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Captive held African wild dogs (Lycaon pictus) were vaccinated with a commercially available inactivated
canine parvovirus (CPV) vaccine licensed for use in domestic dogs. Serological responses were recorded
by testing for viral antibodies with the haemagglutination inhibition test (HAI) following a vaccination
schedule involving two initial inoculations a month apart and an annual booster. Vaccines were delivered
by hand injection or remotely (i.e. by dart). All naive dogs vaccinated with Parvac® did seroconvert as
determined by canine antibody titres > 1:80 in one or more samples collected after inoculation.
Duration of immunity (DOI) within the first year persisted for approximately 98 days only. To enable
greater immunological protection revaccination should occur more frequently than once in a calendar
year. No significant differences in the seroprotection rate were observed when comparing route of
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1. Introduction

Parvoviruses have been observed in species from six carnivore
families (Felidae, Canidae, Procyonidae, Mustelidae, Ursidae and
Viveridae) with all described as having very similar clinical signs
[1]. Canine parvovirus (CPV) has existed in three forms and was
first detected in wild wolves (Canis lupus) in northeast Minnesota
during 1973 [2]. In free ranging wildlife populations this virus
can persist in a diverse range of conditions and is not only an
important cause of juvenile mortality but also contributes to the
maintenance of small populations in fragmented landscapes
[3,4]. Epidemiological studies recognise that small low density
populations are at greater risk to spill over transmission from
higher density hosts (e.g. jackals, domestic dogs) emphasising the
need to develop effective approaches to mitigate disease risk
[5,6]. Species such as the African wild dog (AWD) [3], Ethiopian
wolf [7], and Island fox [8], which typically live at low densities,
are likely end points for infection transmission from other species
with this increasing their risk of localised extinction. For such spe-
cies the effect of infectious disease has been responsible for both
dramatic die-offs and local extinctions [9-11]. Disease has been
categorised as a significant conservation area with its management
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not only important for small naturally occurring populations but
also for those involved in conservation programs such as transloca-
tion, captive management and reintroduction [12,13].

Vaccination programs designed for endangered species are
aimed at reducing the effects that large outbreaks have on popula-
tions by increasing an individual’s ability to resist or cope with a
disease’s harmful effects [14,15]. The success of these programs
are however significantly influenced by the proportion of the pop-
ulation that are inoculated, the efficaciousness of the utilised vac-
cine and an appropriate monitoring program [16]. In the Action
Plan for the African wild dog attention is drawn to the usefulness
of vaccines and their protocols, stating that they should be
explored in captive bred animals or those that are unsuitable for
release [17]. Reducing transmission rates or controlling disease in
wildlife populations is generally limited by the availability of
specific vaccines, which are mostly untested for use in wildlife spe-
cies [18], while the delivery of such preventative measures in field
settings is surrounded by logistic, financial, and ethical complica-
tions [19].

Research relating to CPV and managing its risk through surveil-
lance and treatment protocols is limited in AWD populations. This
is not assisted by the small number of studies reporting a post vac-
cination antibody response. From published articles all have com-
bined this pathogen in a bi or multivalent vaccine [20-22] with
there being no study that has assessed the immune response of
an inactivated vaccine. Expanding basic research on vaccine use
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in the AWD helps to establish more appropriate vaccination sched-
ules, particularly as the use of inactivated vaccines is a valuable
option in the management of adverse vaccine reactions and the
recrudescence of a live vaccine [23]. It can also assist in determin-
ing which preventive approaches are more likely to succeed under
field conditions. In AWD populations, little known about the regu-
latory role that CPV plays in population persistence.

This study examined the immunogenicity of the inactivated
monovalent vaccine Parvac® (Zoetis) in the AWD. This vaccine is
commercially available in Australia for use in domestic dogs and
is known to be safe for use in pregnant bitches and those individ-
uals that are at high risk or otherwise immunodeficient [24]. Par-
vac® is frequently used in captive populations of non-domestic
canid species to guard against CPV [25]. However, information per-
taining to duration of immunity hasn’'t been described. The pri-
mary objectives were to (i) assess immunogenicity and the
duration of immunity and (ii) evaluate the effect of route of
administration.

