxide (CO2) was sampled from the face 

mask for a five-minute interval at 2, 2.5 and 3 h time points when in the MRI scanner. CO2 

concentrations were estimated using a calibrated fast responding gas analyzer (GC-0017 

(0–20%) SprintIR CO2 Sensor; GSS, Cumbernauld, UK), and recorded using CO2 logging 

software (GasLab; CO2Meter, Inc.; Florida, USA). The partial pressure of end-tidal CO2 

(PETCO2) was calculated from the recorded CO2 trace using peak detection software within 

the pracma package (Version 2.3.3, Borchers, 2018) in RStudio (Version 1.3.1073; RStudio 

Team, 2020).

Exposing humans to an acute hypoxic environment can cause acute mountain sickness 

(AMS) symptoms. To track the development of this condition participants were administered 

the Lake Louise Questionnaire (LLQ) (Roach et al., 2018) at thirty-minute intervals 

throughout the experimental protocol. Clinical AMS was defined as scoring ≥ 3 on the 
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LLQ with the presence of headache and at least one other symptom. The presence of clinical 

AMS during the protocol was an exclusion criterion.

2.5. Memory task

The paired associate memory task paradigms were written in Octave, using PsychToolbox 

3 (Brainard, 1997; Pelli, 1997) and has been reported previously in Rossetti et al., (2020) 

however the procedure is briefly explained below.

The day before each experimental session, participants completed an encoding session, 

where they were presented with two lists of images each containing 50 associate pairs 

of items taken from the Rossion and Pourtois pictorial set (Rossion & Pourtois, 2004), 

and were asked to commit the pairs to memory. Each list consisted of 25 semantically-

related pairs, and 25 semantically-unrelated pairs. Images were presented for 1.5 s each, 

separated by 0.5 s. To ensure task engagement, participants were asked to provide a 

rating of the relatedness of the items in each pair on a four-item scale, ranging from 

“extremely unrelated” to “extremely related”. Items were repeated across the two lists 

within each session but were not repeated across the two encoding sessions (one for each 

experimental session). To enhance learning, participants completed a two-alternative forced 

choice (2AFC) recall task immediately after studying each list.

During the experimental session, participants were presented with a cue image (for 1.5 s) 

immediately followed by a second image (for 1.5 s) that was either the associate pair (target) 

or not (foil). The participant was asked to determine whether the cue and the second image 

were paired associates. Participants were encouraged to prioritize accuracy over speed. 

They provided a yes/no judgement as well as rated their confidence (high/low). In each 

experimental session, participants completed a total of 100 trials, split over 4 runs of 25 

trials each, with jittered inter-trial intervals of 4, 6 or 8 s.

To control for any potential order effects on performance of the memory recall task, 

the order of the test conditions (normoxia or hypoxia) was counterbalanced across the 

participants, with 9 experiencing normoxia first and hypoxia second, and 6 experiencing 

hypoxia first, and normoxia second. We tested the data for an order effect on performance 

(paired T-Test comparing day of test) and found no effect of order.

2.6. Anatomical MRI

All MRI sequences were conducted on a 3T Philips Achieva MRI scanner (Philips 

Healthcare) using a 32-channel head coil. Anatomical image scans were acquired at the 

beginning of each scan protocol, immediately after a brief survey scan in normoxia and 

hypoxia experimental sessions. High resolution T1-weighted images were acquired as a 

five-echo MP-RAGE sequence (TE = 3.5, 10.5, 20.5, 30.5, 40.5 ms; TR = 45 ms, TI = 1150 

ms; 3D acquisition; field-of-view = 225 mm × 225 mm × 175 mm; voxel dimensions = 1 × 1 

× 1 mm3, SENSE = 2). The five echoes were then averaged to produce a single image used 

for registration of the arterial spin labelling scans.
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2.7. Resting ASL perfusion

To measure whole brain resting perfusion, ASL images were acquired before the fMRS 

memory task in normoxia and hypoxia. ASL images were acquired using the standard 

single-phase pulsed ASL package provided with the scanner. Labeling of inflowing blood 

was achieved through a parallel slab applied 20 mm below the acquisition slices (slab 

thickness = 100 mm, post label delay = 1600 ms, SENSE = 2) without background 

suppression or use of a QUIPSS II modification to temporally define the bolus duration. 

