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A recent advance in the disorder prediction field is the development of the quality assessment (QA)
scores. QA scores complement the propensities produced by the disorder predictors by identifying
regions where these predictions are more likely to be correct. We develop, empirically test and release
a new QA tool, QUARTERplus, that addresses several key drawbacks of the current QA method,
QUARTER. QUARTERplus is the first solution that utilizes QA scores and the associated input disorder pre-
dictions to produce very accurate disorder predictions with the help of a modern deep learning meta-
model. The deep neural network utilizes the QA scores to identify and fix the regions where the origi-
nal/input disorder predictions are poor. More importantly, the accurate QUATERplus’s predictions are
accompanied by easy to interpret residue-level QA scores that reliably quantify their residue-level pre-
dictive quality. We provide these interpretable QA scores for QUARTERplus and 10 other popular disorder
predictors. Empirical tests on a large and independent (low similarity) test dataset show that
QUARTERplus predictions secure AUC = 0.93 and are statistically more accurate than the results of twelve
state-of-the-art disorder predictors. We also demonstrate that the new QA scores produced by
QUARTERplus are highly correlated with the actual predictive quality and that they can be effectively
used to identify regions of correct disorder predictions. This feature empowers the users to easily
identify which parts of the predictions generated by the modern disorder predictors are more trustwor-
thy. QUARTERplus is available as a convenient webserver at http://biomine.cs.vcu.edu/servers/
QUARTERplus/.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Proteins and protein sequence regions that lack a stable three-
dimensional structure under physiological conditions are referred
to as intrinsically disordered proteins (IDPs) and intrinsically disor-
dered regions (IDRs), respectively [1–3]. They play key roles for a
wide spectrum of cellular functions that include signaling, cell
cycle regulation, transcription, translation, splicing, and post tran-
sitional modifications [4–7]. Computational studies suggest that
IDPs and proteins with IDRs are highly abundant across all
domains of life, with as many as 30% of eukaryotic proteins that
are projected to have long IDRs (30 or more consecutive amino
acids) [8,9]. Motivated by the fact that IDRs possess unique
sequence signatures, dozens of computational tools that predict
intrinsic disorder from protein sequences were developed during
the last two decades [10–17]. These methods find a variety of
applications that include investigations that focus on structural
and functional characterization of individual proteins and protein
families [18–20] and broad-scale studies that analyze prevalence
and functional roles of disorder over and across genomes [9,21–
27]. The above studies rely on the availability of accurate disorder
predictors. Past comparative assessments demonstrate that some
disorder predictors provide accurate results [10,11,13,28–33].
While these assessments use datasets composed of dozens or hun-
dreds of proteins to provide insights into an overall predictive per-
formance of these tools, they do not offer guidance when dealing
with predictions for specific proteins. A recent study reveals that
performance of even the best predictors varies widely between
proteins, where some proteins are predicted exceptionally well
while other predictions are barely better than random [34]. Other
studies find that the quality of the disorder predictions varies
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between amino acids in the same protein and that the outputs pro-
duced by the predictors do not allow to accurately identify these
differences [35,36].

We devised first-of-its-kind solution to these problems in 2019,
with the release of the QUARTER tool that generates quality assess-
ment (QA) scores for the disorder predictions [36,37]. This work
was originally inspired by the intensely researched QA for the
putative tertiary protein structures [38–43], but here we quantify
the quality of the disorder predictions at the residue level. The
QA scores quantify correctness (confidence) of the disorder predic-
tions at a residue level to reveal which predictions produced by a
given tool are more likely to be correct [36]. In other words, users
can utilize the QA scores to accurately identify residues in a given
protein chain for which the disorder predictions are more likely to
be accurate. We developed the QUARTER’s QA scores for ten popu-
lar disorder predictors [36,37]. The research behind QUARTER
demonstrates that the QA scores produced directly from the
propensities of intrinsic disorder generated by these ten methods
have poor quality, motivating the need for new tools that produce
high-quality QA scores [35]. However, QUARTER, which is the only
tool capable of producing accurate QA scores, suffers three sub-
stantial drawbacks. First, the QA scores produced by QUARTER
are difficult to interpret as they do not represent a specific metric.
This means that while higher QA values identify relatively better
predictions, it is difficult to judge whether these high scores in fact
correspond to high-quality results. For instance, high scores could
correspond to exceptionally accurate predictions compared to
lower scores that denote (relatively worse) accurate predictions,
in which case the lower scores may give a false impression that
the corresponding residues are predicted poorly. Second, the
QUARTER-produced QA scores were so far used only to identify
quality of the disorder predictions while they could be used to cor-
rect and consequently improve these predictions. Third, the origi-
nal implementation makes it difficult to apply QUARTER since it
requires the disorder predictions generated with a third-party soft-
ware/server as inputs. This way the users have to go through two
separate steps (predict disorder and next predict QA scores) to
secure the complete results.