2. Methods
2.1. Experimental animals

The study site was Monarto Zoo (MZ) in South Australia, which
is an open-range wildlife park occupying approximately 1,000 ha.
At the commencement of the study it housed (separated by sex)
the largest number of AWDs in the Australasian region (19 males
and 5 females) [26].

Eighteen male dogs from four cohorts respectively aged 5, 6, 7
or 11 years were used in the trial. This group of animals had been
displayed long term in the main AWD exhibit but were separated
into two groups after nine months of the study. Increased aggres-
sion between cohorts coincided with the breeding season which
resulted in one fatality of the study group (ID. A69114).

Generally, dogs held at MZ were not vaccinated against any
infectious disease due to its remote location and lower disease
transmission risk. At the beginning of the study all animals were
regarded as being healthy with experimental procedures per-
formed in accordance with the Australian code of practice for the
care and use of animals for scientific purposes [27]. Ethics approval
was gained through the Flinders University Animal Ethics Commit-
tee (Project no. E338).

2.2. Vaccine administration and schedule

At the commencement of the study all dogs were divided ran-
domly into three treatments groups each consisting of six individ-
uals. Groups included a control where animals were initially given
a placebo (water for injection), while dogs in the second and third
groups were respectively vaccinated by hand injection and darted
in the hind leg using Parvac® (CPV-2, containing adjuvant Thiom-
ersal (0.01%), Lot no. 7922-09602) [28]. The recommended dosage
rate for this vaccine is 1 ml for dogs of all ages with the administra-
tion route being either subcutaneous or intramuscular [28]. The
use of a blow pipe (length 105cms) discharged at approximately
1 m was utilised for all animals in the darted group, except for
the annual vaccination of A69115 where a Dan-Inject (model JM)
dart rifle was employed. This animal was darted within 20 ms
using 5-7 Bar of pressure. During inoculation 3 ml syringes (Telin-
ject USA Inc) were used with a 1.5 mm diameter and 20 mm length
needle.

The frequency of immunisations followed the recommended
protocol for naive animals [29]. These vaccination guidelines state
that there should initially be two inoculations approximately one
month apart followed by an annual booster at 12 months. Table 1

Table 1
Vaccination schedule and program for monitoring antibody titre levels.
Day Group 1 (n=6) Group 2 (n=6) Group 3 (n=6)
0 Placebo Parvac delivered Parvac delivered
by hand remotely
33 Monitoring only Parvac delivered Parvac delivered
by hand remotely
68 Monitoring only Monitoring only Parvac delivered to
A59172 and A59175 only
131 Monitoring only Monitoring only Monitoring only
278 Monitoring only Monitoring only Monitoring only
369 Monitoring only Parvac delivered Parvac delivered
by hand remotely
404 Monitoring only Monitoring only Monitoring only
446 Monitoring only Monitoring only Monitoring only
777 - Monitoring only Monitoring only

shows the schedule of administration with monitoring of antibody
titre levels occurring for all groups during the intervening months
as well as after the annual booster. Dogs A59172 and A59175
received a third booster to explore what influence an extra dose
had on the vaccine’s immunogenicity.

2.3. Blood sample collection

Antibody monitoring occurred nine times across a 25 month
period. Bloods taken on day O determined baseline titre levels prior
to vaccination, while samples collected on day 777 were done
opportunistically as seven vaccinated dogs were being transferred
to another zoo and required pre-shipment health checks. Sampling
was performed by venepuncture from either the cephalic or saphe-
nous vein with a minimum of 2.5 ml of whole blood collected. All
samples were centrifuged on the day of collection and placed into a
screw top container and stored at —80 °C until required for labora-
tory analysis.

2.4. Determination of parvovirus antibody titres

A hemagglutination inhibition assay (HAI) was performed by a
commercial laboratory service (Biobest, UK) to determine the anti-
body response. In domestic dogs antibody titre levels greater than
1:80 are considered to be protective [20,30]. For computational
purposes, titres of ‘<1:20’ or similar were respectively assigned a
value for the preceding dilution e.g. 1:10. Seroprotection was
defined as pre-vaccination HAI antibody titres < 1:10 and a post
vaccination titre of >1:80, or when the post-vaccination titre had
at least a numerical four-fold increase when using double
dilutions.

