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Discovering the signaling pathway and regulatory network would provide significant advance in genome-wide understanding of
pathogenesis of human diseases. Despite the rich transcriptome data, the limitation for microarray data is unable to detect changes
beyond transcriptional level and insufficient in reconstructing pathways and regulatory networks. In our study, protein-protein
interaction (PPI) data is introduced to addmolecular biological information for predicting signaling pathway of Alzheimer’s disease
(AD). Combining PPI with gene expression data, significant genes are selected by modified linear regression model firstly. Then,
according to the biological researches that inflammation reaction plays an important role in the generation and deterioration of
AD, NF-𝜅B (nuclear factor-kappa B), as a significant inflammatory factor, has been selected as the beginning gene of the predicting
signaling pathway. Based on that, integer linear programming (ILP) model is proposed to reconstruct the signaling pathway
between NF-𝜅B and AD virulence gene APP (amyloid precursor protein). The results identify 6 AD virulence genes included in
the predicted inflammatory signaling pathway, and a large amount of molecular biological analysis shows the great understanding
of the underlying biological process of AD.

1. Introduction

Alzheimer’s disease (AD) is a progressive and fatal neurode-
generative disorder manifested by cognitive and memory
deterioration.The characteristic pathology changes inAD are
fibrin deposition in cerebral cortex; it is the deposition of
beta-amyloid (A𝛽) in cell space and poly-Tau protein in cell.
In pathomorphism, the expression is senile plaques (SP) and
neurofibrillary tangles (NFT).

Many studies have investigated the mechanism of AD
fromvarious perspectives of its complexity. Recent researches
show that a more accepted hallmark of AD is brain inflam-
mation. Inflammation clearly occurs in pathologically vul-
nerable regions of AD brain and it does so with the full
complexity of local peripheral inflammatory responses [1–3].
In the periphery, degenerating tissue and the deposition of
highly insoluble abnormal materials are classical stimulants
of inflammation. Likewise, in the AD brain damaged neurons

and neurites and highly insoluble A𝛽 peptide deposits and
neurofibrillary tangles provide obvious stimuli for inflamma-
tion [4–7].

To give insight to the AD mechanisms, high-throughput
gene expression data has received extensive attention and
made substantial progress in reconstructing the gene regu-
latory network. However, due to the underlying shortcom-
ings of microarray technology such as small sample size,
measurement error, and information insufficiency, unveiling
diseasemechanismhas remained amajor challenge to theAD
research community. To overcome these problems, pathway
information and network-based approaches [8] have been
applied and become more informative and powerful for
discovering disease mechanism.

Protein-protein interaction (PPI) networks are recon-
structed from protein domain characteristics, gene expres-
sion data, and structure-based information with other evi-
dence, for example, gene homology, function annotations,
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and sequence motifs [9]. PPI data contain structure informa-
tion among different genes while gene expression data do not.
In our study, PPI network data as a priori pathway informa-
tion is introduced for predicting the inflammatory signaling
pathway in AD. Many literatures have given outstanding
achievements by integrating gene expression data and PPI
data, such as identification of protein complexes [10], small
subnetworks [11], and biomarkers [12]. Zhao et al. presented
an integer linear programming (ILP) method to uncover
pathways among the given starting proteins, ending proteins,
and some transduction factor proteins [13]. However, how
to select the transduction factor proteins is a great problem.
In our study, a modified network-constrained regularization
analysismethod [14] is proposed for linear regression analysis
to select appropriate number of significant genes. Simulation
results show that this method can lead to an efficiently global
smoothness of regression coefficients.

Based on that, ILP model is presented to reconstruct
the inflammatory signaling pathway by integrating PPI data
with the AD gene expression data. In the ILP model, the
starting and ending proteins of the predicting pathway need
to be arranged in advance. Nuclear transcription factor NF-
𝜅B (nuclear factor-kappa B) as one of the most important
inflammatory factors is selected as the starting gene of the
signaling pathway. As we know that NF-𝜅B plays a key role
in regulating the immune response to infection, therefore
incorrect regulation of NF-𝜅B has been linked to cancer,
inflammatory and autoimmune diseases, septic shock, viral
infection, and improper immune development. NF-𝜅B has
also been implicated in processes of synaptic plasticity and
memory [15]. On the other hand, APP (amyloid precursor
protein) as the most important AD virulence gene and
precursor protein of A𝛽 is arranged as the ending protein of
the predicting pathway.