We address these three major issues with the new QUARTER-
plus platform that provides substantially improved disorder pre-
dictions together with interpretable residue-level QA scores.
More specifically, QUARTERplus offers:

� High-quality disorder predictions based on a novel deep learn-
ing meta-model that combines QA scores and the associated
predictions from three popular disorder predictors. This is the
first time when a meta-model uses QA scores to outperform a
representative collection of modern disorder predictors.

� Easy to interpret residue-level QA scores that quantify quality of
the predictions for ten popular disorder predictors, including
the novel meta-model.

� Webserver implementation that conveniently automates the
prediction of disorder and generation of the interpretable QA
scores directly from an input amino acid sequence.

2. Materials and methods

2.1. Datasets

We obtain the source data to derive training and test datasets
from a recent large-scale assessment study [31]. The source dataset
includes 25,717 proteins with the native intrinsic disorder annota-
tions that were collected from the MobiDB database [44]. Follow-
ing the QUARTER article that relies on the same source data [36],
we refine these data to accommodate for the needs of the subse-
quently used tools and the test standards in this area. In particular,
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we ensure a proper level of separation (i.e., low levels of the
sequence similarity) between training and test datasets [13]. First,
we remove sequences with non-standard amino acids. Next, we
reduce the pairwise sequence similarity among the remaining
12,129 sequences to below 25% using BLASTCLUST [45]. The result-
ing dataset consists of 6272 proteins with 105,709 disordered and
1,672,907 ordered residues. We divide this protein set at random
into the test set with 999 proteins and training set with 5271 pro-
teins. The two datasets are available at http://biomine.cs.vcu.edu/
servers/QUARTERplus/. We use the training dataset to design and
optimize QUARTERplus, i.e., to empirically map the raw QUARTER’s
QA scores into novel interpretable QA scores and to train and para-
metrize the novel meta-predictor of disorder. We utilize the inde-
pendent test dataset to comparatively assess QUARTERplus. The
independence of this test set stems from its low, <25% similarity
to the training dataset and the fact that it was excluded from the
training process.

2.2. Selection of disorder predictors

We rationally select a representative set of disorder predictors
that we outfit with the QUARTERplus-derived QA scores and com-
pare with the newmeta disorder predictor. We start with the list of
methods that were included in a recent large-scale (i.e., using large
dataset) comparative study [31]. We exclude three tools from that
study, namely SEG [46], Pfilt [47] and FoldIndex [48], given their
relatively poor predictive quality reported there [31]. We consider
the remaining ten disorder predictors including DisEMBL-465
(trained using X-ray structures) and DisEMBL-HL (trained to pre-
dict disorder-like loop conformations), which are two versions of
the DisEMBL predictor [49]; three versions of ESpritz [50]:
ESpritz-Xray (trained on X-ray structures), ESpritz-NMR (trained
on NMR structures) and ESpritz-DisProt (trained on data from
the DisProt database [51]); two flavors of IUPred [52,53]: IUPred-
short (trained to predict short IDRs) and IUPred-long (trained to
predict long IDRs); GlobPlot [54]; RONN[55] and VSL2B [56]. More-
over, we extend this set of ten predictors guided by the results
from recent and smaller scale (i.e., using smaller datasets) assess-
ments. Consequently, we add the popular DISOPRED3 [57] that
was among the top ranked methods in the CASP10 assessment
[29], the last CASP (Critical Assessment of protein Structure Predic-
tion) that included the disorder prediction. We also include SPOT-
Disorder [58], a deep neural network that was ranked among the
best published predictors in the most recent CAID (Critical Assess-
ment of protein Intrinsic Disorder prediction) [33]. The resulting
set of twelve tools includes VSL2B, SPOT-Disorder and ESpritz-
Disprot that secured the top-three results in another recent assess-
ment [13]. Finally, in keeping with the CASP tradition we exclude
the methods that were developed by the authors of this article.

We collect disorder predictions for the ten methods that were
covered in [31] directly from MobiDB [44]. We obtain predictions
for the remaining two predictors (DISOPRED3 and SPOT-
Disorder) that are not included in that database using their stan-
dalone software provided with the publications. We generate the
QUARTER’s QA scores using its webserver [36].