2.5. Statistical methods

To assess immunogenicity three primary end points were
examined including the geometric mean response of titres
(GMT), geometric mean fold increase (gMFI) and seroprotection
rate. As HAI antibody titres were reciprocals the lowest tested dilu-
tion factor was incorporated in a log, transformation [31].
Immunogenicity values were analysed using Excel [32] and Graph
Pad Prism [33] with statistical significance defined as P
values < 0.05.

To evaluate whether the HAI titres of the vaccinated animals
differed significantly from those in the control group the Mann-
Whitney U test was used on data collected one month after the ini-
tial inoculation to two months following the annual booster (days
33-446). The Friedman test with Dunn’s multiple comparison was
applied to the same period focusing only on vaccinated animals to
examine the differences in antibody titres across time. A Wilcoxon
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matched pair’s signed rank test assessed GMTs at specific time
intervals to compare against baseline values within each treatment
group.

To determine whether the route of administration influenced
the number of dogs that developed protective immunity, the
pooled vaccination results were separated into two treatment
groups (subcutaneous hand injection, SC: darted, intramuscular,
IM). Immunological values were calculated for each time (day
33-777) along with a Fisher’s exact test. It was hypothesised that
the ratio of seropositive to seronegative dogs would be the same
at each sampling event for animals vaccinated by hand injection
and those darted.

3. Results

Dogs were monitored daily for changes in behaviour and health.
Initial baseline antibody titre values were examined identifying
only one dog that did not have a HAI titre value of <1:10. This ani-
mal (A49160) had a protective titre value of 1:80 leading to a base-
line imbalance and was subsequently excluded from further
statistical analysis.

3.1. Immune response to inoculation

Comparisons in immunogenicity values for control and vacci-
nated dogs were made from samples collected during days 33-
446. The Mann-Whitney U test showed vaccinated dogs had a sig-
nificantly higher immune response than control animals, U (114)
=129.5, p = <0.0001. Fig. 1 shows the geometric mean values for
control and vaccinated animals being 6.13 (Clgsy 5.43-7.07) and
59.01 (Clgsy 43.86-81.85) respectively.

GMTs for dogs in the control group showed little variability
with titres ranging from 5 to 14 (Clgsy 5.2-38.6). The largest fold

Protection
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HAL titre (log2)
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Fig. 1. HAI titre values from control animals and dogs vaccinated with the Parvac®
vaccine. Protection assumed at log transformed HAI titre value of 1:80.

change in the GMT for this group was observed on days 131 and
278 (Table 2) with titre values of the latter being 2.8 times the
baseline value. A Wilcoxon matched pairs signed rank test indi-
cated only moderate differences in titre values at days 0 and 278

(z=1.5, p=0.125). No dog from this treatment group was consid-
ered to have protective immunity throughout the study.

Dogs that were vaccinated had GMTs that ranged from 17.6
(Clgsy 11.7-26.5) to 363 (Clgsy, 183-720). The Friedman test evalu-
ated the response of antibody titres across days 33-446 (Fig. 2)
finding significant differences over time (F; 6= 50.02, p <0.05). A
6.6 fold increase in immunological values was evident one month
following the initial inoculation with 18% of animals considered to
be seroprotected. At day 68 geometric mean titres peaked with 91%
of the dogs having antibody titres above 1:80. The geometric mean
ratio (GMR) between treatment groups showed a fold increase of
72 in the titres of vaccinated dogs compared to control animals.

The gMFI decreased by 87% at day 131 with the seroprotection
rate also falling to 45%. This declining trend in the seroprotection
rate and GMT continued till the annual booster where no animal
was found to have protective immunity. Within the first 12 months
protective immunity was primarily induced over a period of
98 days (days 33-131).

The second significant rise in antibodies was observed in the
month following the annual booster with the largest gMFI of
19.3 recorded. GMTs at day 404 reached 340.8 (Clgsy 231.4-
501.9) with all vaccinated animals considered to be seroprotected.
There was a geometric mean fold decrease of 50% in titres 42 days
later with all but one individual (A59175) sustaining a titre level
deemed to be protective (91%).