We used a sagittal phase contrast angiographic image to plan the ASL image acquisition 

and labelling slice location, such that the labelling slice was in the straight part of the 

carotids. Post labelling delay was selected based on that used in the previous studies in 

our lab (Lawley et al., 2016; Rossetti et al., 2020). Each scan consisted of 22 slices with 

256 × 256 mm2 field-of-view and 2 × 2 × 6 mm3 in plane resolution. All slices were 

aligned perpendicular to the Z-axis of the scanner. Slices were acquired as one tagged 

and one control, each acquired with 40 averages, with a TR of 3 s, and TE of 15 ms, 

giving a scan time of ~4 min. Image analysis was performed using the FMRIB Software 

Library (FSL) v6.0.1. MP-RAGE images were brain extracted using BET (Smith, 2002) 

then segmented using FAST (Zhang et al., 2001). ASL data were analysed using BASIL 

(Chappell et al., 2008). As ASL signal is dependent on blood T1, and as blood T1 values are 

dependent on haematocrit and blood oxygenation, we corrected the blood T1 estimates used 

in BASIL via the model of Hales et al. (2016) for each participant using their haematocrit 

and SpO2 values for each imaging session. Haematocrit, SpO2 and calculated T1 values 

used for the ASL processing can be found in supplementary table S2. Automatic estimation 

of bolus duration was applied. The CBF maps produced by BASIL were registered to the 

T1-weighted structural images, smoothed with a 4 mm Gaussian kernel, masked with the 

grey matter image from the T1 segmentation, and registered to the Montreal Neurological 

Institute (MNI) 2 mm T1-weighted average image for group comparison.

2.8. Static 1H MRS and 1H fMRS acquisitions

Both the fMRS and static MRS acquisition voxel were positioned over the posterior portion 

of the cingulate gyrus. Static MRS refers to spectra acquired separate to, and before the 

start of, the fMRS runs whilst the participant was rested staring at a fixation cross for the 

acquisition duration. Unless the participant reported movement or was moved, the location 

of the voxels stayed the same across the static MRS acquisition and all four fMRS runs. 

The average location of this voxel across fMRS runs, participants and conditions (normoxia 

and hypoxia) is shown in Fig. 2. Separately, the average location of the static MRS voxel 

across participants and conditions is shown in supplementary material Fig. 2. All spectra 

were acquired using a single-voxel PRESS sequence with a voxel size of 20 × 20 × 20 

mm3, TE = 40 ms, TR= 2 s, comprising of 2048 data points and a spectral width of 2000 

Hz, with CHESS water suppression. A PRESS sequence with a TE of 40 ms was chosen 

as this has previously been shown to provide reliable measures of Glutamate at 3T (Mullins 

et al 2008). Each fMRS run lasted for approximately 5 min and 30 s acquiring 168 shots, 

whilst the static MRS was shorter lasting approximately 2 min and 40 s acquiring one 

spectrum formed of 64 averages. A reference water scan, using the same PRESS sequence, 

but with water suppression off, and 16 averages, was acquired before each fMRS run. For 

the fMRS runs the standard acquisition sequence was modified, allowing the scanner to send 
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a transistor–transistor logic (TTL) pulse upon each acquisition for the duration of the scan. 

The acquisitions were acquired as individual “shots”, producing a separate free induction 

decay signal (FID) for each shot. The beginning of each trial was triggered 1700 ms after 

the first TTL pulse. This allowed the precise presentation of the cue image 300 ms before 

the acquisition of the first shot in a trial period, then shots were acquired every 2 s after 

until the trial ended (participants response registered). The end of the trial was followed by 

a randomized ITI of 4, 6 or 8 s. The beginning of the next trial was triggered again by the 

TTL pulse, ensuring shots in all trials were time-locked to the same acquisition timeline. 

See Supplementary Fig. S1 for a schematic of the MRS acquisition protocol. A summary of 

the MRS and fMRS details is also included following the MRSinMRS checklist (Lin et al., 

2021) as supplementary table S3.