The experiment results show that 6 AD virulence genes
are identified being included in the predicted inflammatory
signaling pathway, and a large amount of inflammation
related genes and pathways has been found by molecular
biological analysis and they show the great understanding of
the pathogenesis of AD.

2. Methods

2.1. Linear Regression Model. Linear regression model is
widely used in estimation and variable selection. In our
study, the model is applied to selected subset of significant
genes which are important for AD and are going to be the
transduction factors of reconstructing pathway. In the next
prediction step, gene expression data and PPI data will be
integrated by ILP model. After all of the above, a pathway
could be identified between NF-𝜅B and APP.The usual linear
regression model can be expressed as

𝜇 =

𝑝

∑
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Gene expression data has the characteristic of less sample
and great noise. As a simple model, linear regression model
has significant performance in handling less sample and great
noise data. The significant genes will get a larger coefficient
while the nonsignificant genes will get a smaller coefficient.

2.2. Network-Constrained Regularization for the Linear
Regression Model. Before using linear regression model,
coefficient 𝛽 needs to be estimated. Manymethods have been
proposed which focused on addressing high-dimensionality
genomic data such as LASSO, LA-SEN, and LARS. Here, a
modified network-constrain regularization analysis by C.
Li and H. Li [14] is applied to estimate the coefficient since
it has been proved to perform better than other methods.
This method is a lasso-type problem. It defines a normalized
Laplacian matrix 𝐿 as

𝐿 =

{
{
{
{
{

{
{
{
{
{

{
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𝑑𝑢
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if 𝑢 and V are adjacent,

0 otherwise,

(3)

where 𝑤(𝑢, V) represents the weight of edge between linked
genes 𝑢 and V. 𝑑V = ∑𝑢∼V 𝑤(𝑢, V) represents all the adjacent
genes of V on the network.Then the definition of the network-
constrained regularization criterion is
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𝑇
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where𝑋 = (𝑥1|𝐾|𝑥𝑝); |𝛽1| = ∑
𝑝

𝑗=1
|𝛽𝑗|;𝜆1,𝜆2 are nonnegative

turning parameters. And then we estimate 𝛽 by minimizing
(4):

𝛽 = argmin
𝛽

{𝐿 (𝜆1, 𝜆2, 𝛽)} . (5)

Minimizing (4) is equivalent to solving a lasso-type
optimization problem. Turning parameters are estimated
by 10-fold cross-validation (CV). Genes in gene interaction
network are selected by PubGene; we chose genes related to
Alzheimer.

2.3. Integer Linear Programming (ILP). The ILP model for-
mulates signaling network detection as an optimization
problem and treats a signaling network as a whole entity
as described in its original publication [13]. PPI network
is a weighted undirected graph, that can be described as
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G(V,E,W), where V is vertices in the graph, representing
protein; E is edge between proteins; and W represents the
weight of edges.W can be calculated by gene expression data.
The ILP model can be described as follows:

Minmize
{𝑥𝑖 ,𝑦𝑖𝑗}

𝑆 = −

|𝑉|

∑

𝑖=1

|𝑉|

∑

𝑗=1

𝑤𝑖𝑗𝑦𝑖𝑗 + 𝜆

|𝑉|

∑

𝑖=1

|𝑉|

∑

𝑗=1

𝑦𝑖𝑗

Subject to: 𝑦𝑖𝑗 ≤ 𝑥𝑖,

𝑦𝑖𝑗 ≤ 𝑥𝑗,

|𝑉|

∑

𝑗=1

𝑦𝑖𝑗 ≥ 1, if 𝑖 is either a starting

or ending protein,

|𝑉|

∑

𝑗=1

𝑦𝑖𝑗 ≥ 2𝑥𝑖, if 𝑖 is not a starting

or ending protein,

𝑥𝑖 = 1, if 𝑖 is a protein known in STN,

𝑥𝑖 ∈ {0, 1} , 𝑖 = 1, 2, . . . , |𝑉| ,

𝑦𝑖𝑗 ∈ {0, 1} , 𝑖, 𝑗 = 1, 2, . . . , |𝑉| ,

(6)

where 𝑤𝑖𝑗 is the weight between proteins 𝑖 and 𝑗 in weighted
undirected graph𝐺; 𝑦𝑖𝑗 is a binary variable to denote whether
the edge𝐸(𝑖, 𝑗) is a part of the STN. 𝑥𝑖 is also a binary variable
to denote whether protein 𝑖 is a component of the STN. 𝜆 is
a positive penalty parameter. |𝑉| includes all proteins in the
PPI network. 𝑦𝑖𝑗 ≤ 𝑥𝑖 and 𝑦𝑖𝑗 ≤ 𝑥𝑗 mean that only if proteins
𝑖 and 𝑗 are both components of STN, the edge 𝐸(𝑖, 𝑗) should
be considered. ∑|𝑉|

