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Abstract
This review focuses on the development of hyperglycemia arising from widely 
used cancer therapies spanning four drug classes. These groups of medications 
were selected due to their significant association with new onset hyperglycemia, 
or of potentially severe clinical consequences when present. These classes include 
glucocorticoids that are frequently used in addition to chemotherapy treatments, 
and the antimetabolite class of 5-fluorouracil-related drugs. Both of these classes 
have been in use in cancer therapy since the 1950s. Also considered are the 
phosphatidyl inositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin 
(mTOR)-inhibitors that provide cancer response advantages by disrupting cell 
growth, proliferation and survival signaling pathways, and have been in clinical 
use as early as 2007. The final class to be reviewed are the monoclonal antibodies 
selected to function as immune checkpoint inhibitors (ICIs). These were first used 
in 2011 for advanced melanoma and are rapidly becoming widely utilized in 
many solid tumors. For each drug class, the literature has been reviewed to 
answer relevant questions about these medications related specifically to the 
characteristics of the hyperglycemia that develops with use. The incidence of new 
glucose elevations in euglycemic individuals, as well as glycemic changes in those 
with established diabetes has been considered, as has the expected onset of 
hyperglycemia from their first use. This comparison emphasizes that some classes 
exhibit very immediate impacts on glucose levels, whereas other classes can have 
lengthy delays of up to 1 year. A comparison of the spectrum of severity of 
hyperglycemic consequences stresses that the appearance of diabetic ketoacidosis 
is rare for all classes except for the ICIs. There are distinct differences in the 
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reversibility of glucose elevations after treatment is stopped, as the mTOR 
inhibitors and ICI classes have persistent hyperglycemia long term. These four 
highlighted drug categories differ in their underlying mechanisms driving 
hyperglycemia, with clinical presentations ranging from potent yet transient 
insulin resistant states [type 2 diabetes mellitus (T2DM) -like] to rare permanent 
insulin-deficient causes of hyperglycemia. Knowledge of the relative incidence of 
new onset hyperglycemia and the underlying causes are critical to appreciate how 
and when to best screen and treat patients taking any of these cancer drug 
therapies.

Key Words: Cancer therapy; Hyperglycemia; adverse drug effects; Immune checkpoint 
inhibitors; mTOR inhibitors; 5-fluorouracil analogs; Glucocorticoids; Diabetes mellitus
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Core Tip: Immune checkpoint inhibitors (ICI) rarely cause hyperglycemia, but glucose 
monitoring from their initiation is critical as rapid diabetic ketoacidosis can develop 
from underlying immune-mediated pancreatic beta-cell destruction. Therapy with 
mammalian target of rapamycin (mTOR) inhibitors, 5-fluorouracil (5-FU)-analogs and 
glucocorticoids have higher rates of hyperglycemia early in therapy that is not 
generally severe, but needs to be recognized and treated to optimize patient outcomes. 
The hyperglycemia occurring from the 5-FU and ICI classes is not reversible. The 
diabetes from ICIs arises from an absolute insulin deficiency vs the partial deficiency 
from the 5-FU class. Glucocorticoids and mTOR inhibitors predominantly cause 
insulin resistance.
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INTRODUCTION
Cancer therapies have had profound impacts on increased life expectancy over the 
past few decades, however, it is widely known to have a multitude of unintended 
effects. Quality of life concerns such as hair loss, intractable nausea or visible surgical 
scars are widespread in individuals initiating their treatment cycles. Physicians 
initiating chemotherapy are also concerned about treatment side effects and routinely 
monitor for signs or symptoms of serious complications that may require urgent 
hospitalization, a change in treatment management or a pause in therapy to avoid a 
life-threatening event. Hyperglycemia is a common and potentially significant adverse 
effect arising from the use of several widely applied cancer therapeutic classes 
including immune checkpoint inhibitors (ICIs), phosphatidyl inositol-3-kinase 
(PI3K)/AKT/mammalian target of rapamycin (mTOR) inhibitors, 5-fluorouracil (5-
FU) analogs, and glucocorticoids[1-4]. The latest understanding of the characteristics 
of the hyperglycemia that is associated with the use of these drug classes is presented 
in order to raise awareness of the adverse effects these agents have on glucose control 
to enable its early recognition, trigger regular monitoring plus timely intervention, and 
to ultimately improve patient outcomes. Emphasized below is the current knowledge 
pertaining to these drug classes regarding the incidence, onset, reversibility and 
severity of hyperglycemia associated with their use in cancer therapy.

The significance of hyperglycemia on cancer therapy outcomes
Untreated hyperglycemia has been associated with a multitude of negative outcomes 
for cancer patients including longer hospital stays[5], worsened prognosis and 
decreased survival[6,7]. Glucose is a key substrate metabolized by cells to produce 
ATP and is a preferred energy supply; cancer cells are known to increase their glucose 
uptake, with the subsequent increase in energy reserves able to support further 
cellular proliferation[8]. Hyperglycemia has also been associated with a reduction in 
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cancer therapy effectiveness[9], an increased rate of infections and sepsis in those who 
may already have immunosuppression from their cancer treatments[10], and an 
increased length in hospital[11,12]. Hyperglycemia fosters a proinflammatory 
environment that enhances the production of cancer stimulating signals that promote 
cell proliferation, increase resistance to cell death and may also induce drug resistance 
to chemotherapy[11-16]. Clinically, hyperglycemia has been found to be an indep-
endent risk factor for earlier cancer recurrences, and higher mortality rates[17].