2.8.1. Analysis of metabolite and fMRS spectra—The reliability of the MRS signal 

is dependent on the number of FIDs within the averaged spectrum. Dividing spectra based 

upon response type (such as only using correctly recalled trials) within the task would 

have a detrimental effect on the signal-to-noise ratio (SNR) of the average spectrum and 

the estimated concentration of metabolites (Lally et al., 2014), therefore all trials (hits and 

misses) were included in the recall condition average. To boost the SNR, average spectra 

were created by binning shots within task types across all 4 runs. Each run consisted of 

25 trials. Rest was always the shot acquired before the beginning of a trial, where an 

individual would be viewing a blank screen with a single central fixation dot. These shots 

correspond to the period between the latter part of the intertrial interval just before the 

triggering of the next trial (always 100 FIDs). Recall corresponds to the FID acquired 

between the presentation of the second image and the time at which the participant makes 

their response (providing at least 100 FIDs for the response period, when averaged across 

all runs). This analysis setup allowed the greatest number of shots to be averaged into the 

rest and recall spectra, providing sufficient SNR for subsequent metabolite estimation and 

comparison between spectra for each participant in each condition. Fig. 1 gives a schematic 

representation of how spectra are assigned to either rest, or response before binning to 

produce an average spectrum.

The fMRS spectra (see Fig. 1 for example) and static MRS spectrum (see Supplementary 

Fig. 2 for example) were processed and analysed using the Java-based version of the 

magnetic resonance user interface (jMRUI; (Naressi et al., 2001); software version 6.1 

(http://www.jmrui.eu)). Signal amplitudes were estimated using quantification based on 

quantum estimation (QUEST) and absolute concentrations were produced by referencing 

to an unsuppressed water peak acquired immediately before the acquisition of the 

static MRS and each fMRS run. The metabolite basis set included 19 metabolites 

including acetate, aspartate, choline, creatine, cysteine, gamma-aminobutyric acid, glucose, 

glutamate, glutamine, glutathione, glycine, lactate, myo-inositol, N-acetylaspartate, N-

acetylaspartylglutamate, phosphorycholine, scyllo-inositol, taurine and valine. The baseline 

subtraction protocol within jMRUI’s QUEST quantitation tool was used to handle the 

macromolecule baseline in both the fMRS and static MRS (Stefan et al., 2009).
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2.9. Statistical analysis

2.9.1. Perfusion comparisons between conditions—A paired-samples t-test for 

whole-brain CBF changes between normoxia and hypoxia was performed in RANDOMISE 

(Winkler et al., 2014) (cluster mass FWE correction at p < 0.05). Furthermore, using the 

average position of the MRS voxel across participants in each condition, we extracted the 

mean perfusion of this region and compared between conditions.

2.9.2. Analysis of behavioural performance—All statistical comparisons were 

conducted in RStudio (Version 1.3.1073; RStudio Team, 2020) utilising the tidyverse 

package (version 1.3.0; Wickham et al., 2019). Responses to the task were categorised 

as either hit, miss, correct rejection or false alarm. Performance was calculated as the 

proportion of hit and correct rejection trials to miss and false alarm trials. Average reaction 

time (RT) across runs for each condition (normoxia and hypoxia) was compared using 

paired t-test to assess for the presence of a speed accuracy trade off. We calculated the signal 

detection theory indices dprime (D’) and beta using the ‘dprime and other signal detection 

theory indices’ function within the psycho package (Version 0.5.0; Makowski, 2018). D’ 

is a measure of discriminability from chance in performance. It was calculated from the 

proportion of hits and false alarms. The beta attempts to summarise the response bias across 

the trials in each separate condition.

2.9.3. Statistical comparison of metabolite concentrations—To test the two-part 

hypothesis, a two-by-two repeated measures analysis of variance (ANOVA) was used to 

assess whether glutamate concentrations within the PCC showed task-related increases 

during the paired associated memory task and if the presence of hypoxia did or did not alter 

this. From this analysis, post hoc paired t-tests were undertaken to explore any significant 

main effects between the task state (rest vs recall) and condition (normoxia and hypoxia). 

Metabolite concentrations acquired using the static MRS in normoxia and hypoxia were 

compared using a paired samples t-test. All statistical comparisons were carried out in 

RStudio (Version 1.3.1073; RStudio Team, 2020) utilising the tidyverse package (Version 

1.3.0; Wickham et al., 2019) and rstatix package (version 0.6.0; Kassambara, 2020).

3. Results

3.1. Hypoxia increased heart rate while decreasing arterial oxygen saturation and end-
tidal CO2

Compared to normoxia, 2 h of poikilocapnic hypoxia increased heart rate by 6 bpm (95% 

CI: [12, 0]; P = 0.077) and reduced peripheral arterial oxygen saturation by 16% (95%CI: [− 

18, −11]; P < 0.001). See supplementary table S1 for mean data.