𝑗=1
𝑦𝑖𝑗 ≥ 1 represents at least one protein

contact with starting protein or ending protein.∑|𝑉|
𝑗=1

𝑦𝑖𝑗 ≥ 2𝑥𝑖

makes sure that if 𝑥𝑖 is selected as a component of STN, there
are at least two proteins link to the vertex.

The starting protein and ending protein have confirmed
above that the genes selected by linear model were treated as
transduction factors. The method of chosen parameter 𝜆 can
be found in its original publication.Then we detected protein
pathway by the ILP model.

3. Results and Discussion

To evaluate ILP model, AD dataset, series GSE1297, was
usedwhichwere humanhippocampal gene expression down-
loaded from GEO DataSets from the National Center for
Biotechnology Information (NCBI) offered by Blalock et al.
[16]. The hippocampal specimens they used are obtained
through the Brain Bank of the Alzheimer’s Disease Research
Center at the University of Kentucky.The humanGene Chips
(HG-U133A) of Affymetrix and Microarray Suite 5 are used
in analyzing the microarray data. There are a total of 9
control, 7 incipient, 8 moderate, and 7 severe AD samples

included in this dataset with 22283 gene expressions in each
sample. The PPI data we used is downloaded from website
BioGRID (http://thebiogrid.org/) with 12466 proteins and
40323 interactions in total.

The file format of microarray data downloaded from
NCBI is CEL. The probe data needs data processing like
background correct, normalization, probe correct, and so
on. Then ANOVAs were used on preliminary select genes
and removed all genes whose 𝑃 value was less than
0.05. After processing, 7030 genes for each sample were
left. Then taking linear regression model with modified
network-constrained regularization and AD biological infor-
mation, the coefficients 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑝) and 𝑝 =

7030 were obtained. Among them, 7017 values of 𝛽

were zeroes and the other 13 𝛽𝑠 were nonzero values.
So these 13 genes with nonzero values of 𝛽 were consid-
ered as significant genes to AD phenotype and they are
denoted in green circles with “(1)” and gene names in
Figure 1.

The 13 selected genes can be mapped to PPI network to
get the corresponding proteins and the interactions between
them and other proteins. Each selected gene was connected
with some other genes in PPI network by the edges. In ILP
algorithm, edge between 𝑖 and 𝑗was represented by 𝑦𝑖𝑗.When
ILP chose this edge, 𝑦𝑖𝑗 = 1, otherwise 𝑦𝑖𝑗 = 0.

ILP tries to assign 0 or 1 for𝑦𝑖𝑗 to ensure the result network
has the largest weight. For the weight of edge, 𝑤𝑖𝑗, here we
use the Pearson coefficient of the gene expression values to
represent the weight between proteins 𝑖 and 𝑗.

Then using NF-𝜅B as starting protein and APP as ending
protein ILP model was applied to formulate the signaling
network. In the ILP algorithm, penalty parameter 𝜆 is a size
control parameter that needs to be adapted manually. If its
value is too large, the predicted signaling network will be
enormous, otherwise it will be too small to catch the useful
biological information. In our simulation experiment, after
adapting from small value to large value, 𝜆 was determined
as 0.65.

We finally got a signaling pathway with several small
subnetworks. This network is reconstructed by 45 genes
including 13 selected significant genes and is shown in
Figure 1.

In Figure 1, “(0) NF-𝜅B” represents the starting pro-
tein NF-𝜅B, “(3) APP” represents the ending protein APP,
“(1)” with the protein names denote the corresponding
selected genes by the regress model, and “(2)” with pro-
tein names are selected by ILP to reconstruct the sig-
naling pathways between NF-𝜅B and APP. In order to
analyze the biological functions of the pathways and sub-
networks, the predicted result was mapped into its cod-
ing gene pathway network, and the online analysis web-
site DAVID (http://david.abcc.ncifcrf.gov/home.jsp) was uti-
lized to further understand their molecular biological func-
tions to AD. Table 1 shows the KEGG pathway analysis
result.