Glucose levels and clinical presentation define the severity of hyperglycemia
The research referenced below has graded both the severity of hyperglycemia and the 
degree of clinical symptoms as a means of comparing patient adverse events (AE) with 
drug use. Four grades of severity are defined that consider glucose levels, but also 
includes the severity of the clinical consequence such a diabetic ketoacidosis (DKA) or 
permanent diabetes. Grade 1 AE (G1) relates to asymptomatic or mild symptoms, no 
ketosis or evidence of type 1 diabetes (T1DM), fasting glucose (FG) above normal. 
Grade 2 AE (G2) involves moderate symptoms, FG > 8.9-14 mmol/L, or the presence 
of ketosis or T1DM at any glucose level. Grade 3-4 AE are severe symptoms, that are 
medically significant or life-threatening, differentiated from G2 and each other by the 
degree of glucose elevations with Grade 3 AE (G3) encompassing glucose levels 
between 13.9-27.8 mmol/L, and Grade 4 AE (G4) including glucose levels > 27.8 
mmol/L[18].

IMMUNE CHECKPOINT INHIBITORS
Immune Checkpoint inhibitors target one of three T-cell ligands to promote 
antitumor activity
A relatively new class of chemotherapy agents that are recognized for their potential 
side effects on glucose control are the immunomodulators that target and inhibit 
immune checkpoints, resulting in an increase in T-cell mediated immune responses 
that benefit patient treatment responses[19]. These ICIs are monoclonal antibodies that 
bind and block (inhibit) immune cell-cell interactions that would normally suppress 
the immune response. The result is that there is an effective and durable increase in 
antitumour activity[20]. This class is very successful in the treatment of advanced 
melanoma including those with BRAF mutations[21], and have since been used 
successfully for treatment of additional advanced stage cancers including hepato-
cellular carcinoma[22,23], non-small-cell lung cancer[24], renal cell carcinoma[25] and 
metastatic clear cell renal cancer[26]. The ICIs in current use specifically block three T-
cell checkpoints; the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) receptor, 
the programmed cell death-1 (PD-1) receptor, and the third and most recent class of 
antibodies targeting the programmed cell death-Ligand 1 (PD-L1)[19,20].

ICIs trigger immune-related endocrinopathies, and the incidence of diabetes with ICI 
differs with the checkpoint being targeted
There is an association between the use of these ICIs and the frequent appearance of 
immune-related AE, including a wide-spectrum of endocrine dysfunctions. The onset 
of hyperglycemia in individuals taking ICIs is infrequent, and the incidence differs 
depending on the receptor being targeted, as well as whether receptor targeting 
combinations are used[27]. Not all ICIs appear to have the same potential. The highest 
probability appears to reside in those targeting either the PD-1 receptor (nivolumab, 
pembrolizumab) or PD-L1 (atezolizumab, durvalumab, avelumab), whereas the 
CTLA-4 targeting agent (ipililmumab) does not seem to have a significant risk when 
used alone, as only a handful of case reports were noted[28]. A recent 2020 meta-
analysis estimated the incidence of serious (G3 and G4) and all-grade hyperglycemia 
(G1-G4) in every reported case of ICI-associated diabetes, noting that the PD-1/PD-L1 
targeted therapies were associated with hyperglycemia in 0.2%-4.9%, with a 0.49% 
incidence of serious hyperglycemia in patients using these drugs[1]. A 2018 study 
reported an overall incidence of 0.9%[28]. The combination of PD-1/PD-L1 and CTLA-
4 immune-targeted therapy showed the highest overall rates of diabetes, spanning 
2.0%-3.4% in different cohorts studies, and a notably higher rate of serious hyper-
glycemia events at almost 2%[28]. This same study confirmed that the CTLA-4 
inhibitors do not seem to have a risk of hyperglycemia when used without PD-1 
therapies[28].
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ICI therapy stimulates immune-mediated antitumor activities, but also stimulates 
autoimmune disorders
The inhibitory monoclonal antibodies used to interrupt immune response checkpoints 
results in a reinvigoration of the immune response. The ICI antibodies bind and block 
the specific inhibitory ligand on the T-cell surface, interrupting those activity-
dampening signaling pathways[29,30]. The result is T-cell activation and stimulation 
of their immune surveillance and antitumor activity, to the benefit of the patient[31]. 
However, immune checkpoints are also central to maintaining immunological self-
tolerance and preventing autoimmune disorders[32,33]. Immune-mediated self-
damage causing endocrine dysfunctions are one of the most common side effects of 
the ICI class, including loss of thyroid, adrenal and pituitary activity, plus rare cases of 
pancreatic insulin deficiency[34]. Autoimmune recognition and destruction of 
pancreatic beta (β)-cells is the well-established mechanism resulting in classic T1DM
[35,36], and the ICI drugs likely trigger this same destructive loss of function in cancer 
patients who developed hyperglycemia[37]. Human pancreatic islets lack CTLA-4 
receptors, but do present PD-L1 to protect them against immune cells[38]. The ICI 
monoclonal antibodies that bind PD-1/PD-L1 should be capable of inhibiting this 
pathway in pancreatic β-cells, leaving them susceptible to (auto)immune destruction 
and diabetes, providing a rationale why PD-1/PD-L1 but not CTLA-4 inhibitors are 
associated with new onset diabetes.