10 T

assumed

HAL titre (log2)

0 T 1 T 1 T 1 T
33 68 131 278 369 404 446
A Day A

Fig. 2. Change in antibody titres for vaccinated animals over time. Arrows indicate
booster vaccinations (black: all dogs; grey: only two dogs).

Table 2
Immunogenicity values for control and vaccinated dogs.
Treatment Statistic Day
0 33 68 131 278 369 404 446
Control N 6 6 6 6 6 5 5 5
GMT (SD) 5.0 (1.0) 5.0 (1.0) 5.0 (1.0) 7.94 (14) 14.14 (2.6) 5.0 (1.0) 6.6 (1.46) 7.6 (2.53)
gMFI - 1.0 1.0 1.6 1.8 0.4 13 11
Vaccinated  GMT (SD) 50(1.0) 33.1(1.87) 363.0(2.77) 45.4(225) 319(1.90) 17.6(1.83)  340.8(1.78)  181.5(2.38)
n=11 Seroprotection Rate (%) - 18 91 45 18 0 100 91
gMFI - 6.6 11.0 0.13 0.69 0.57 19.3 0.5
Geomean ratio (GMR) 1.0 6.6 72.6 5.7 2.2 3.5 51.7 23.9
Geomean fold ratio (gMFR) - 6.6 11.0 0.08 04 1.8 15.3 0.5

" Fold change across time interval.
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3.2. Comparing route of administration

One month on from the initial inoculation saw similar fold
increases in titres with the GMT of hand injected animals and
darted dogs respectively being 35.6 (Clgsy 15.2-83.4) and 30.3
(Clgsy 18.9-48.6). A nominal change in the GMR was observed at
day 68 with there being a 2.1 fold increase in titres for hand
injected animals compared to those that were darted (Table 3). Dif-
ferences in the maximum seroprotection rate were observed only
in the first year with just one darted dog (A69113) not achieving
a protective titre.

Dogs vaccinated by hand had the highest fold increase in the
GMT after the annual booster with GMTs being 359.2 (Clgsy
207.7-621.1) and 320 (Clgsy 135.3-756.7) for darted dogs. The
greatest declines in antibody titres were from dogs that were
darted with GMTs waning by 60%. Opportunistic sampling more
than a year after the annual booster (day 777) showed 50% of indi-
viduals (n = 6) still had protective immunity. In these animals DOI
in the second year was sustained for a minimum of 373 days. Dogs
vaccinated by hand were at this time found to have titres four
times higher than animals that were darted. Conducting the Fish-
er's exact test showed no significant differences in the ratio of
seropositive or seronegative animals in each of the treatment
groups across each time period. Fig. 3 shows the change in GMTs
across the study period for all treatment groups.

4. Discussion

The findings from this study indicate that the commercially
available inactivated Parvac® vaccine did stimulate an adequate
humoral response in Lycaon, which was protective. No negative
post vaccination reactions were observed throughout the study
implying that this vaccine is safe for use in this canid. Data pertain-
ing to DOI in inactivated vaccines is relatively limited with even
less information for ‘off-label’ species [34]. The primary response
to the vaccine allowed immunity to persist for approximately
98 days. From day 131 to the annual booster at day 369 immunity
fell below the protective level. This would have left individuals sus-
ceptible to the disease for approximately 8 months of the first year.
A similar result was observed in bush dogs (Speothos venaticus),
which were repeatedly vaccinated with an inactivated feline par-

600 =

Control
500 = Hand Injection

Remote Delivery
400 -

300

HAI titre

200

Protection
assumed

Days

Fig. 3. Geometric mean response for respective treatment groups.

vovirus (panleukopenia) vaccine with titres being undetectable
after 3 months [35].

Following the annual booster, there was a rapid anamnestic
response with all dogs becoming seropositive in the subsequent
month. Protective immunity persisted in most animals for at least
77 days. Sampling more than a year after revaccination showed
half of the sampled animals had sustained a protective titre. This
suggests that subsequent inoculations can provide protective
immunity for a longer time before declining to a level where an
individual is sensitive to the disease.