PET CO2 was reduced in hypoxia compared to normoxia by 2 mmHg (95% CI: [−5, 0]; P 
= 0.169) at the 2 h time point. By the second measurement at the 2.5 h time point it had 

reduced further being 5 mmHg lower than that measured during normoxia (95% CI: [−8, 

−2]; P = 0.051). Upon the final measurement at 3 h it appeared to stabilize at an average 5 

mmHg reduction (95% CI: [−9, −1]; P = 0.098). See Supplementary Table S1 for mean data.
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Comparing participant average LLQ score across each condition revealed no significant 

differences between normoxia (mean ± SD; 0.22 ± 0.43) and hypoxia (0.59 ± 0.65, P = 

0.123).

3.2. Hypoxia altered resting cerebral perfusion in a regional manner

Cerebral perfusion was analysed in 13 of the 15 participants. This was because in one of the 

experimental conditions, the scan was not collected due to termination of the session before 

ASL collection: both individuals reported feelings of discomfort (symptoms of AMS) that 

surpassed our predefined threshold. Due to the paired nature of the data, lack of data in one 

condition results in exclusion from the data analysis.

Significant clusters of reduced perfusion during hypoxia compared to normoxia were 

revealed within the PCC and wider posterior regions (see Fig. 2). Clusters of increased 

perfusion during hypoxia were identified also, however these tended to reside within the 

anterior regions of the brain.

A region of interest analysis using the mean MRS voxel location as a mask revealed a 

nonsignificant 15ml/100 g/min reduction in perfusion in hypoxia compared to normoxia 

(95% CI: [−73, 43]; P = 0.499).

3.3. Hypoxia did not alter neurochemistry within the PCC at rest

Analysis of the resting neurochemistry of the PCC from the static MRS acquisition was 

formed of 11 data sets as it was never acquired in 4 of the participants. Exposure to 2.5 h 

of acute poikilocapnic hypoxia did not alter the concentration of any measured metabolite 

within the PCC at rest. For the estimated metabolite concentrations and between condition 

comparisons, see Table 1.

3.4. Hypoxia was detrimental to task performance

A summary of the participants average performance can be found in Table 2. After 2.5 h, 

hypoxia significantly reduced participant memory recall accuracy by 8% (95% CI: [−13, 

−2]; P = 0.012). However, reaction time was unaffected (P = 0.502).

To understand the change in accuracy we calculated the D’. A higher value of D’ indicates 

better performance than chance. This value, alongside performance, was found to be 

significantly reduced by 28% (95% CI: [−50, −6]; P = 0.016) in hypoxia compared to 

normoxia. We found no significant alteration in beta between the two conditions (P = 0.305), 

which suggests the observed change in performance was not the result of a response bias.

3.5. Hypoxia altered task-induced neural activity/metabolism within the PCC

Table 3 displays the concentration estimations for the rest and response in both normoxia 

and hypoxia. Across all participants, metabolite estimation for Glutamate, Myo-Inositol, 

Creatine, N-Acetyl Aspartate, and Choline, had a standard deviation lower than 10%. 

Glutamine, Glucose and Glutathione had a SD lower than 40%. Lactate and Gamma-

Aminobutyric Acid had a SD greater than 40%. The full width at half maximum (FWHM) 

for the NAA peak (Hz) in normoxia for rest (mean ± SD; 4.74 ± 2.33) and response (4.60 ± 
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2.64) did not significantly differ (P = 0.464), nor did it for rest (5.67 ± 2.71) and response 

(5.74 ± 2.63) in hypoxia (P=0.609).

In line with the first part of our hypothesis glutamate increased by 8% between rest and 

memory recall in normoxia (95% CI: [0, 15]; P = 0.019; Fig. 3). This task-induced increase 

was not present in hypoxia: participants showed a non-significant reduction of 3% (95%CI: 

[CI −9, 2]; P = 0.219; Fig. 4).

Further exploratory analyses revealed glucose concentration was lower during both rest and 

recall in hypoxia compared to normoxia. Specifically, glucose concentration was 18% lower 

during rest (95% CI: [−34, −2]; P = 0.046; Fig. 4) and 23% lower during recall (95% CI: 

[−45, 0.5], P = 0.039; Fig. 5). Glutathione concentration during recall was also found to be 

28% lower during hypoxia compared to normoxia (95% CI: [−47, −9]; P = 0.048; Table 3).

4. Discussion

This study used fMRS to measure the metabolite dynamics of the PCC during episodic 

memory recall in both normoxia and hypoxia, as well as ASL to measure CBF changes. 