The hyperglycemia associated with ICI use is due to autoimmune destruction of the 
pancreatic ß-cells and loss of endogenous insulin release
With ICI use, the new onset of hyperglycemia found in those without diabetes, and the 
worsening glucose control in those with known diabetes, does appear to be directly 
due to immune-mediated pancreatic damage. Pancreatitis was found in 42% of 
individuals developing diabetes, and auto-antibodies classically associated with T1DM 
can be found elevated in these individuals, with 47% having glutamate decarboxylase 
autoantibodies[28]. The appearance of new hyperglycemia in those exposed to ICI 
therapy is not caused by an associated insulin resistance, as three large case series 
evaluating patients that developed diabetes after ICI exposure found low C-peptide 
(62%-93%), positive ketosis (59%-77%) and detectable autoantibodies (39%-56%)[28,37,
39], with the antibodies in at least some cases not present prior to ICI treatment[28].

Loss of glucose regulation in type 2 patients taking ICIs may indicate a 
transformation into an insulin-deficient state
It is less well known how ICI use has impacted glucose levels in those with underlying 
T2DM as the stress of illness, pain, or other medical therapies may also contribute to 
loss of tight glucose control. It is well documented, however, that when blood glucose 
levels become acutely and significantly more difficult to control in known T2DM, that 
it is important to consider that the ICI therapy may have caused pancreatic β-cell 
dysfunction and insulin deficient diabetes[40].

The onset of Insulin-deficient diabetes after ICI therapy is unpredictable and is 
permanent
Of the cases of insulin-deficient diabetes (IDD) reported with ICI therapy, the onset is 
unpredictable and can appear as early as a few weeks after starting treatment, up to 
greater than one-year following therapy; over half occurred within 4 mo of treatment 
initiation, typically in their fourth cycle of therapy[28]. The presence of hyperglycemia 
with ICI therapy does not require cessation of the ICIs or provision of high dose 
steroid pulse therapy, as this does not appear to restore pancreatic function[41,42]. In 
fact, reversal of IDD after ICI use has rarely been reported. A single case of ICI-
induced diabetes successfully used infliximab, an immunosuppressant, to reverse the 
hyperglycemia[43], yet in general, once present the hyperglycemia is persistent and 
does not appear to be mitigated by decreasing or stopping the ICI treatment[34,44].

ICI associated hyperglycemia has a high risk of serious and severe consequences, 
notably DKA and permanent diabetes
ICI therapy can lead to severe complications of hyperglycemia that can occur very 
rapidly. The severity is due to the damage to the pancreatic β-cells, leading to 
irreversible insulin deficiency. Because of this T1DM-like defect, there is a distinct risk 
of DKA, and this can be an acute and potentially life-threatening presentation. The 
association between ICI-dependent onset of hyperglycemia and ketosis/DKA was 
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remarkably high, at 77.8 % in newly diagnosed cases of diabetes[37]. There are many 
case reports of rapid DKA as the first presentation of hyperglycemia with ICI use, 
raising the possibility that this overlaps with Fulminant T1DM, a clinical presentation 
that is characterized by rapid development of markedly elevated glucose, near-normal 
glycated hemoglobin A1c (A1C), ketoacidosis, negative autoantibodies, severe insulin 
deficiency and elevated levels of pancreatic enzymes[45]. A careful review, however, 
revealed that there does appear to be distinct differences, including the presence of 
autoantibodies in ICI IDD, that are typically not found in Fulminant T1DM[37]. Due to 
the risk of DKA with this drug class, the practice guidelines developed to monitor for 
adverse effects of ICIs commonly recommend routine monitoring of glucose levels 
both at baseline, with each treatment cycle throughout induction and then every 3-6 
wk thereafter for up to one year[18]. For safety, the use of insulin for diabetes 
developing from ICI therapy is recommended unless insulin deficiency can be ruled 
out[18].

PI3K/AKT/MTOR PATHWAY INHIBITORS
Inhibition of the PI3K/AKT/mTOR pathway interrupts multiple cancer promoting cell 
signals
The PI3K-AKT-mTOR signaling pathway plays a vital role in responding to nutrient 
abundance[46], making it an attractive target for blockade[47]. The proteins being 
inhibited are kinases that target downstream proteins for phosphorylation to change 
cellular responses including promoting normal cell growth and proliferation when 
nutrients are abundant[48]. They ultimately work within the same pathway as growth 
factors and insulin signaling, and can therefore also influence glucose and lipid 
metabolism[49].

mTOR, PI3K inhibitors and their derivatives are effective in many cancer types
mTOR inhibitors are derived from the original drug of this family, rapamycin, that 
was initially isolated as an antifungal agent[50], but was later determined to inhibit a 
kinase important in cancer growth[51]. This target was subsequently named 
“mechanistic target of rapamycin” or mTOR. mTOR inhibitors and their related 
analogs are used in many advanced stage solid tumors including renal cell, neuroen-
docrine tumors of the pancreas, and breast cancer[52]. There are presently three mTOR 
inhibitors approved by the United States Food and Drug Administration (FDA) that 
are derivatives of rapamycin; sirolimus, temsirolimus, and everolimus. Closely related 
medications are the PI3K inhibitors, of which there are four currently approved by the 
FDA; copanlisib, idelalisib, duvelisib, and alpelisib. These latter agents are approved 
for use in the treatment of breast cancer and hematological malignancies. AKT 
inhibitors and combination PI3K/mTOR inhibitors are still under development and 
some have entered Phase II clinical trials[53].