First of all, among the prediction results, there are 5 genes
that have been confirmed as the AD virulence genes such as
SNCA, CALM1, GSK3B, PSEN1, and APP which have been
biologically demonstrated playing crucial roles in AD. Based

http://thebiogrid.org/
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(2) WWP1

(2) KLF5
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(2) SRSF5

(1) CALM1

(1) TGM2

(2) NOC4L

(1) FASN

(2) NDRG1

(1) CREB1

(2) RBBP4

(1) E2F1

(2) CDK2
(1) OGT

(3) APP

(0) NFKB1

(2) NOTCH1

(1) PSEN1

(2) CTNNB1

(2) COPS5

(1) MAPK14

(2) CENPC1

(2) UBC

(1) PRKAB1

(2) SNRNP200

(2) HNRNPU

(2) NR3C1

(1) RELA

(2) NCOR2

(2) SNW1

(2) KAT2B

(2) CDC25B

(2) DUSP1

(1) MAPK3

(2) UBR5

(2) KATNA1

(2) DYRK2

(2) CEBPA

(2) ESR1

(1) SIRT1

(2) HDAC2

Figure 1: Protein signaling pathway predicting result between NF-𝜅B and APP.

on Table 1, T cell receptor signaling pathway, B cell recep-
tor signaling pathway, the Notch signaling pathway, NOD-
like receptor signaling pathway, Toll-like receptor signaling
pathway, MAPK signaling pathway, neurotrophin signaling
pathway, insulin signaling pathway, and so on were found
to include a major part of important genes derived from
the regression model. Specially, the main predicted pathway
in Figure 1 includes NFKB1, NOTCH1, PSEN1, CTNNB,
COPS5, MAPK14, CENPC1, UBC, and APP; the molecular
biological analysis shows that they have close correlation
between inflammatory response and AD.

It was found that inflammation is a major mechanism
of acute brain injury and chronic neurodegeneration [17].
During the onset of an inflammatory response, signaling
pathways are activated for translating extracellular signals
into intracellular responses converging to the activation of
NF-𝜅B, the central transcription factor in driving the inflam-
matory response [18]. NF-𝜅B has long been considered a pro-
totypical proinflammatory signaling pathway, largely based
on the activation of NF-𝜅B by proinflammatory cytokines,
such as interleukin-1 (IL-1) and tumor necrosis factor 𝛼

(TNF𝛼), and the role of NF-𝜅B on the expression of other
proinflammatory genes including cytokines, chemokines,
and adhesionmolecules, which has been extensively reviewed
elsewhere [9].

Recent studies have also found that Notch receptors
in Notch signaling pathway regulate cell differentiation
and function, and Notch1 has been shown to induce glia

in the peripheral nervous system [19, 20]. NF-𝜅B, Notch,
MAKP, and PSEN1 included in the main pathway of
Figure 1 were observed to have strong regulating functions
between each other, since interleukin-1 (IL-1) activates NF-
𝜅B via interleukin-1 receptor-associated kinase (IRAK) and
mitogen-activated protein kinase (MEKK1(MAP3K)) depen-
dent inhibition of NF-𝜅B inhibitor (I-𝜅B) [21, 22]. V-rel
reticuloendotheliosis viral oncogene homolog (c-Rel (NF-
𝜅B subunit)) can trigger Notch homolog 1 translocation-
associated (NOTCH1 receptor) signaling pathway by induc-
ing expression of Jagged1, ligand for Notch receptors [23, 24].
NOTCH1 receptor activated by Jagged1 or Delta-like 1 (DLL1)
is cleaved by ADAMmetallopeptidase domain 17 (ADAM17)
and PSEN1 to intracellular domain of NOTCH1. NOTCH1
is transported to nucleus and participates in recombination
signal binding protein for immunoglobulin kappa J region
(RBP-J kappa (CBF1)) mediated transcription [24, 25].

It was also found that 𝛽-catenin- (CTNNB1-) dependent
WNT signaling pathways have crucial roles in the regulation
of diverse cell behaviours, including cell fate, proliferation,
survival, differentiation, migration, and polarity [26, 27]. It is
interesting to note that loss of TNF𝛼 function would inhibit
Wnt/𝛽-catenin signaling [28]. Recently studies show that
Wnt/𝛽-catenin and NF-𝜅B are independent pathways; cross-
regulation between the Wnt and NF-𝜅B signaling pathways
has emerged as an important area for the regulation of
a diverse array of genes and pathways active in chronic
inflammation, immunity, development, and tumorigenesis.
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Table 1: KEGG pathway analysis of the predicted pathways and
subnetworks in Figure 1.