As initially hypothesised, we showed that memory recall results in a significant increase in 

glutamate concentration within the PCC. However, this task-induced change in glutamate 

concentration was not observed during hypoxia, suggesting a reduction in activity within the 

PCC to this cognitive task during hypoxia. Consistent with this neurochemical observation, 

a reduction in participant memory recall accuracy was also observed, during hypoxia. 

However, a reduction in glucose was observed during hypoxia, suggesting increased or 

maintained glycolytic metabolism. These results show that hypoxia impacts both CBF and 

neural responses, and may induce a shift from oxidative metabolism towards anaerobic 

glycolysis.

It is assumed that the regionally-specific metabolic demand for oxygen associated with 

resting and functional neurotransmission is met by a pervasive coupling with the moment-to-

moment distribution of regional CBF. This neurovascular coupling is vital for sustaining 

neural health and is the assumption that underlies functional magnetic resonance imaging 

(Logothetis, 2008). Hypoxia, in reducing arterial oxygen tension and thus the availability 

of oxygen to the cerebral tissue, challenges this coupled relationship. Exposure to hypoxia 

has demonstrated a non-uniform regional cerebral blood flow response at the level of the 

extracranial arteries (Binks et al., 2008; Willie et al., 2014) and downstream heterogeneity 

in regional cerebral perfusion has been observed (Lawley et al., 2017; Nöth et al., 2008; 

Rossetti et al., 2020).

We interpret the ASL results of the present study to confirm two previous findings of 

consistent regional perfusion reductions in the posterior portion of the cingulate gyrus 

(PCC) in response to hypoxia (Lawley et al., 2017; Rossetti et al., 2020). However, 

for completeness due to the nature of the ASL sequence used there is another possible 

explanation, that of a regional change in the arterial transit time (ATT), with ATT either 

decreasing, or increasing in a region-specific manner. An increase, or delay in ATT to 

the PCC, would produce a reduced ASL signal, and would be entirely consistent with a 

Rogan et al. Page 11

Neuroimage. Author manuscript; available in PMC 2022 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reduction in blood flow, as we interpret the data. However, a reduction in ATT (shorter 

transit time), with concomitant increased CBF, might mimic a loss, as tagged blood may 

arrive and leave the regions of interest before the ASL tag image is acquired, leading to a 

reduced ASL signal. This would not agree with our interpretation of a reduction in CBF, 

instead supporting an increase in CBF. However, we feel there are three arguments against 

a shorter ATT being behind our results in this (and previous studies): (1). ASL imaging of 

perfusion does not just measure tagged water within the blood in the arteries and arterioles 

as it arrives, it also measures tagged water within blood in the capillaries, as well as tagged 

water that has exchanged from the blood into the tissue itself. In fact, the delay time is often 

chosen to weight more towards the tagged water in the microcirculation which has perfused 

into the tissue, so a shorter ATT should not have a large effect on our results.; (2). ASL 

using a single delay time is not that sensitive to reduced ATT, with the tagged ASL signal 

being more dependent on the T1 decay of the tagged water in the capillaries and in the tissue 

than arterial supply. Indeed, a faster ATT is considered beneficial in single delay ASL as 

it reduces the influence of arterial blood on the ASL signal, allowing a better estimate of 

perfusion (Alsop et al., 2015), and it is only excessively long ATT that causes a problem (see 

previous point about an increased or slower ATT).; and (3) In previous work by Lawley et 

al (2017), a 5% hypercapnic challenge at the 2 hr time point in hypoxia demonstrated that 

only those regions which had shown a reduction in CBF as a result of hypoxia showed a 

significant increase in CBF in response to the hypercapnic challenge. These were the same 

regions we report here. Given the well documented effect of a hypercapnic challenge as a 

vasodilator and potent enhancer of CBF, it seems logical that these regions where the only 

ones to respond significantly because they were the only ones that had the capacity to do so 

to a significant extent. Other regions did not have capacity to vasodilate as they had already 

dilated in response to hypoxia (as evidenced by increases in CBF). The PCC and angular 

gyri, however, were able to vasodilate in response to CO2 because the vasculature was more 

constricted in hypoxia, meaning there was more capacity to dilate. We therefore feel that all 

of these arguments strongly support that fact that we are indeed measuring a reduction in 

CBF with our experiment, and not just a change in ATT.

