
Introduction

Chronic kidney disease (CKD) progression, ultimately 

leading to end-stage renal disease (ESRD) remains a 
significant health burden with its pathogenesis poorly 
defined. Along with an increase in metabolic disease, hy-
pertension, obesity, diabetes and aging, the prevalence of 
CKD has grown in developed countries [1]. Patients who 
have severe CKD or ESRD are exposed to the high risk 
complicated outcomes of cardiovascular disease, stroke, 
and death [2]. Furthermore, recent reports demonstrate 
that acute kidney injury (AKI) is a significant risk for on-
set or acceleration of CKD [3,4]. 

The sympathetic nervous system controls the physi-
ological functions of diverse organ systems, including the 
kidney [5]. The catecholamines epinephrine (adrenaline), 
synthesized in chromaffin cells of the adrenal medulla, 
and norepinephrine (NE; noradrenaline), released by 
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sympathetic neurons, are sympathetic nervous system ef-
fectors [6]. Epinephrine and NE act by binding to adren-
ergic receptors (AR), α1-AR, α2-AR or β2-AR, further clas-
sified by their subtypes, α1A-AR, α1B-AR, α1D-AR, α2A-AR, 

α2B-AR, α2C-AR, β1-AR, β2-AR, and β3-AR [6,7]. The use of 
mouse models with targeted deletions or transgenic over-
expression of the respective genes in vivo has enabled 
the unraveling of the physiological and pharmacological 
functions of these individual receptor subtypes [8-11].

The kidney is innervated by efferent sympathetic nerves 
as well as peptidergic sensory afferent nerves [12,13]. 
Sympathetic nerve activity and the tissue content of neu-
rotransmitters including NE is elevated in both patients 
and experimental animals with CKD [14-16]. Despite the 
recognition of the renal nerve as an effector of renal dys-
function in CKD [15,17,18], its role in the development 
and progression of CKD is not fully understood.

Renal denervation is a therapeutic strategy used in the 
treatment of resistant hypertension [19,20]. The benefi-
cial effects of renal denervation against renal failure in 
both animals and humans include a decrease in BP, renal 
efferent sympathetic nerve activity, central sympathetic 
nerve activity and sympathetic outflow, and downregu-
lation of the renin-angiotensin system (RAS), but the 
detailed molecular mechanisms remain elusive [13,21]. 
Several clinical trials in renal complications of hyperten-
sion and metabolic syndrome have been performed and 
are reviewed elsewhere [22-25]. Renal tubules as well as 
most inflammatory cells express ARs, including α2-AR. 
The presence of α2-AR in nephron segments, including 
proximal convoluted tubules and cortical and medullary 
collecting ducts, has previously been demonstrated [26]. 
We recently found that renal nerve-derived NE signal-
ing via α2-ARs, α2A- and α2C-AR subtypes promotes renal 
inflammation and interstitial fibrosis in CKD disease 
progression models [27,28]. Here, we review the recent 
progress in our understanding of the molecular mecha-
nisms of NE-AR signaling in renal disease development 
and progression.

Sympathetic nerve-derived norepinephrine is a 
profibrotic stimulator in injured kidneys

Regardless of the etiology of CKD, inflammation, and 
fibrogenesis are the common pathological processes that 
result in CKD and its progression to ESRD. We previously 

demonstrated that renal denervation can prevent fibrosis 
and inflammation in two different renal fibrosis models 
[27,28]. These results suggest that renal nerve stimulation 
may be a key mechanism driving renal inflammation and 
fibrogenesis, and that nerve-derived factors play a key 
role in the initiation of these processes.