2.3. Assessment of predictive performance

QUARTERplus produces two outputs: the QA scores and the dis-
order predictions. The disorder predictions consist of a real-valued
propensity that quantifies likelihood that a given amino acid is dis-
ordered and a corresponding binary classification (disordered vs.
structured). Typically, the binary predictions are generated from
the propensities, such that residues with propensities greater than
a given threshold are predicted as disordered, and otherwise they
are predicted as structured. We use the area under the receiver-

http://biomine.cs.vcu.edu/servers/QUARTERplus/
http://biomine.cs.vcu.edu/servers/QUARTERplus/


A. Katuwawala, S. Ghadermarzi, G. Hu et al. Computational and Structural Biotechnology Journal 19 (2021) 2597–2606
operating characteristic curve (ROC-AUC) as the primary metric to
evaluate predictive quality of the propensities. ROC-AUC is argu-
ably the most commonly used measure for the assessment of the
disorder predictors [11,12,29,31,34,36]. ROC curve is a relation
between true-positive rates (TPRs) and false-positive rates (FPRs)
that is computed by thresholding the propensities where the
thresholds are the set of all unique propensities produced by a
given predictor. ROC-AUC ranges between 0.5 (equivalent to a ran-
dom prediction) and 1 (perfect prediction). We also report values
of the area under the precision-recall curve (PR-AUC) to provide
a secondary evaluation of the predicted propensities. PR-AUC
ranges between 0 (random predictor) and 1 (perfect predictor).
We assess the binary predictions with the Matthews Correlation
Coefficient (MCC) that ranges between �1 and 1, where �1
denotes an inverted prediction (all predictions are flipped com-
pared to the experimental values), 0 denotes a random result and
1 denotes a perfect prediction.

We also measure the quality of prediction of the QA scores pro-
duced by QUARTERplus for a given disorder predictor. We compare
these residue-level scores against the true predictive quality
secured by this predictor using the Pearson’s correlation coefficient
(PCC), mean squared error (MSE) and Mean absolute error (MAE).
2.4. Quarterplus architecture

QUARTERplus applies an innovative approach to produce very
accurate disorder predictions that are accompanied by new inter-
pretable QA scores. We integrate the QUARTER-produced QA
scores into a proven meta-predictor approach that was demon-
strated to produce highly accurate disorder predictions [59-65].
The past meta-predictors rely on shallow predictive models includ-
ing neural networks [59,65], regression [61], support vector
machine [62], boosted decision trees [63], and simple scoring func-
tions [60,64]. Here, we use a more modern deep network to com-
bine multiple disorder predictions that are accompanied, for the
first time, by the QA scores. The underlying premise is that the
deep network utilizes the QA scores to identify residues that are
poorly predicted in a specific input disorder prediction, which then
can be ‘‘repaired” with the help of the other disorder predictions.

We summarize the QUARTERplus architecture in Fig. 1. We use
the input amino acid sequence to make disorder predictions with
SPOT-Disorder [58], DISOPRED3 [57] and IUPred-short [52]. Next,
we process their outputs with QUARTER to produce raw QA scores.
We map the raw scores into the new interpretable QA scores and
feed them together with the corresponding disorder predictions
into the meta-predictor implemented with a deep neural network.
We utilize this meta model to produce improved disorder predic-
tions that we further process with the QUARTER and the mapping
function to produce the interpretable QA scores. The final outputs
include the disorder predictions (propensities and binary values)
and the accompanying residue-level QA scores. We discuss details
of the mapping and the meta architecture in the subsequent
sections.
2.5. Interpretable QA scores

The original/raw QA scores produced by QUARTER are difficult
to interpret. We overcome this issue by mapping the raw QA scores
into intuitive scores that are normalized to correspond to MCC val-
ues. We select MCC since it is one of the most popular metrics for
the disorder predictions [11,12,29,31,34,36], is easy to interpret
(i.e., the values can be intuitively understood) and because its fixed
range of values is more expressive than other commonly used met-
rics. More specifically, the MCCs values expresses multiple scenar-
ios where the prediction is expected to be correct (high positive
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MCC), to have poor quality (near zero MCC) and to be flipped (high
negative MCC).

We derive the MCC mapping function exclusively using the
training dataset (Fig. 2). First, we sort the raw residue-level QA
scores generated by QUARTER for a given disorder predictor. Next,
we calculate MCC for a collection of residues covered by a sliding
window over the sorted list of residues to represent the mapping
for the residues in the middle of a given window (blue elements
in Fig. 2). The plot in Fig. 2 illustrates the resulting relation
between the MCC scores and the corresponding raw QA values
for the QUARTERplus disorder predictor. The corresponding plots
for the complete set of the considered 12 disorder predictors are
shown in Supplementary Fig. S1. The green lines approximate the
MCC mapping functions that we use to map the raw QA scores into
the interpretable (MCC-like) QA scores (pink elements in Fig. 2).