The origins of this previously reported reduction in cerebral perfusion during hypoxia 

had two possible interpretations. The first assumed a coupling between neural activity 

in those regions and CBF delivery, concluding that the region has reduced its metabolic 

demand. This would align with early observations of metabolic suppression in high altitude 

adapted humans (Hochachka et al., 1996; Hochachka et al., 1999). However, an alteration in 

neurovascular coupling cannot be ruled out. Recent findings by Rossetti et al (2020) support 

this, demonstrating that during functional activation of the PCC, the BOLD signal response 

was reversed in hypoxia (a positive response became negative, and importantly a negative 

response became positive), without any change in performance. This observation suggested 

a reversal in the normal mechanism of neurovascular coupling within the PCC (Rossetti et 

al., 2020). However, without an independent measure of neural metabolism in that region, 

that conclusion remained speculative.

We measured the neurometabolic profile of the PCC at rest, using static MRS after 2.5 h of 

hypoxia. We did not reveal any significant alteration in the resting neurometabolism within 

this region in a static measure (baseline MRS) despite the observed regional alteration in 
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perfusion in our study. We did, however, find a dynamic change in glutamate and glucose 

levels in a task-based fMRS paradigm. This static or baseline finding adds to results from 

previous studies that have recorded both increases and no change in regional glutamate 

concentration (Vestergaard et al., 2016; Vestergaard and Larsson, 2019) at rest during 

exposure to acute hypoxia. We tentatively conclude that with a reduction in perfusion and 

given the state of hypoxia, there is a reduction in the delivery of oxygen to the cerebral 

tissue, yet it is still enough to maintain “resting” metabolic activity. However, it is important 

to note, that the average MRS spectrum used to quantify neurometabolites was acquired 

over a large 8 mL region of cerebral tissue, whilst perfusion measures are localised to 0.024 

mL voxels. As a result, a more spatially resolved measurement of neurometabolites may 

be warranted to unveil the precise topology of resting CBF and neurometabolic alterations 

between normoxia and hypoxia. We also utilised a PRESS sequence that was not optimised 

for the detection of some lower concentration metabolites such as lactate, which if measured 

reliably could be critical in the interpretation of the resting metabolic profile of this region.

Event-related fMRS sequences provide a novel and flexible technique to study functional 

alterations in neurotransmitter systems and metabolites. In employing this novel 

methodology, the present study reports an 8% increase in glutamate concentration during 

the memory recall period of a paired associate memory task completed during normoxia. 

This value compares well with other event-related designs (Mullins, 2018) and is greater in 

magnitude than that observed in block-related designs (Bednařík et al., 2015; Ip et al., 2017, 

2019; Mangia et al., 2012; Martínez-Maestro et al., 2018; Schaller et al., 2014). This leads 

to our interpretation of the glutamate increase as being partly the result of a compartmental 

shift in glutamate to a more visible glutamate pool during enhanced neurotransmission 

(Apšvalka et al., 2015; Mullins, 2018). Thus, prompting the conclusion that the increase in 

PCC glutamate under normoxic conditions is supporting episodic memory recall during 

paired associated memory task. However, an alternate hypothesis of this task-induced 

glutamate increase is available. The smaller increases observed in block-related fMRS 

designs have been suggested to result from net synthesis of glutamate during enhanced 

oxidative metabolism (Mangia et al., 2006; Mangia et al., 2012; Schaller et al., 2014). As 

such, increases in glutamate have the potential to be interpreted as either a direct measure of 

an increase in neurotransmission, or a measure of increased oxidative metabolism because of 

increased neurotransmission. We would suggest that any change is likely a weighted average 

of the two, with the weighted change depending on acquisition scheme settings, such as 

echo time or paradigm (Mullins, 2018). Again, this hypothesis of task-induced glutamate 

increase would still support the involvement of the PCC in episodic memory recall during 

normoxia.

Contrary to our prediction, during hypoxia, our episodic memory recall task did not result in 

an increase in glutamate concentration within the PCC as was observed in normoxia. Thus, 

hypoxia negates the PCC glutamate response to episodic memory recall, with a decrease 

in performance. However, it did not reduce the concentration of glutamate below rest. A 

reduction in glutamate concentration below resting values has been demonstrated within 

the same regions that exhibit a negative bold response to a task designed to deactivate 

a brain region (Bednařík et al., 2015; Martínez-Maestro et al., 2018). This prompts our 

interpretation that during hypoxia the PCC is no longer responding to the task as it does in 
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normoxia, rather than deactivating or actively suppressing neural activity per se. Given that 

we found episodic memory recall performance was reduced in hypoxia, this could be the 

result of the loss of functional activation of the PCC. However, it is important to note that 

although performance was reduced, participants were still performing above chance. This 

could indicate that there has been a rapid reorganisation in the neural networks that support 

episodic memory recall, sustaining it in the face of altered PCC functionality (a conclusion 

suggested by Rossetti et al. (2020)). This interpretation would remain the same, no matter 

which of the two hypothesised mechanisms behind fMRS changes in glutamate, namely 

neurotransmission leading to a change in pool visibility or net synthesis with enhanced 

oxidative metabolism during task induced regional neural activity.