NE, the primary neurotransmitter released by sym-
pathetic nerve fibers, acts as a sympathetic activator in 
various bodily functions, causing increases in heart rate, 
arterial BP, tear production, and hepatic glucose produc-
tion [29-32]. Furthermore, NE has both excitatory and 
inhibitory effects in various areas of the central nervous 
system [33]. In the kidney, NE can regulate renal blood 
flow, glomerular filtration rate, and tubular reabsorp-
tion of sodium and water, as well as release of renin 
and prostaglandins and neural control of renal function 
[13,19]. Our recent in vivo findings have shown that renal 
denervation in mouse kidneys prevents tubulointerstitial 
fibrogenesis after unilateral ureteral obstruction (UUO) 
and kidney ischemia/reperfusion injury (IRI) [27,28]. In-
terestingly, local infusion of NE into denervated kidneys 
increases transforming growth factor-β1 (TGF-β1) sig-
naling, interstitial expression of α-smooth muscle actin 
(α-SMA), and excessive deposition of extracellular col-
lagen matrix, mimicking the fibrotic response observed 
in the innervated kidneys [27,28]. As elevated plasma NE 
is observed in patients with CKD and ESRD [14,16], our 
study demonstrates that the IRI-induced increases in the 
level of NE may be a significant contributing factor to the 
development of IRI long-term sequelae in mice.

Norepinephrine is an inflammatory factor

The importance of inflammation in the development 
and progression of kidney fibrosis is well known. When 
kidney tissue is injured, inflammatory cells including 
lymphocytes, monocytes/macrophages, and dendritic 
cells infiltrate the site of injury and subsequently precede 
the process of kidney fibrosis through the release of fibro-
genic cytokines and several growth factors [34]. The cyto-
kines and growth factors activate fibroblasts and kidney 
tubular cells, which produce excessive extracellular ma-
trix components at the injured site [34]. Monocytes/mac-
rophages express most adrenoreceptor (AR) subtypes. 
Activation of α2-AR is responsible for upregulation of 
inflammatory cytokines such as tumor necrosis factor-α 
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(TNF-α) and interleukin-6 (IL-6), while that of β2-AR 
confers an anti-inflammatory response [35]. NE regulates 
the production and secretion of TNF-α in macrophages 
[36-39]. NE affects myeloid cell recruitment into injured 
sites in sepsis models. Recent in vitro data show that 
NE regulates the cell fate and function of macrophages 
depending on the concentration of either endogenous 
NE or an AR agonist administered exogenously; a higher 
concentration of NE suppresses major histocompatabil-
ity (MHC) class II and C-C chemokine receptor-2 (CCR2) 
expression and migration toward monocyte chemoat-
tractant protein-1 (MCP-1), while a lower concentration 
enhances TNF-α expression and phagocytosis [35,40]. NE 
also promotes IL-12-mediated differentiation of CD4+ T 
cells into Th1 effector cells and subsequently increases 
the production of interferon-γ (IFN-γ) in the Th1 cells [41]. 
Conversely, NE reduces the production of Th1 cytokines, 
including IFN-γ and TNF-α, in hepatic T cells [42]. A re-
cent report described the effect of NE on CD8+ T cell ac-
tivity and differentiation via a β-AR-induced mechanism, 
and suggested that the time exposed to NE may influence 
the effect [35]. 

In contrast, studies on the effect of NE-AR on Treg and 
Th17 cells are very limited. A β2-AR agonist enhances the 
suppressive activity of Treg cells, leading to an increase 
in the anti-inflammatory response [43,44]. Furthermore, 
exposure of B cells to NE increases intracellular levels of 
IgG and IgE [45]. Studies investigating the effects of NE 
and β2-AR stimulation on B cell activity and T cell-depen-
dent antibody response are reviewed elsewhere [46,47]. 
These studies indicate that, while the immune system is 
not absolutely dependent on the nerve system, NE can 
alter immune cell function resulting in either progression 
or protection against inflammatory diseases. Our recent 
studies using in vivo models of kidney interstitial fibrosis 
have shown that NE functions as a proinflammatory fac-
tor [27,28]. During kidney interstitial fibrogenesis after 
UUO and IRI, renal denervation suppresses the infiltra-
tion of polymorphonuclear (PMN)-positive neutrophils 
and F4/80-positive macrophages. Local infusion of NE 
into the denervated kidneys leads to the infiltration of 
neutrophils and macrophages, similar to the inflamma-
tory response observed in the innervated kidneys [27,28], 
suggesting that NE is a key factor that induces inflamma-
tion after kidney injury.