The hyperglycemia arising from the inhibition of mTOR is primarily due to insulin 
resistance
The usual activity of mTOR not only influences cell growth and development, but also 
affects glucose regulation[54]. mTOR inhibitors primarily promote hyperglycemia 
through increased insulin resistance via mTOR complex 1 (mTORC1) inhibition, as 
they impair the efficiency of the insulin signaling pathway at multiple points in its 
phosphorylation cascade[55,56]. In a diabetic rodent model, exposure to rapamycin 
resulted in a reduction in insulin signaling via proteins IRS1/2, a reduction in 
phosphorylation by AKT, and inhibition of PI3K activity[55]. Moreover, rapamycin 
increased the activation of Jun N-terminal kinase pathway, which is a pathway 
implicated in insulin resistance[55]. Together, the effect observed with these 
chemotherapy drugs is consistent with a predominant T2DM-like insulin resistant 
state, due to impaired insulin signaling[55]. Lastly, a component of insulin deficiency 
is also thought to play a role in the development of hyperglycemia as mTORC1 is a 
known positive regulator of pancreatic β-cell function, and molecular studies using 
pancreatic β-cells exposed to rapamycin detected a 33% reduction in glucose-induced 
insulin secretion[55].
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There are two mTOR complexes that differ in their influence on glucose levels and 
sensitivity to inhibition
The mTOR complex is a serine/threonine protein kinase that exists in two different 
multi-protein complexes. The mTORC1 is sensitive to rapamycin, whereas complex 2 
(mTORC2) is less responsive to rapamycin, although chronic exposure to rapamycin 
does ultimately result in reduced mTORC2 signaling[56]. The mTORC2 pathway is 
much less well characterized than the mTORC1 pathway. It was initially thought that 
the mTORC2 pathway was resistant to rapamycin treatment, but it was later disco-
vered that long term exposure reduces mTORC2 signaling in some cell types by 
suppressing the assembly of the mTORC2 complex[57]. mTORC2 activates AKT, and 
the mTORC2-AKT pathway has been shown to promote pancreatic beta cell prolif-
eration and survival, and to inhibit gluconeogenesis by blocking Fox01 activity[57]. 
Normal mTORC2-AKT activity also induces glucose uptake in insulin-sensitive tissues 
and blocks protein catabolism. The loss of mTORC2 activity through inhibition, 
therefore, increases insulin resistance as well as promoting protein catabolism and 
reducing muscle mass. Inhibition of mTORC2 also leads to the loss of the mTORC2-
AKT-dependent inhibition of gluconeogenesis as well as decreased insulin production, 
contributing further to hyperglycemia[56]. The effect of mTORC1 and mTORC2 
inhibition on glycemia is complex, and related to the degree and chronicity of 
inhibition, but ultimately treatment with all mTOR inhibitors leads to hyperglycemia
[56]. The three mTOR inhibitors approved by the FDA are derivatives of rapamycin; 
sirolimus, temsirolimus, and everolimus, and are primarily mTORC1 inhibitors, 
although dual mTORC1/C2 inhibitors are in development[57].

The PI3K/AKT/mTOR pathway inhibitors are potent drivers of hyperglycemia
The incidence of hyperglycemia associated with the use of PI3K/AKT/mTOR 
inhibitors is significant and ranges between 12%-50%[2]. A 2015 meta-analysis 
considered twenty-four trials of mTOR inhibitor use in solid organ cancer treatment 
and noted a 5.25-fold increased risk of significant hyperglycemia (blood sugars > 14 
mmol/L)[58]. Pre-existing diabetes was an independent risk factor for glucose levels > 
14 mmol/L[59]. It is worth noting that the PI3K inhibitors can also induce 
hyperglycemia[60], and AKT inhibitors have revealed significant hyperglycemia in 
preclinical studies[61].

Most cases of hyperglycemia occur during initial exposure, are mild and transient
A retrospective study of 341 patients treated with PI3K and mTOR inhibitors revealed 
that the mean FG increased from 5.3 mmol/L at baseline to 7.1 mmol/L during the 
first chemotherapy cycle, but returned to 5.4 mmol/L prior to the next cycle[59]. This 
supports the conclusion that the rise in blood glucose is transient. The majority of 
these patients experienced their highest glucose levels early on in therapy, during the 
first (87.9%) or second (14.4%) cycle of mTOR inhibitor treatment, and most cases of 
hyperglycemia in this study were mild (G1)[59]. However, more significant glucose 
elevations can occur, as 6.7% of patients receiving this therapy had glucose elevations 
> 14 mmol/L compared to controls not taking mTOR inhibitors[62]. Additionally, it 
was observed that the median time of elevated glucose levels (> 8.3 mmol/L) was 56 d 
in patients showing clinical benefit, and 113 d for those patients who progressed[62]. It 
remains to be determined if the timing of new hyperglycemia development after 
therapy initiation is predictive of treatment responses.