Fig. 2 reveals that the mapped/interpretable QA scores (quanti-
fied with the MCC values) are correlated with the raw QA scores.
This can be observed using the green lines that represent the
mapped QA scores which increase as the values of the raw QA
scores, given in the x-axis, increase (Supplementary Fig. S1). This
is expected since both the raw and the mapped QA scores quantify
the underlying quality of the disorder predictions. Importantly,
while the mapped QA scores can be directly understood as they
quantify correlation coefficients (i.e., MCC), the fact that the green
line is non-linear and non-monotonic suggests that the raw QA
scores are not interpretable. For example, the middle part of the
relation for QUARTERplus is flat (see the green plot in Fig. 2). This
means that the raw QA scores between 0.2 and 0.7 in fact corre-
spond to virtually identical predictive performance while in prac-
tice they would be incorrectly interpreted as suggesting a
substantial difference in quality. The mapped QA scores fix that
issue since they directly correspond to the measured performance.
We observe that the MCC mappings differ substantially across the
disorder predictors (Supplementary Fig. S1). This means that their
raw QA scores would have to be understood in very different ways,
while the new mapped QA scores standardize the interpretation
across this diverse set of predictors.

2.6. Deep learning-based meta predictor

Fig. 1 outlines the QUATERplus’s meta-design. First, we collect
putative solvent accessibility predicted from the input sequence
with ASAquick [66] and sequence complexity annotation produced
from the sequence with the SEG algorithm [46]. Concurrently, we
generate disorder predictions using SPOT-Disorder [58], DIS-
OPRED3 [57] and IUPred-short [52]. This selection is motivated
by the fact that these three methods secure the highest predictive
performance on the training dataset and the desire to minimize the
computational costs, which would increase if we would include
additional methods. We need a minimum of three predictors since
the odd number allows to break ties between conflicting predic-
tions. Second, we input the disorder predictions together with
the sequence complexity and putative solvent accessibility into
QUARTER that generates the corresponding raw QA scores. Third,
we map the raw QA scores into the novel interpretable QA scores.
Next, we input the three disorder predictions and the correspond-
ing three mapped QA scores into a deep neural network (green box
in Fig. 1) that produces the disorder predictions. Finally, we process
these predictions by QUARTER and map its outputs to collect the
final interpretable QA scores that accompany the QUARTERplus-
produced disorder predictions.

We empirically test and parametrize several types of modern
deep networks (Fig. 3) to select the design that maximizes predic-
tive performance on the training dataset. Our first choice was
inspired by a state-of-the-art deep network disorder predictor
SPOT-Disorder-Single [67] that was highly-ranked in CAID [33].



Fig. 1. Architecture of the QUARTERplus method. The input amino acid sequence is used to predict QA scores that reflect MCC values (shown in blue). QUARTERplus outputs
the disorder predictions (propensities and binary) produced by the meta-predictor implemented with deep neural network (shown in green) which are accompanied with the
QA scores. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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This architecture, shown in Fig. 3B, is a recurrent convolutional
network that utilizes Long-Short Term Memory (LSTM) units. We
further improved this design (Fig. 3C) by replacing the LSTM layers
with arguably more advanced bidirectional LSTM layers. We also
use a classical deep feedforward network (Fig. 3A) as a reference
point that allows us to assess whether the more advanced recur-
rent convolutional designs provide the expected benefits. We para-
metrize each architecture by adjusting the size of neural layers,
using the published 200 neurons per LSTM layers size as a starting
point [67]. We gradually scale this large network down to 100, 50,
25, 12, 6 and 3 neurons per layer and use the dropout rate of 0.5 to
minimize likelihood of overfitting into the training dataset [68].
Supplementary Table S1 details the considered 21 architectures
(3 network types and 7 sizes). We subdivide the training dataset
at random into the design and validation subsets. We train the net-
works on the design subset and assess the predictions of these
trained models on the validation dataset to select the best alterna-
tive, i.e., the design with the highest ROC-AUC value. The training
relies on 0.01 learning rate and decay rate of 1% over 50 epochs
(defaults in the Keras library) and the loss function implemented
with binary cross entropy [69]. Supplementary Fig. S2 compares
results secured by the different deep networks on the validation
set. As expected, we observe that the traditional feedforward net-
works are consistently outperformed by the convolutional topolo-
gies. We also find that the best results for the convolutional
network are obtained with the mid-size networks. The best option
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is the modest size bi-directional LSTM design with 10 neurons in
the dense layer and 25 neurons in the LSTM layers. This is the
design that we use to implement QUARTERplus.