Unexpectedly, when comparing measured metabolite concentrations between normoxia and 

hypoxia we observed a significant reduction in both the resting and recall concentration 

of glucose and the recall only concentration of glutathione during hypoxia. Our fMRS 

acquisition scheme was not optimised for the detection of the low concentration glutathione 

metabolite, for this reason we will not draw inferences on this specific alteration of this 

metabolite. Neurovascular coupling usually ensures that glucose supply suffices regional 

metabolic demand. For this reason, changes in glucose concentration have been used as a 

surrogate for indexing neural activity such as 18FDG-PET imaging methods. Interpreting 

this finding in terms of hypoxia inducing a reorganisation in the neural networks that support 

episodic memory recall, this reduction in glucose may reflect the loss of regional CBF 

increases, thus the delivery of glucose to the PCC is reduced. However, this finding must be 

considered as preliminary from our 3T PRESS sequence and warrants further investigation 

using techniques more specific for these metabolites (e.g. edited 1H MRS,13 C MRS or 7T 

MRS).

However, there is another possible interpretation whereby the balance between oxidative and 

nonoxidative metabolism supporting functional neural activity within the PCC is altered. 

Given the hypothesis that glutamate increases detected using fMRS reflect a net synthesis 

of glutamate due to enhanced oxidative metabolism during neural activity (Mangia et al., 

2006, 2012; Schaller et al., 2014), an alteration in the balance of oxidative and nonoxidative 

metabolism would alter the observed functional glutamate change. Presuming a shift in 

oxidative metabolism is the origin of the glutamate change we observe in normoxia, we 

could conclude that the lack of an increase in hypoxia is the result of a shift towards 

non-oxidative metabolism to sustain neural activity demands within the PCC. The resulting 

reduction in glucose during hypoxia would reflect its continued consumption by either 

oxidative or nonoxidative means to meet baseline metabolic demands without compensatory 

resupply due to the reduction in CBF observed in hypoxia. That is, the reduction seen 

arises because of reduced delivery that does not match demand, implying that neurovascular 

coupling is either reversed (as seen in Rossetti et al., 2020), or at the least impaired, in 

the PCC during hypoxia. As investigating potential glucose changes was not a primary 

focus of our study, these results and the possible interpretations, while interesting, should 

be considered speculative, and warrant further investigation at higher fields (7T or above) 

where measurement of glucose may be more reliable.
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The present study has demonstrated that three hours of moderate poikilocapnic hypoxia 

disrupted episodic memory recall. We are confident that this reduction in performance is 

a true decrement in episodic memory recall ability rather than a condition specific speed 

accuracy trade-off or response bias. Few investigations have aimed at understanding the 

physiological mechanism that underlie hypoxia induced cognitive deficits. An investigation 

by Williams et al. (2019) revealed that decrements in central executive function were 

correlated with the degree of peripheral arterial oxygen desaturation and prefrontal cortex 

deoxygenation. Although in the present study we do not have arterial or cortical oxygenation 

data to assess the effect of degree of regional hypoxaemia, a disruption of glutamate 

metabolism, interpreted as an alteration in oxidative metabolism would relate to the 

conclusions of Williams et al. (2019). However more recently an investigation by Friend 

et al. (2019) revealed that poikilocapnic hypoxia and hyperventilation hypocapnia resulted 

in similar decrements in cognitive performance but hypoxaemia (isocapnic hypoxia) alone 

did not result in a cognitive performance decrement. This implicates hypocapnia and 

resulting cerebral tissue alkalosis in the development of cognitive impairment in hypoxia. 