mTOR-induced hyperglycemia is typically managed with oral therapies
Insulin deficiency or DKA are not significant risks with using this class of drugs, as 
only a very small percentage of patients require insulin[59]. and to our knowledge 
there have been no cases of hyperglycemic emergency or DKA in any clinical trials to 
date. A single case report was found that describes DKA and pancreatitis in a patient 
treated with everolimus for breast cancer, supporting that this is a very rare assoc-
iation with mTOR inhibitor drugs[63]. When uncontrolled hyperglycemia develops 
(defined as glucose > 14 mmol/L, A1C ≥ 9%), expert committee guidelines 
recommend stopping the chemotherapy medication and reintroducing it a lower dose 
in the rare cases of uncontrolled hyperglycemia despite optimal diabetes management
[2]. Both American and French guidelines for PI3K/AKT/mTOR use are available to 
direct surveillance and treatment best practices[2,64], and an A1C target of ≤ 8% is 
suggested for pre-existing patients with diabetes prior to mTOR inhibition[2].
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5-FU AND DERIVATIVES
5-FU is an antimetabolite agent that has been used in the initial treatment of breast, 
gastric, colon and pancreatic cancers and has been in active use for over sixty years[65,
66]. It is a pyrimidine analogue that is structurally related to thymine, uracil and 
cytosine bases in DNA, RNA or both, respectively[67]. 5-FU acts as an antimetabolite 
to inhibit cell growth through its interference with DNA and RNA function upon its 
incorporation into newly synthesized DNA or RNA.

Derivatives of 5-FU have been created to increase their stability and to overcome 
their drug toxicities
Over the years, additional 5-FU oral prodrugs have been developed that reduce their 
toxicity and improve tumour selectivity, as well as increase their stability[68-70]. In the 
last 20 years, capecitabine has been developed and used predominantly for metastatic 
breast and gastrointestinal cancers[66,70]. It is activated into 5-FU through three 
sequential enzymes, with the final enzyme being found in high concentrations in 
tumour tissues[66]. As such, capecitabine activation is very targeted and is generally 
better tolerated[66,70]. There have been numerous reports of glucose disorders with 5-
FU and its derivatives including case reports of hyperglycemia following the adminis-
tration of the newest 5-FU prodrug, capecitabine[71].

5-FU prodrugs can contribute to new onset diabetes, and the majority have 
persistent hyperglycemia after therapy is stopped
There is a paucity of data on 5-FU therapies and their specific effects on glucose 
control. The majority of information comes from a 2013 study involving 362 patients 
with normal fasting plasma glucose prior to 5-FU-based therapies in which overt 
diabetes developed in 11.6% of individuals and impaired fasting glucose (IFG) in 
another 11.3%[3]. Of the 42 patients that developed diabetes, 32 occurred during 
therapy, with the remaining 10 being detected during follow-up after treatment was 
completed. Only 16% (7/42) of these patients had glucose levels spontaneously return 
to normal[3], indicating that the hyperglycemia related to 5-FU therapy is persistent in 
most cases. Those remaining were managed with a variety of interventions including 
diet (30%), insulin (10.8%) or oral medications[3]. Given that these patients did not 
have pre-existing risk factors for diabetes, it was thought that the development of 
diabetes was secondary to 5-FU chemotherapy[3].

Hyperglycemia typically develops early during 5-FU analog therapy, and is generally 
mild
The timing of new-onset hyperglycemia with 5-FU treatments varies, but most (77%) 
patients developed diabetes during their early chemotherapy cycles (median third 
cycle), and the remaining individuals present up to 1 year after completion of 
treatment[3]. It is unclear how 5-FU chemotherapy affects glucose control in those with 
established diabetes. In this study, the timing of the onset of IFG after 5-FU treatment 
was not reported[3]. While 5-FU-associated hyperglycemia was typically mild during 
active treatment (95% had glucose < 14 mmol/L), after therapy was complete it was 
noted that seven out of 42 patients developed significant hyperglycemia (>14 
mmol/L), and one patient in the study died of ketoacidosis[3]. Aside from this study, 
there are two additional case reports of DKA associated with 5-FU based treatments
[72,73].

5-FU therapies decrease pancreatic β-cell insulin storage and release
The underlying mechanism causing the hyperglycemia upon 5-FU exposure appears 
to be due to a decrease in insulin being released from the pancreatic β-cells[3,74]. 
Those patients who developed diabetes had a progressive decrease and delay in C-
peptide secretion, seemingly due to a pancreatic deficiency in endogenous insulin 
processing and production[3]. A case control study also demonstrated that insulin 
levels failed to increase appropriately with the development of hyperglycemia[74]. 
Preclinical animal studies also suggest that hyperglycemia may result from impaired 
insulin production as there was a relative insulin deficiency in rats following 5-FU 
administration, as well as a decrease in the abundance of secretory granules in 
pancreatic islet cells[75]. Cellular studies designed to reveal how these drugs cause 
hyperglycemia have shown that 5-FU related therapy stimulates immune mediators in 
pancreatic β-cells, resulting in their destruction via cell-mediated T-cell infiltration[76]. 
Consistent with this, capecitabine has been linked to acute pancreatitis[77,78].
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The rare cases of DKA reported with 5-FU therapies suggests that there is sufficient 
endogenous insulin production to offset severe hyperglycemia consequences in the 
majority of cases. Nonetheless, there is a real risk of significant glucose elevations, as 
16.7% (7 of 42) of newly diabetic individuals had glucose levels > 14 mmol/L despite 
therapy[3]. Management of hyperglycemia following capecitabine therapy included 
successful treatment with dietary control and lifestyle changes[79,80], although some 
individuals did require insulin[3].