Pathway Number
of genes

Prostate cancer 9
Notch signaling pathway 8
Neurotrophin signaling pathway 6
Pathways in cancer 6
Chronic myeloid leukemia 6
Alzheimer’s disease 5
Melanogenesis 9
T cell receptor signaling pathway 5
Acute myeloid leukemia 5
NOD-like receptor signaling pathway 5
Cell cycle 5
Insulin signaling pathway 6
Pancreatic cancer 4
B cell receptor signaling pathway 4
Small cell lung cancer 4
Progesterone-mediated oocyte maturation 4
MAPK signaling pathway 4
Toll-like receptor signaling pathway 5
Endometrial cancer 6
Spliceosome 4
Glioma 5
Adipocytokine signaling pathway 3
Epithelial cell signaling inHelicobacter pylori infection 3
RIG-I-like receptor signaling pathway 3
Colorectal cancer 3

Both 𝛽-catenin and NF-𝜅B activate inducible nitric oxide
synthase (iNOS) gene expression [29].

In addition, the regulatory network between COPS5 and
CENPC1 has been extracted from our algorithm which is
also observed to be implicated in the pathogenesis of AD.
TheCOP9 (constitutive photomorphogenesis 9) signalosome
(COPS), a large multiprotein complex that resembles the 19S
lid of the 26S proteasome, plays a central role in the regulation
of the E3-cullin RING ubiquitin ligases (CRLs). The catalytic
activity of the COPS complex, carried by subunit 5 (COPS
5/Jab1), COPS-dependent COPS 5, displays isopeptidase
activity; it is intrinsically inactive in other physiologically
relevant forms [30]. Increased APP and accumulation of
neurotoxic A𝛽 in the brain are central to the pathogenesis
of AD. COPS5 is found to be a novel RanBP9-binding
protein that increases APP processing and A𝛽 generation
[31]. COPS5 regulates the stability of the inner kinetochore
components CENP-T and CENP-W, providing the first direct
link betweenCOPS5 and themitotic apparatus and highlight-
ing the role of COPS5 as amultifunctional cell cycle regulator
[32]. CENP-T interacts with both centromeric chromatin
and microtubule binding kinetochore complexes. Transient
targeting of CENP-C to a noncentromere LacO locus induces

the recruitment of some outer kinetochore proteins, similar
to CENP-T [33]. Our result exhibited that COPS5 regulates
CENP-C in the main pathway and ubiquitin and NF-𝜅B were
found to be associated with them. Ubiquitin can degrade the
I𝜅Bwhich is the inhibitor of NF-𝜅B, processing of precursors,
and activation of the I𝜅Bkinase (IKK) through a degradation-
independent mechanism [34]. On the other hand, COPS5
functions through CDK2 to control premature senescence
in a novel way, depending on cyclin E in the cytoplasm
[35].

4. Conclusions

Although many efforts have been done several decades of
AD, it is still difficult to uncover its phenotype-pathway
relationship and pathogenesis. Recent studies show that the
pathology of AD has an inflammatory component that is
characterized by upregulation of proinflammatory cytokines,
particularly in response to A𝛽. However, the signaling path-
ways and regulatory networks of the inflammation in AD
pathogenesis are very difficult to reconstruct due to the
complexity.

To discover the inflammation signaling pathway and
regulatory network of AD, in our study, protein interactive
network data, PPI was introduced to overcome the infor-
mation insufficiencies of DNA microarray gene expression
data by integer linear programming (ILP)method. Two stages
had been used in predicting inflammatory pathway for AD.
Firstly, significant genes had been selected by linear regres-
sion analysis with themodified network-constrained regular-
ization analysis. Then ILP model was applied to reconstruct
the signaling pathway betweenNF-𝜅B andADvirulence gene
APP since NF-𝜅B has long been considered a prototypical
proinflammatory signaling pathway. From the molecular
biology analysis, we found that genes on the main pathway of
the reconstruction results play crucial roles in inflammatory
response and APP which give more biological insight for AD
pathogenesis, such as NF-𝜅B, NOTCH1, CTNNB1, COPS5,
and their signaling pathways. Evenmore, the pathogenic con-
tribution of the inflammatory response in AD is supported by
our finding of the regulating and functions of the genes and
subnetworks in the predicted signaling pathways. In general,
our studies on combining PPI and gene expression data
discover the signaling pathways of inflammatory response on
AD and help for deeply understanding the pathogenesis of
AD.
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