Serology results showed no statistical differences in the sero-
protection rate when comparing the two modes of delivery. The
immune response of an inactivated CPV vaccine can be affected
by administration route [36]. Results of this study showed there
was greater variability observed in the GMT between treatment
groups, potentially indicating that delivery approach may influ-
ence long term protection.

Individual antibody titres of A69115 were examined for poten-
tial differences in the response after being inoculated remotely.
The observed trend in waxing and waning of titres was not dissim-
ilar to other darted dogs. Dogs A59172 and A59175 who received a
third booster at day 68 had a less pronounced decline in antibody
titres between days 131 and 278. As the sample size was small
these results were only reviewed qualitatively.

Natural exposure to CPV cannot be discounted in this study as
serological results for A49160 revealed a baseline imbalance in

Table 3
Immunological values for differing modes of delivery.
Treatment Statistic Day
0 33 68 131 278 369 404 446 777
Hand N 6 6 6 6 6 6 6 6 3
Injected GMT (SD) 5.0 35.6 508.0 40.0 283 15.9 359.2 226.3 100.8
(1.0) (2.25) (1.43) (1.86) (1.79) (1.76) (1.68) (2.07) (2.88)
Seroprotection Rate - 33 100 33 17 0 100 100 67
(%)
gMFI - 7.1 143 0.1 0.7 0.6 22.6 0.6 0.1
Remote N 5 5 5 5 5 5 5 5 3
Delivery GMT (SD) 5.0 30.3 2425 (4.2) 52.8 34.8 20.0 (2.0) 320.0(2.0) 1393 25.2 (2.90)
(1.0) (1.46) (2.86) (2.14) (2.80)
Seroprotection Rate - 0 80 60 20 0 100 80 33
(%)
gMFI - 6.1 8.0 0.2 0.7 0.6 16.0 0.4 0.1
Geomean ratio (GMR) 1.0 1.2 2.1 0.8 0.8 0.8 1.1 1.6 4.0
Geomean fold ratio - 1.2 1.8 04 1.0 1.0 1.4 14 1.0
(gMFR)
Fisher’s Exact Test - 0.455 0.455 0.567 1.000 1.000 1.000 0.455 0.400
Rate Difference (%) - 3.9 1.3 0.6 0.8 nil 1.0 1.3 5.0
Rate Ratio - 6.1 43 0.3 0.8 0.8 1.8 4.3 11.7

" Fold change across time intervals.
" o =0.05.
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antibody titres at the commencement of the trial. Positive cut-off
values used by laboratories to detect exposure to CPV have been
reported as 1:10 (ELISA tests) [37]. This would also suggest that
the increase in titres found at day 278 in the control group could
potentially be attributed to natural exposure despite no clinical
signs being observed. Blood collection at day 278 occurred mid-
autumn where temperatures in the preceding months were above
average [38]. Seasonality has been noted to increase the risk of CPV
with a greater incidence observed during warmer months [39-42].

Commercial vaccines commonly include the original CPV-2
antigen which has since been completely replaced by three alter-
native antigenic types; 2a, 2b and 2c [43]. In Australia the new
CPV-2a is the predominant antigen in dog populations [44], while
in southern Africa the CPV-2b variant is most widespread [45,46].
Serological analysis has found that there are substantial differences
in the cross-neutralizing activity between the various heterologous
virus types [47]. Utilising a CPV-2 vaccine can lower and shorten
immunity against the alternative variants with only sub-optimal
protection achieved [47]. There is some suggestion that the use
of certain vaccines that target specific antigen types could better
complement that which is present in a given environment or that
a polyvalent vaccine should be developed [48,49].

Monitoring post vaccination responses in exotic canids is
important as there is limited information relating to antibody pro-
duction, ability to seroconvert and sustained immunity. Such
research assists in determining the safety of vaccines as some
preparations have either been ineffective or have reverted to viru-
lence resulting in morbidity and mortality. Evaluating a serological
response against a measure of protection, such as that for domestic
dogs, can minimise the use of challenge studies. In the case of this
vaccine there was no publicly available information pertaining to
DOI in domestic dogs for comparison purposes. With the AWD
being Endangered a direct challenge would have been unethical
increasing the reliance of immunological values to assess vaccine
efficacy. Erring on the side of caution due to the absence of a chal-
lenge Bohm, Thompson [50] increased the cut-off titre value which
assumed protective immunity. This approach has merit when vac-
cinating endangered canid species as Spencer and Burroughs [21]
noted that there are potential differences in immune responses
between members of the Canidae family with reference to CPV.