GLUCOCORTICOIDS
Glucocorticoids are a class of medications that have been used to treat a plethora of 
medical conditions since the 1950’s. Glucocorticoids are prescribed widely for a variety 
of medical conditions, with estimates of use approaching 1% of the general population
[81]. Although their efficacy and adverse effect profile have been described extensively 
in the literature, their effect on the human body varies due to the heterogeneous nature 
of the underlying disease states they are treating and the individuals who are using 
them; hence there is variability in their use and dosage recommendations[82].

Steroids are useful as adjunct therapy to offset adverse side effect of cancer 
treatments
Glucocorticoids are often included as a part of cancer therapy to mitigate the adverse 
effects of the chemotherapies being used at the same time. They can be very useful in 
controlling nausea and improving appetite, and are frequently given as an antiemetic 
before and after chemotherapy[83]. The dosing and duration often depends on the 
emetogenic potential of the chemotherapy. Glucocorticoids are also given to prevent 
some of the other adverse effects of chemotherapy like generalized rash or 
thrombophlebitis when drugs are given through peripheral vein, or to offset 
hypersensitivity reactions[11,84,85]. Glucocorticoids may also be included as an 
inherent part of the cancer therapy, such as their use within the CHOP protocol in 
lymphoma. There are several other regimens used in multiple myeloma and prostate 
cancer that include glucocorticoids as a part of the treatment, and the dosing and 
formulation varies.

Glucocorticoid-induced hyperglycemia is a very common adverse effect of steroid 
use
Along with their known benefits, there are many recognized adverse effects of 
glucocorticoids, both acute and chronic. Supraphysiologic glucocorticoid use is known 
to raise glucose levels, particularly at the high doses that are required for therapeutic 
advantages. Glucocorticoid-induced hyperglycemia (GIH) is a well-known compli-
cation of their use in individuals with known diabetes (T1DM and T2DM) as well as 
those who were previously euglycemic[4,86]. Hyperglycemia is commonly reported in 
patients undergoing cancer therapy that includes glucocorticoids, however its true 
incidence is hard to define due to the variability in chemotherapy combinations, 
durations, and cycles. One study of hospitalized patients taking high dose glucocor-
ticoids reported hyperglycemia in 52% of patients[87], with another two studies 
reporting 34%[88] and 37%[89] in patients during induction therapy for acute 
lymphocytic leukemia[88,89]. A more recent study found that 94% of women with 
gynecological cancer whose chemotherapy regimen included high dose dexame-
thasone experienced hyperglycemia[85]. These patients were undergoing continuous 
glucose monitoring (CGM) which the authors felt led to the remarkably high incidence 
rate, and postulated that glucose elevations may be significantly under-recognized in 
many previous clinical trials that did not utilize CGM[85].

GIH occurs acutely and is generally mild
GIH is a phenomenon that typically occurs acutely with initiation[85,87,90,91], and 
hyperglycemia was found to be significant by day 2 in those being treated systemically 
for hematologic malignancies[11]. The degree of glucose elevations range widely and 
are most frequently modest (< 14 mmol/L)[92], nonetheless severe hyperglycemia (> 
28 mmol/L) and DKA have also been reported[11,93], with rare reports of 
hyperglycemic hyperosmolar syndrome as well[94]. Other AE associated with GIH 
range from mild to serious, such as increased infections and lengthened of hospital 
stays[11,16,86,95-98]. The acute hyperglycemia associated with glucocorticoids will 
typically resolve upon discontinuation[4,99,100].



Yim C et al. Chemotherapeutics and their unique hyperglycemia traits

WJD https://www.wjgnet.com 1018 July 15, 2021 Volume 12 Issue 7

The formulation and duration of steroid use influences the incidence of 
hyperglycemia
The most commonly used glucocorticoids in chemotherapeutic regimens are 
prednisone (oral) and dexamethasone (oral or intravenous). The dose and duration at 
which they are used varies with the chemotherapy and clinical situation, making 
general conclusions difficult[16]. To give an example of the variance that confounds 
these clinical assessments, a study by Ochola et al[95] considered patient outcomes 
with prednisone use; there was a range in total daily doses of 40-150mg; once to four 
times daily; and between 5-14 d duration.

It is commonly considered that higher glucocorticoid doses and longer durations of 
use confers a greater risk of developing GIH[11,16,101,102], yet there have been 
exceptions to this association[82,94,98]. Most hospitalized patients developed 
hyperglycemia after taking ≥ 40 mg/d of prednisone for two days[103]. There is some 
evidence that splitting the dose of prednisone, rather than administering it all at once 
in the morning, may help reduce GIH[104]. The type of glucocorticoid used may also 
correlate with the risk of hyperglycemia[92]. Healy et al[11] found that hyperglycemia 
was associated with higher doses and the longer-acting steroids in those without 
diabetes, yet it was not in those with previous diabetes.