Finally, we also experiment with two popular shallow machine
learning algorithms, logistic regression and k-nearest neighbor.
The regression-based solution simulates a simple meta-predictor
that relies on a weighted (by the coefficients on the regression
function) average of the disorder predictions. After parametriza-
tion on the training dataset, these models obtain ROC-
AUC = 0.907 (logistic regression) and 0.870 (nearest neighbor) on
the test dataset, compared to 0.929 for the deep network. This fur-
ther justifies the selection of the deep network model as the pre-
dictive engine.
3. Results

QUARTERplus generates disorder predictions that are accompa-
nied by the interpretable QA scores. We empirically assess quality
of both outputs using the independent test dataset which shares
low (<25%) similarity with the training proteins.
3.1. Assessment of the interpretable QA scores

We assess quality of the new interpretable QA scores across the
13 considered disorder predictors, including QUARTERplus. Fig. 4



Fig. 2. MCCmapping functions that transform the raw QUARTER-produced QA scores into the interpretable QA scores. The blue elements on the left explain calculation of the
MCC distributions that are used to derive the mapping. We sort the raw residue-level QA scores generated by QUARTER for a given disorder predictor in the training dataset to
calculate MCC for a collection of residues covered by a sliding window. The MCC is computed by comparing the predicted and ground truth disorder in that window. We use
these MCC scores to derive the mapping function shown in the plot. While this plot is specific to the QUARTERplus meta predictor, we provide the complete set of 13
mappings for all considered disorder predictors is in Supplementary Fig. S1. The yellow, green and blue lines correspond to 75th, 50th (median) and 25th percentile of the
MCC scores computed using the sliding window. The red horizontal dashed line is the MCC obtained on the training dataset. The pink elements show how the raw QA scores
and converted to the mapped QA scored with the help of the green median line. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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shows scatter plots of the new QA scores that quantify expected
MCC values against the actual MCC values computed on the test
dataset for two representative predictors: QUARTERplus and the
best current method, SPOT-Disorder. We emphasize that these
results do not quantify the quality of the underlying disorder pre-
dictions, which are assessed in section 3.2, but instead they focus
on the quality of the QA scores that accompany these predictions.
The QA scores are deemed to be useful/high-quality if they corre-
late with the corresponding true MCC values. It is important to
note that higher correlations do not necessarily imply higher pre-
dictive performance of the corresponding disorder predictor, but
rather they indicate that the QA scores are more suitable to iden-
tify accurate disorder predictions for a given predictor.

We observe that the new QA scores and the actual MCCs are
correlated for both predictors in Fig. 4. The plots for the complete
set of the 12 disorder predictors and QUARTERplus are in Supple-
mentary Fig. S3 and they show similarly strong relations, except
only for ESpritz-DisProt that shows more modest correlation. The
latter is due to the lower quality of the raw QA scores produced
by QUARTER for ESpritz-DisProt, which we show in the corre-
sponding panel in Supplementary Fig. S1. We assess the quality
of the new QA scores (i.e., expected MCCs) by quantifying their Per-
son correlation coefficients (PCCs) with the actual MCC scores as
well as the mean absolute error (MAE) and mean squared error
(MSE) between the two scores. We show these values for all 13 dis-
order predictors, including QUARTERplus, in Supplementary
Table S2. The median (across predictors) PCC = 0.78, median
MAE = 0.080 and median MSE = 0.001. This suggests that the
new QA scores are highly correlated with the actual predictive per-
formance and that the median absolute difference between the
two is relatively small at 0.08, given that MCC ranges between
�1 and +1.

Next, we apply the new interpretable QA scores in a practical
context to select a subset of residue-level predictions that presum-
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ably, according to the values of the QA scores, have higher predic-
tive quality. More specifically, we sort the predictions on the test
dataset by the new QA scores and evaluate the actual MCC of the
progressively smaller subsets of these predictions that have higher
QA scores (Fig. 5). The 13 lines in Fig. 5 quantify the corresponding
predictive performance on the test dataset for the 13 considered
predictors. The lines at the top identify the most accurate disorder
predictors, which include QUARTERplus, DISOPRED3 and SPOT-
Disorder. We provide more detailed assessment of the disorder
predictions in Section 3.2. We emphasize that Fig. 5 evaluates
whether the QA scores facilitate selection of higher quality predic-
tions for a given disorder predictor, which correspond to the pre-
dictions with higher measured MCC scores. The 13 lines in Fig. 5
are virtually monotonic, which means that the selection of residues
with higher QA scores results in identifying more accurate predic-
tions. In most cases, the predictions on the complete test dataset
have much lower quality than for the subsets of amino acids
selected based on QA scores. For instance, QUARTERplus secures
MCC = 0.61 on the complete test dataset while its performance
improves to MCC = 0.76 for the top 50% residues selected with
the new QA scores. Similarly, the current predictor with the best
MCC = 0.58 on the test dataset (red line in Fig. 5), DISOPRED3,
obtains MCC = 0.71 for the top half of residues with highest QA
scores. At the 50% coverage, we find the maximal improvement
of 124% for disEMBL-HL and minimal improvement of 22% for
ESpritz-DisProt when compared to their corresponding dataset-
level MCC values. We also measure the coverage of the test dataset
(% of residues with the highest QA scores) where the improvement
in the measured MCC scores is at least 10% and statistically signif-
icant (p-value < 0.001). This level of coverage is indicated with the
‘‘x” marker on the plots in Fig. 5; details of the statistical tests are
explained in the figure caption. The exact coverage values, the MCC
improvements and the corresponding p-values are listed in Supple-
mentary Table S3. Briefly, we find that median coverage of the test