The discontinuous periods of immunity during this trial suggest
that the given vaccination schedule was inadequate. To maintain a
longer interval of protective immunity in the first year an addi-
tional booster should be given at four months with biannual revac-
cination occurring thereafter. The use of multiple boosters in a
given year for this endangered species is advocated, especially
when utilising inactivated vaccines [22]. Parvac® could also be
used in an attempt to prevent more animals from becoming
infected during periods of high risk, thereby limiting the geo-
graphic spread of CPV through a barrier or suppressive vaccination
strategy [51]. Parvac® could also be used as a primer for attenuated
vaccines, thereby reducing the chance that it may revert to viru-
lence and cause clinical disease [52].

The success of a disease management approach for wildlife spe-
cies can be challenged by factors relating to the practicality of
some control methods due to cost, confirmation of a vaccine’s effi-
cacy, and effective surveillance and monitoring programs.
Resources involved in immobilising animals and the logistics in
locating them can impose additional financial costs. Hence, the
administration of Parvac® is more practical in captive populations
and less likely for free ranging packs due to the dogs’ ranging beha-
viour and the recommendation for biannual vaccination.

Zoological institutions provide a controlled environment in
which to conduct safe and rigorous trials. For the AWD and many
threatened species the testing of vaccines in captive held animals
has significantly aided conservation efforts. For example, Frankfurt

Zoological Society was involved in administering an inactivated
rabies vaccine (Madivak, Hoechst) to AWDs to assess seropreva-
lence. This vaccine was shown to induce an antibody response
and was subsequently given to dogs in the Serengeti [53]. Whereas,
a trial at the Wildlife Conservation Society’s Bronx Zoo involving a
recombinant canary-pox vectored vaccine compared delivery
approaches (oral vs. IM injection) identifying significant disparity
in titre values for canine distemper [54]. To assist with the logisti-
cal challenges of administering vaccines to AWDs, an oral vaccina-
tion technique involving a modified live vaccine (SAG-2) presented
in chicken heads was tested at De Wildt Cheetah and Wildlife Cen-
tre and separately Lion Park, South Africa [55]. The antibody levels
achieved did suggest adequate protection was conferred with this
approach extrapolated and modified for use in free ranging Ethio-
pian wolves [56]. While more broadly, the Los Angeles Zoo in con-
junction with the California Condor Recovery Team assessed an
experimental DNA vaccine for West Nile virus in captive condors
determining it was a viable option for the conservation of free
ranging populations; and similarly but more controversially an oral
vaccine for Ebola was tested in chimpanzees at the University of
Louisiana Lafayette’s New Iberia Research Center to assist in miti-
gating the risk to wild gorillas and chimpanzees in north west
Africa [57]. These studies demonstrate the usefulness that captive
populations have in developing methods to control infectious dis-
ease, while for some species (e.g. Black-footed ferret, Prairie dog)
they have been essential to prevent extinction [58]. Understanding
which preventive medicine approach is likely to succeed helps
inform scientists on strategies that best reduce disease risk and
improves conservation outcomes.

5. Conclusion

CPV occurs globally and is an emerging and re-emerging patho-
gen that has a broad range of host species. To decrease the risk of
infectious disease, particularly in endangered wildlife species, val-
idating a vaccine’s efficaciousness is needed. This study demon-
strated that Parvac® did elicit an adequate humoral response
which constituted protective immunity. The DOI was however lim-
ited but with an adapted vaccination schedule there is scope for
protective immunity to be extended. The seroprotective rate was
not affected by mode of delivery though monitoring of individual
titres over a longer period could better assist with this determina-
tion. This research expands on the limited information available
regarding CPV and the African wild dog, whilst also providing an
insight into the practical use that this vaccine has for captive and
free ranging populations. Future research will assess maternal anti-
body decay in pups which is a known cause of vaccination failure.
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