Due to the differences in the pharmacokinetic profiles of shorter acting glucocor-
ticoids (such as prednisone, prednisolone, and hydrocortisone) vs longer-acting 
glucocorticoids such as dexamethasone, one could anticipate a delayed effect with the 
latter[90]. Prednisone levels peak 4-8 h after ingestion and its duration of action is 
between 12 h to 16 h; these pharmacokinetics correlated with increases in postprandial 
glucose in the afternoon and evening when administered in the morning[11,87,92]. 
During induction therapy for acute lymphoblastic leukemia the use of long-lasting 
dexamethasone was linked with a significant increase in risk of GIH when compared 
to those prescribed the intermediate-acting prednisone[93]. In contrast, a comparison 
between dexamethasone 8-12mg IV and prednisone 40mg orally found extensive 
hyperglycemia in the majority of all patients, without differences between the two 
therapies[94].

Steroids induce a potent insulin resistance resulting in hyperglycemia
The effects of glucocorticoids on glucose levels are complex[4]; although GIH occurs 
most commonly in patients with pre-existing diabetes, it also presents in those without 
any prior history of hyperglycemia[82,105]. Glucocorticoids can cause an increase in 
both fasting and postprandial glucose levels, but it is generally recognized that the 
largest impact is on postprandial levels[16,87,92,95,96,105,106]. High dose glucocor-
ticoid use impairs insulin signaling, leading to key increases in insulin resistance at the 
liver (promoting hepatic gluconeogenesis) and skeletal muscle (impairing glucose 
uptake)[4,92,106]. Glucocorticoids can also diminish normal insulin secretion by 
pancreatic β-cells[4,99]. Some of the predictors of risk for increased blood glucose with 
glucocorticoid use in the context of cancer therapy include older age and higher BMI
[88,98,102] and while an elevated A1C was found to be a predictor, a discrete HbA1c 
cut-off was not determined[85].

SUMMARY AND DISCUSSION 
For all of these classes of drugs, it would be prudent to initiate glucose monitoring 
upon the initiation of chemotherapy and to continue to do so throughout treatment. 
As summarized in Table 1, glucocorticoids and AKT/mTOR inhibitors can be 
expected to cause the majority of patients (up to 94%[85] and 50%[2] respectively) to 
develop hyperglycemia very early after drug initiation. In contrast, the diabetes that 
develops upon the initiation of ICIs and 5-FU therapies will affect fewer individuals 
(up to 5%[1] and 11%[3], respectively) and could be anticipated to present at slightly 
later timelines on average, with the 5-FU analogs typically in their third chemotherapy 
cycle[3] and ICIs in their fourth chemotherapy cycle (about 4 mo[28]). Despite 
searching the literature, it was not found that there are dosing ‘cut-offs’ for any drug 
class below which the risk of hyperglycemia is nil, nor are there specified doses above 
which there are significantly increased rates of hyperglycemia.

The insulin resistance arising from either glucocorticoids or AKT/mTOR inhibitors 
nearly always resolved once the treatments have stopped[4,59,99,100] and there have 
not been any reports of delayed reappearance, implying that ongoing daily glucose 
monitoring will not be necessary upon completion (Table 2). When mild hyper-
glycemia is present, standard management approaches used for T2DM have been 
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Table 1 Summary of reported characteristics of hyperglycemia incidence, onset and severity with the use of current chemotherapy 
agents

Characteristics by drug 
class Glucocorticoids 5-FU and analogs PI3K/mTor 

inhibitors
Immune checkpoint 
inhibitors

Incidence of new or 
worsening hyperglycemia 

Significant, 34%-94% Common, 11.6% DM, 11.3% 
IFG

Significant, 
12%-50%

Rare, 0.2%-4.9%

Onset of hyperglycemia after 
first use 

Acutely Majority by 3 mo; 3/4 early 
(3rd cycle); 1/4 up to 1 yr 
later

Majority after 
first use

Majority by 4 mo, can be after 
first use, can be up to 1 yr later

Severity of hyperglycemic 
events 

Usually mild, Severe possible, Multiple 
reports of DKA and some HHS

Mild, Case reports of DKA Mild, No DKA Moderate to severe, 77.8% DKA

5-FU: 5-fluorouracil; CTLA-4: Cytotoxic T-lymphocyte-associated protein 4; PI3K: Phosphatidyl inositol-3-kinase; mTOR: Mammalian target of rapamycin; 
DKA: Diabetic ketoacidosis; HHS: Hyperglycemic hyperosmolar syndrome; IFG: Impaired fasting glucose.