Norepinephrine as a cell death inducer in injured 
kidneys

Tubular cell injury and death result in apoptotic bod-
ies and other cellular debris, which are phagocytized 
by infiltrated macrophages, resulting in TGF-β1 release 
and extracellular matrix deposition [48]. The injured and 
disrupted kidney tubular cells also secrete proinflamma-
tory cytokines such as IL-1, which upregulate adhesion 
molecules, including vascular cell adhesion molecule 
(VCAM) and intercellular adhesion molecule-1 (ICAM-
1), to facilitate the infiltration of inflammatory cells to 
the site of cell injury and death [49,50]. These reports 
suggest that kidney tubular cell injury and death pro-
mote interstitial fibrosis and inflammation. Since kidney 
tubular cell death is an early event that occurs before the 
onset of interstitial fibrosis and inflammation, it has been 
demonstrated that direct inhibition of caspase activation 
in a rat IRI model decreases tubular apoptotic cell death 
and prevents subsequent inflammation and fibrosis [51]. 
While NE prevents neuronal cell death from microglial 
inflammation and neurotoxicity [52,53], it induces cas-
pase-3-dependent apoptosis in kidney tubule epithelial 
cells [27,28]. Our laboratory has reported that terminal 
deoxynucleotidyl transferase-mediated dUTP nick-end 
labeling (TUNEL)-positive kidney tubular apoptosis is 
diminished by renal denervation in mouse kidneys un-
dergoing either UUO or IRI, whereas local infusion of NE 
into the denervated kidneys induces tubular apoptosis 
as a sequelae of kidney injury [27,28]. Cleaved forms of 
poly (ADP-ribose) polymerase 1 (PARP1) and caspase-3 
are also increased by NE administration in cultured 
kidney proximal tubule epithelial cells (PTC), but co-
treatment with a caspase-3 inhibitor significantly attenu-
ates TUNEL-positive apoptosis induced by NE [27]. Our 
data are consistent with previous reports that NE induces 
apoptosis in neonatal cardiomyocytes and endothelial 
cells through caspase activation [54,55]. On the other 
hand, exogenous NE induces necrotic cell death in kid-
ney proximal tubules in dogs [56,57]. Our recent in-vivo 
studies also supported a possible role for NE-induced 
necrotic cell death in mouse kidneys, characterized by 
increased PARP1 expression and tubular injury score 
in the denervated kidney undergoing either UUO or IRI 
[27,28]. However, the NE signaling pathway that induces 
apoptosis and necrosis in kidney tubular cells has not 
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been delineated and requires further investigation.

Norepinephrine as a cell cycle arrester in fibrotic 
kidneys

Kidney tubular cell cycle arrest induced by severe AKI 
plays an important role in the development of fibrosis 
[58,59]. While cell cycle arrest is normally used as a pro-
tective mechanism to avoid cell division during stress 
and injury, sustained cell cycle arrest at the G2/M phase 
results in a senescence-associated secretory phenotype 
and leads to secretion of pro-proliferative and profibrotic 
factors such as connective tissue growth factor (CTGF) 
and TGF-β1, which can induce fibroblast proliferation 
and collagen deposition [60]. Our laboratory has reported 
that the tubular cell cycle arrest in the G2/M phase ob-
served during interstitial fibrosis after IRI is prevented by 
renal denervation, as indicated by a decreased number of 
tubular cells positive for phosphorylated histone H3, and 
decreased ratio of cyclin B1 to cyclin D1, markers of the 
G2/M phase in the cell cycle [28]. However, NE infusion 
induces cell cycle arrest in the denervated kidney under-
going IRI [28]. Excluding the finding that G2/M-arrested 
kidney tubular cells activate the c-jun N-terminal kinase 
(JNK) signaling cascade that acts to upregulate profi-
brotic cytokine production [58], there is little information 
available about how cell cycle arrest links AKI to CKD. 
Despite no direct evidence showing that renal tubular 
cell cycle arrest mediates the AKI to CKD transition, pro-
fibrotic factors such as TGF-β1 derived from cell cycle 
arrested tubular cells may be indirectly involved in CKD 
progression, including fibrosis progression.