Fig. 3. Deep neural network architectures that were considered to develop the QUARTERplus meta predictor of disorder. (A) Classical feed forward network with dropout in
the intermediate layers. (B) Long-Short Term Memory (LSTM) network. (C) Modified LSTM network with bidirectional layers.

Fig. 4. Scatter plots of the actual MCC values (y-axis) against the new QA scores that express expected MCC values (x-axis) computed on the independent test dataset for the
SPOT-Disorder and QUARTERplus disorder predictors. We use the sliding windows of the residues sorted by the QUARTER scores to produce the actual MCC scores (details in
Section 2.5). The complete set of 13 distributions for all considered disorder predictors are in Supplementary Fig. S3.
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dataset (across the 13 predictors) with such significant improve-
ments in MCC is 92.3%. In other words, we can use the new QA
scores to select 92.3% of residues where the predictive quality is
significantly higher (over 10% improvement with p-value < 0.001).
2602
We analyze relation between the QA scores produced by QUAR-
TERplus and key characteristics of disorder including size of the
IDRs and proximity to IDRs. More specifically, we compare the
QA values for short (<10 consecutive residues), medium (10 to 30



Fig. 5. Relation between the actual MCC scores that quantify predictive performance on the independent test dataset and the new QA scores for the 13 disorder predictors,
including QUARTERplus. Each line denotes the relation between actual MCC values (y-axis) for a subset of residues in the test dataset with the highest QA scores (x-axis); we
call the latter the coverage by the highest QA scores and we measure it with 0.01% step size. The ‘x’ markers denote the coverage where the predictions from a given method
are better by at least 10% than the results on the complete dataset and where this difference is statistically significant (p-value < 0.001). The statistical significance assesses
whether these differences are robust to different datasets. More specifically, we sample at random 100 times 50% of residues from the complete dataset and from a given
subset of the dataset (coverage value). Next, we evaluate whether these measurements are normal with the Anderson-Darling test at 0.05 significance, and we assess
significance with the t-test for normal measurements, and with Wilcoxon rank-sum test otherwise.

Table 1
Predictive performance of QUARTERplus and the 12 representative disorder predic-
tors on the independent test dataset. Asterisks in the ROC-AUC, PR-AUC and MCC
columns denote the fact that QUARTERplus performance is significantly higher than a
given other disorder predictor (p-value < 0.001). The statistical significance assesses
whether these differences are robust to different datasets. More specifically, we
measure predictive quality for 100 repetitions of tests on 50% of randomly selected
test proteins. Next, we evaluate whether these measurements are normal with the
Anderson-Darling test at 0.05 significance, and we assess significance with the t-test
for normal measurements, and with Wilcoxon rank-sum test otherwise. The
predictors are sorted by their ROC-AUC values. Best results are denoted by bold font.