Table 2 Hyperglycemia can be a class or drug-specific effect and may not be reversible with discontinuation

Characteristics by drug 
class Glucocorticoids 5-FU and 

analogs
PI3K/mTOR 
inhibitors Immune checkpoint inhibitors

Negligible risk with the CTLA-4 inhibitor, 
ipililmumab

Class effect on 
hyperglycemia

Yes Yes Yes

Does occur with all PD-1 and PD-L1 inhibitors, most 
significantly when combined

Reversibility of 
hyperglycemia

Yes No Yes No

5-FU: 5-fluorouracil; CTLA-4: Cytotoxic T-lymphocyte-associated protein 4; PI3K: Phosphatidyl inositol-3-kinase; mTOR: Mammalian target of rapamycin; 
PD-1: Programmed cell death-1; PD-L1: Programmed cell death-Ligand 1.

effective including diet adjustments, oral metformin or sulfonylureas[2,64] (Table 3). 
While there is little information specifically related to all of these drug classes, it would 
be anticipated that DPP-4 inhibitors, SGLT-2 inhibitors, or GLP-1 analog medications 
would also be effective at normalizing blood glucose levels. Increases to therapy 
intensiveness to manage more severe glucose elevations would follow usual best 
practices for T2DM management, and patients may ultimately require insulin for 
optimal control in the short term.

The ICIs and 5-FU analog classes cause hyperglycemia due to varying degrees of 
insulin deficiency at the level of the pancreatic β-cell, and once present the diabetes is 
generally permanent[3,34,44] (Table 2). As discussed above, it is very important to 
continue glucose monitoring even after therapy has been completed with these two 
classes, as diabetes can develop for up to at least one year. To date, there is little 
direction surrounding the specific monitoring and management of hyperglycemia in 
patients treated with 5-FU, in contrast to multiple current guidelines available for the 
numerous autoimmune adverse effects of ICI, including IDD[18] (Table 3).

The diabetes developing as a result of 5-FU analog therapies has rarely led to DKA, 
suggesting that the insulin deficiency is not absolute in the great majority of cases 
(Table 1). This raises the possibility that sulfonylureas may have a beneficial role in 
mild glucose elevations due to their ability to enhance pancreatic β-cell insulin 
secretion; this increased release of insulin may compensate for the underlying low 
insulin levels and thereby normalize blood glucose levels. This has neither been 
specifically investigated nor reported, but their use could be rationalized based on the 
underlying defect driving hyperglycemia with 5-FU therapy.

Independent of ICI therapy, the majority of T1DM occurs in children or young 
adults, and there is a global all-age incidence of 15 per 100000 persons[107]. The 0.2%-
4.9% incidence of insulin-deficient hyperglycemia in adults after ICI therapy (median 
age > 60 years years[1]) is higher than global rates and presents in older than expected 
age groups, suggesting that its development may be more complex than merely 
unmasking those at inherent risk for developing T1DM. Without doubt there are 
complexities not yet appreciated, yet it is not known how to identify those at highest 
risk for the development of T1DM with ICI use. As these therapies become more 
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Table 3 The underlying mechanisms and treatment considerations of hyperglycemia differ between chemotherapy classes

Etiology of hyperglycemia Treatment considerations

Glucocorticoids Major: Insulin resistance Oral hypoglycemics possible for mild

Minor: Decreased insulin release Consider selecting insulins with duration of action to match that of the steroid 
being given

5-FU and analogs Major: Decreased insulin release and 
production

Diet or oral hypoglycemics for mild

Insulin for severe

PI3K/mTOR inhibitors Major: Insulin resistance Diet or metformin for mild

Immune checkpoint 
inhibitors

Major: Profound insulin deficiency Immediate initiation of insulin in new onset hyperglycemia

Switch to insulin in pre-existing T2DM

5-FU: 5-fluorouracil; PI3K: Phosphatidyl inositol-3-kinase; mTOR: Mammalian target of rapamycin; T2DM: Type 2 diabetes mellitus.

widespread and cases rise, it may become more clear. At this time, it has been 
considered that the HLA-DR4 genotype and presence of other autoimmune diseases 
may correlate with increased risk[28].

For the ICI class, insulin therapy is essential in new onset diabetes given the extreme 
risk of IDD causing severe hyperglycemia and ketosis, reported to be as high as 77.8%
[37]. Furthermore, insulin should be strongly considered in those with previous T2DM 
who fail to control their diabetes with ICI treatments, given the risk of a new 
underlying insulin deficiency. In patients with T2DM already taking non-insulin 
therapies, the initiation of a long acting basal insulin and rapid acting prandial insulin 
should be strongly considered, as simply adjusting their current medical therapy for 
T2DM may be ineffective as insulin-resistance may no longer be the main driving force 
for their hyperglycemia (Table 3). Insulin therapy would be necessary to reduce their 
risk of acute DKA in these cases[1].

CONCLUSION
Patient education regarding symptoms of hyperglycemia is an important safety 
component when initiating any of these medications, as are the more critical 
symptoms of hyperventilation and nausea or vomiting that may be associated with 
imminent DKA upon ICI therapy, in particular. The appearance of these symptoms 
should trigger an immediate evaluation for hyperglycemia, endogenous insulin levels 
(post-meal C-peptide and insulin), and acidosis/ketones to rule out developing DKA.

Given the consequences of uncontrolled blood sugars for these patients, it is 
important to recognize and manage hyperglycemia during cancer therapy, whether 
because of a worsening control of pre-existing diabetes or new onset hyperglycemia 
arising as a side effect of the chemotherapy itself. Current recommendations suggest 
tailoring glycemic control according to the underlying etiology of the hyperglycemia 
(insulin-resistance vs insulin-deficiency)[16] (Table 3) and to also consider that many 
cancer therapies are prescribed in cycles, which will require monitoring and perhaps 
intermittent treatment of the hyperglycemia[106].
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