Norepinephrine can induce a profibrotic response 
in isolated renal proximal tubular cells 

Our studies in cultured kidney PTC indicate that ex-
posure to NE induces the production and secretion of 
TGF-β1 and CTGF [27]. TGF-β1, as a central mediator of 
fibrogenesis, induces CTGF upregulation through the 
binding of Smad3 to the CTGF promotor [61]. On the 
other hand, CTGF binds directly to TGF-β1, resulting 
in its increased activity through binding to two distinct 
TGF-β type I and II receptors [62]. Upon stimulation of 
TGF-β1 and/or CTGF alone, fibroblasts are activated and 
undergo a phenotypic transition into myofibroblasts [62]. 

We previously showed that culture medium from NE-
exposed tubular cells, which contains released TGF-β1 
and CTGF, triggers differentiation of kidney interstitial 
fibroblasts into α-SMA-positive myofibroblasts [27]. The 
myofibroblast is an activated form of fibroblast that is 
widely recognized as a major type of extracellular ma-
trix-producing cell, and originates from bone marrow-
derived cells or resident fibroblasts in fibrotic kidneys 
[63-65]. Although under debate, it is thought that kidney 
tubular cells also produce extracellular matrix, including 
fibronectin and collagen, and further undergo a phe-
notypic conversion into extracellular matrix-producing 
fibroblasts and myofibroblasts, the so-called epithelial-
mesenchymal transition (EMT), during interstitial fibro-
genesis after kidney injury [64,66,67]. Our laboratory has 
also shown that kidney proximal tubular cells exposed 
to NE can release fibronectin to the culture media inde-
pendent of the TGF-β1 signaling pathway, but not EMT, 
as α-SMA expression was not detected in NE-treated PTC 
cells [27]. Therefore, NE-exposed kidney tubular cells 
contribute to interstitial fibrosis not only by stimulating 
extracellular matrix deposition derived from adjacent 
fibroblasts but also from themselves, suggesting that NE 
functions as a profibrotic inducer in kidney tubular cells. 

Targeting the α2-adrenergic receptor in chronic 
kidney diseases

We previously demonstrated that inhibition of α2-ARs 
prevents interstitial fibrogenesis after IRI, as indicated 
by reduced TGF-β1 production, Smad3 phosphorylation, 
downregulation of α-SMA, and collagen deposition [28]. 
Other reports have indicated that inhibition of either α1-
AR or β-AR protects kidneys against 5/6 nephrectomy-
induced injury, and a combinational inhibition of α1-AR 
and β-AR is more effective in preventing glomerular, in-
terstitial, and vascular injury than the inhibition of α1-AR 
or β-AR alone [68,69]. Our data implicating NE signaling 
through α2-AR in induction of fibrogenesis in IRI kidneys 
are intriguing, as presynaptic α2A-AR and α2C-AR subtypes 
in the vas deferens, isolated brain, and atrial tissue [70,71] 
and the α2A-AR subtype in the kidney play a predominant 
role in regulating synaptic NE release [72]. Loss of α2A-AR 
and α2C-AR subtypes increases susceptibility to develop-
ment of heart failure after chronic pressure overload in 
mice [73,74]. 
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Intriguingly, other investigators have reported that 
either activation of α2-AR using clonidine [75] and mox-
onidine [76] or inhibition of β-AR using propranolol 
[77] is protective against IRI. However, we found that 
the activation of α2-AR is detrimental and promotes the 
development and progression of fibrosis, inflammation, 
cell death, and cell cycle arrest after IRI [28]. Thus, the 