Predictor ROC-AUC PR-AUC MCC

QUARTERplus 0.929 0.647 0.611
SPOT-Disorder 0.918* 0.582* 0.569*
DISOPRED3 0.915* 0.619* 0.584*
VSL2B 0.839* 0.389* 0.309*
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consecutive residues) and long (>30 consecutive residues) IDRs and
compare them against the native ordered residues (Supplementary
Fig. S4). This analysis reveals that the QA scores for longer IDRs are
lower compared to the shorter IDRs for both versions of disEMBL
and IUPred while the inverse is true for ESpritz-DisProt, VSL2B,
SPOT-Disorder, DISOPRED2 and QUARTERplus. Moreover, the QA
scores for the ordered residues are higher than for the disordered
residues for majority of the predictors including the three versions
of ESpritz, both versions of IUPred, SPOT-Disorder, DISOPRED3 and
QUARTERplus. These relations suggest that the predictive quality
of disorder predictors depends on the presence and size of IDRs.
This observation agrees with several recent studies that similarly
suggest that predictive performance is dependent on the size of
IDRs and the amount of disorder in a given protein sequence
[13,31,34,70]. Interestingly, the lack of consistency in these rela-
tions across the predictors reveals that the QA scores are optimized
to specific predictors. We also investigate whether the QA scores
are sensitive to the location of the termini of IDRs. Supplementary
Fig. S5 reveals a sharp change in the QA scores at these locations
(i.e., for the small value of distance from the terminus) for majority
of the disorder predictors. A similar observation was made in the
context of the secondary structure prediction [71]. We speculate
that this strong trend could be explained by possibly lower quality
of the disorder annotations at these positions since that this is
where we somehow arbitrarily decide which residues are flexible
enough to be categorized as disordered.
ESpritz-Xray 0.812* 0.355* 0.289*
IUPred-short 0.810* 0.382* 0.377*
ESpritz-NMR 0.807* 0.364* 0.340*
disEMBL-465 0.804* 0.357* 0.361*
ESpritz-DisProt 0.782* 0.167* 0.137*
JRONN 0.766* 0.306* 0.246*
disEMBL-HL 0.760* 0.255* 0.194*
IUPred-long 0.732* 0.265* 0.278*
GlobPlot 0.630* 0.139* 0.145*
3.2. Assessment of disorder predictions

We comparatively assess quality of the disorder predictions
generated by the QUARTERplus meta-predictor against the 12 rep-
resentative methods on the test dataset. The results of the top cur-
rent tools reported in Table 1, SPOT-Disorder and DISOPRED3, are
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in line with the previous reports which used different test datasets.
SPOT-Disorder was shown to secure ROC-AUC = 0.905 [58], 0.904
[34], and 0.918 [33] vs. 0.918 in our test set. Similarly, DISOPRED3
obtained ROC-AUC = 0.899 [34] and 0.897 in the CASP10 assess-
ment [29] vs. 0.915 on our test dataset.

Table 1 reveals that the predictive performance of QUARTER-
plus measured with ROC-AUC, PR-AUC and MCC is significantly
higher than the performance of the other 12 predictors (p-
value < 0.001). The predictions produced by our novel meta archi-
tecture secure very high ROC-AUC = 0.929 and are highly
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correlated with the native annotations of disorder, with
MCC = 0.611. The relative reduction of error reported with AUC-
ROC between QUARTERplus and the second-best SPOT-Disorder
is (0.929–0.918)/(1–0.918) = 13%. The median increase in AUC-
ROC when comparing QUARTERplus with the other predictors is
0.123. We secure similarly large improvements when using MCC
to assess binary predictions. For instance, the median increase in
MCC when comparing with the 12 other predictors is 0.312, with
the 0.03 improvement over the second best MCC secured by DIS-
OPRED3. Overall, we conclude that QUARTERplus generates very
accurate disorder predictions that statistically outperform the cur-
rent predictors, including the three tools that are used as inputs to
our meta-method. The rationale behind these improvements is the
ability of the deep recurrent network to use the QA scores to guide
the consensus prediction. In other words, the QA scores associated
with the three input disorder predictions are used to identify prob-
lematic input predictions to better inform computation of the out-
put meta-prediction.
3.3. Case study

We discuss and explain the QUARTERplus outputs for one of
test proteins, the 50S ribosomal protein L24e (Uniprot id:
P14116) from Haloarcula marismortui, a halophilic Archaeon. This
case study is not intended to quantify expected predictive quality
but rather to explain the QUARTERplus outputs and relate them
to the input predictions from DISOPRED3, SPOT-Disorder and
IUPred-short. We secure the native disorder annotations from the
crystal structure (PDB ID: 3CC2) which includes disordered regions
at both termini (positions 1–4 and positions 57–66). The top of
Fig. 6 illustrates the disorder propensity scores produced by QUAR-
TERplus (in purple), SPOT-Disorder (brown), DISOPRED3 (orange)
and IUPred-short (blue). The bottom of Fig. 6 shows native disorder
annotations and the corresponding putative binary predictions
(black for disorder and gray for order) accompanied by the color-
coded interpretable QA scores. The color map for the QA scores
ranges from dark red (strongly negative QA scores) to dark green
(strongly positive QA scores).