The authors argued that competing vascular constrictive effect of hypocapnia and alterations 

in the unloading of oxygen at the tissue level may reduce oxygen supply (Friend et al., 

2019). In the present study we can estimate that participants were experiencing a mild 

state of hypocapnia during completion of the memory task. As such we cannot rule 

out hyperventilation induced hypocapnia as a contributing factor to the hypoxia induced 

alteration in episodic memory-evoked PCC glutamate metabolism. Future investigations 

should aim to isolate the hypoxaemia and hyperventilation induced hypocapnia components 

of poikilocapnic hypoxia on resting and task regional cerebral metabolism and blood flow.

5. Conclusions

Hypoxia has been demonstrated to alter normal task-induced changes in glutamate 

metabolism within the PCC and is suggested to induce a switch to anaerobic metabolism. 

Reductions in CBF may be reducing oxygen delivery, leading to a slightly anoxic state for 

the tissue, leading to a switch away from oxidative metabolism, as evidenced by a lack 

of the normal task-induced glutamate increase. It is likely that this reduction in glutamate 

represents decreased neural activity in this region to the task during hypoxia, implying that 

the PCC is no longer operating as part of the neural network that supports episodic memory 

recall.
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Refer to Web version on PubMed Central for supplementary material.
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Data availability

Raw data is available from the Open Science Framework project ‘Hypoxia alters posterior 

cingulate cortex metabolism during a memory task: a 1H fMRS study’: https://osf.io/
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Fig. 1. 
The average location of the MRS acquisition voxel is shown on the left. Yellow reflects 

greater overlap in positioning across participants and conditions. Acquired spectra across all 

participants in each condition are shown for visual assessment of quality. On the right is the 

result of the subtraction (magnified × 10) of rest from response spectra averaged across all 

participants for each condition, showing a glutamate increase in the normoxia condition.
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Fig. 2. 
Significant clusters of reduced (light blue) and increased (yellow) regional CBF during 

hypoxia overlayed with absolute perfusion increases (red) and decreases (darker blue). 

Clusters were calculated using FSL tool RANDOMISE with cluster-based thresholding and 

FWE correct set at p < 0.05
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Fig. 3. 
Glutamate metabolite concentration (mM) during rest (grey) and memory recall during the 

task (light grey) in both normoxia (left) and hypoxia (right). Connected lines represent 

individual participant change within condition between rest and recall. ✲ denotes significant 

difference at P < .05, ✲ ✲ P < .001
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Fig. 4. 
Glucose metabolite concentration (mM) during rest (grey) and memory recall during the task 

(light grey) in both normoxia (left) and hypoxia (right). Connected lines represent individual 

participant change within condition between rest and recall. ✲ denotes significant difference 

at P < .05, ✲ ✲ P < .001.
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Table 1

Mean Metabolite concentrations at rest for each condition.

Baseline

Normoxia Hypoxia % Change

Glutamate 11.19 (2.46) 10.42 (2.43) −6.87 [−24.35, 10.60]

Glutamine 1.14 (0.91) 0.84 (1.08) −26.17 [−56.39, 4.04]

Glx(glutamate+glutamine) 12.33 (2.98) 11.26 (2.54) −8.65 [−25.11, 7.80]

Glucose 0.6 (0.19) 0.56 (0.32) −5.74 [−62.65, 51.18]

Myo-inositol 5.78 (0.81) 5.66 (1.36) −2.07 [−18.83, 14.69]

Creatine 14.67 (0.99) 15.08 (1.45) 2.79 [−6.85, 12.42]

Choline 1.32 (0.27) 1.42 (0.37) 7.6 [−10.89, 26.09]

N-acetyl aspartate 7.34 (1.52) 7.55 (1.54) 2.85 [−10.74, 16.44]

Gamma-amniobutyric acid 0.26 (0.69) 0.13 (0.22) −49.72 [−180.45, 81.01]

Glutathione 1.99 (0.6) 1.68 (0.69) −15.55 [−41.32, 10.22]

Note. Estimated metabolite concertation are shown in millimolar (mM) for each rest condition. Subscripts in brackets below concentration 
estimation represents the standard deviation of the mean. Percentage change values are calculated as average from the individual change across all 
participants, relative from normoxia. [95% confidence interval of the mean change].

Note. Values represent mean across participants in normoxia and hypoxia. Subscripts in brackets below values represent the standard deviation of 
the mean. [95% Confidence Interval of mean change]. The D’ prime was calculated from the proportion of hits and false alarms and represents the 
extent to which task performance deviates from chance (as a Z-score); a higher value of D’ prime is indicative of better performance (from Rossetti 
et al., 2020).
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