α2-AR activation in IRI-induced fibrotic kidneys may trig-
ger alternate signaling events to sympathetic inhibition, 
such as activation of signaling pathways implicated in 
inflammation, cell death, and cell cycle arrest to insti-
gate kidney fibrogenesis. This notion is supported by our 
finding that NE infusion in denervated kidneys enhances 
PMN-positive neutrophil and F4/80-positive macrophage 
infiltration, increases TUNEL-positive tubular apoptotic 
cell death, and induces cell cycle arrest in G2/M positive 
for phosphorylated histone H3 [28]. In UUO-subjected 
kidneys, inhibition of α2-AR using corresponding an-
tagonists has no effect on NE level, but reduces cytokine/
chemokine expression [27], suggesting a possible mecha-
nism by which NE may promote leukocyte recruitment 
and inflammation. This premise is supported by other 
reports demonstrating that α2-AR signaling activation 
using NE and UK-14304, an α2-AR agonist, augments the 
production of inflammatory cytokines (including TNF-α 
in macrophages) [78], accelerates TUNEL-positive apop-
tosis in mesenchymal cells [79], and triggers cell cycle ar-
rest in oligodendrocyte progenitors [80].

Interaction between renal sympathetic nerves and RAS 
is highly associated with BP regulation and CKD progres-
sion [81]. Renal sympathetic nerve activation triggers 
renin release from the juxtaglomerular apparatus, which 
in turn results in an increase of angiotensin II (Ang II), 
the main effector of RAS and determinant of renal dam-
age [81,82]. Conversely, Ang II can enhance NE level by 
acting on sympathetic nerve terminals, resulting in sym-
pathoexcitation [19,83,84]. Hoch et al [85] showed that 
genetic inhibition of α2A-AR or pharmacological inhibi-
tion of α2-AR diminishes Ang II-mediated NE release in 
kidneys with 5/6 nephrectomy. In a recent report, Erigu-
chi et al [86] demonstrated that renal denervation halts 
CKD progression independent of BP in a rat model of Nω-
nitro-L-arginine methyl ester (L-NAME; a nitric oxide 
synthase inhibitor), in which a hydralazine-mediated 
BP lowering effect had only a minor effect on preventing 
CKD progression, including kidney fibrosis, compared 

to renal denervation. The effect of renal denervation is 
associated with suppressed expression of intrarenal RAS 
components, indicating sympathetic regulation of in-
trarenal RAS. However, it remains to be defined whether 
renal sympathetic nerves or related signaling control in-
trarenal RAS in CKD progression through α2-AR.

In summary, intrarenal change following renal injury 
signals the central nervous system through renal affer-
ents, and then the signal from the central nervous system 
contributes to sympathetic nerve activation and increas-
es in renal NE level (Fig. 1). The renal sympathetic nerve-
derived factor NE mediates the fibrogenic response, and 

α2-AR inhibition can prevent UUO- and IRI-induced 
renal interstitial fibrogenesis. These data are significant 
in that they suggest α2-AR as a primary signaling compo-
nent that in turn regulates several of the key pathogenic 
molecules and processes implicated in renal inflamma-
tion, interstitial fibrogenesis and CKD (Fig. 1). Further, 
these findings are expected to have clinical translational 
potential, given that α2-AR inhibitors are already in clini-
cal use for some diseases and in trials for other diseases, 
making them adaptable to prevent fibroproliferative dis-

Afferent renal nerve

Efferent sympathetic nerve

NE via -AR�2

Chronic kidney disease

Tubular
cell death

Tubular cell
cycle arrest

Inflammation Fibrosis

Figure 1. Renal sympathetic nerve-derived norepinephrine 
(NE) and alpha 2 adrenergic receptor (α2-AR) in chronic kidney 
disease development and progression. Intrarenal changes fol-
lowing renal injury, ischemia/reperfusion injury or unilateral ureteral 
obstruction are sensed by renal afferents, and integration of these 
signals in the brain contributes to sympathoexcitation and augments 
the sympathetic outflow and increase of renal norepinephrine level. 
The increased norepinephrine may trigger tubular cell death and cell 
cycle arrest, renal inflammation, and fibrosis progression through 
α2A- or α2C-AR, leading to chronic kidney disease.
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eases in the kidney and plausibly in other organs such as 
the liver, lung and heart.
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