The input disorder predictors generate relatively accurate
results with MCC = 0.61 (SPOT-Disorder), 0.61 (DISOPRED3), and
Fig. 6. Predictions from QUARTERplus and its input/base predictors (SPOT-Disorder, DISO
top represent disorder propensity scores that are color-coded by predictor. The horizont
putative binary predictions, with black for disorder and gray for order. They are accomp
ranges from dark red (strongly negative QA scores) to dark green (strongly positive QA sc
referred to the web version of this article.)
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0.65 (IUPred-short). SPOT-Disorder predicts disorder at both ter-
mini but also includes a false positive region between positions
44 and 48. DISOPRED3 predicts only one disordered region at the
C terminus with a few false negatives (underpredicted disorder).
IUPred-short over-predicts disorder at both termini. Importantly,
the incorrect predictions generated by these tools are flagged with
red QA scores that suggest high likelihood of error. For instance,
SPOT-Disorder prediction at the N-terminus is flagged red since
it underpredicts disorder there, while the over-predicted disor-
dered region in the middle of the sequence is also marked red.
The QUARTERplus meta-predictor improves over the input predic-
tions, which is consistent with the overall test results, and secures
MCC = 0.81. Its QA scores are mostly green correctly suggesting
that these predictions are likely accurate. The only exception is
the orange-colored edge of the predicted disordered region at the
C-terminus where QUARTERplus indeed under-predicts disorder.
The meta-predictor succeeds in correctly adjusting results pro-
duced by its three input predictions since it has access to the cor-
responding three sets of QA scores that point to regions where
these inputs are possibly incorrect. This demonstrates the underly-
ing value of the new QA scores that help to build a better meta
model while also allowing the users to evaluate its outputs.
3.4. QUARTERplus webserver

We provide convenient access the QUARTERplus method,
including the meta-predictor of disorder and interpretable QA
scores, at http://biomine.cs.vcu.edu/servers/QUARTERplus/. This
webserver also produces the disorder predictions and the associ-
ated QA scores for several other popular methods: SPOT-
Disorder, DISOPRED3, IUPred-short, IUPred-long, VSL2B, disEMBL-
HL, disEMBL-465 and GlobPlot. We exclude ESpritz since its
authors disallow inclusion of this software into derived predictive
platforms.

QUARTERplus webserver takes the FASTA-formatted amino acid
sequence(s) of the input protein(s) as the only input. We service
batch predictions of up to 50 sequences per request for the faster
predictors (IUPred-short, IUPred-long, VSL2B, disEMBL-HL,
disEMBL-465 and GlobPlot) and single-sequence requests for the
slower tools (QUARTERplus, SPOT-Disorder and DISOPRED3). We
PRED3 and IUPred-short) for a test protein, 50S ribosomal protein L24e. Plots at the
al lines at the bottom represent native disorder annotations and the corresponding
anied by the color-coded interpretable QA scores. The color map for the QA scores
ores). (For interpretation of the references to color in this figure legend, the reader is

http://biomine.cs.vcu.edu/servers/QUARTERplus/
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process the requests using a queue that serves multiple webservers
from our lab and which ensures load balancing between users. The
entire process, including prediction of disorder and production of
the QA scores, is automated and performed on the server side. This
frees the user from using their own hardware. The end results
include the disorder predictions including binary and propensity
scores that are accompanied by the QA scores. We deliver the
results in the browser window and inform the users via email (if
email address was provided) when the prediction completes. We
provide the results for the fast predictors in parsable csv-
formatted file. We generate the results for the slower and more
accurate methods, including QUARTERplus, in two ways: as the
parsable csv file and as high-quality graphic (example shown in
Fig. 6) directly in the web browser window.

4. Summary

Prediction of intrinsic disorder from protein sequences is a long
standing and well-researched topic [10,11,28-34,72]. A new aspect
that recently gained attention is the development of QA tools that
provide useful, residue-level clues concerning quality of the disor-
der predictions [35,36]. However, the only current QA tool, QUAR-
TER, suffers several substantial drawbacks. We address these
issues with the new QUARTERplus method.

QUARTERplus is an innovative deep learning meta-model that
delivers highly accurate disorder predictions by combining QA
scores and the associated disorder predictions from three modern
input predictors. We empirically demonstrate that QUARTERplus’s
predictions are statistically more accurate than the results gener-
ated by a representative set of twelve modern disorder predictors,
including highly-ranked methods from the CASP10 and CAID com-
munity assessments [29,33,73]. More importantly, these accurate
predictions are accompanied by easy to interpret residue-level
QA scores that reliably quantify their predictive quality. We pro-
vide this feature for QUARTERplus and several other state-of-the-
art disorder predictors. These new QA scores are highly correlated
with the actual/measured predictive performance quantified with
MCC, which means that they effectively identify regions of correct
vs. incorrect disorder predictions. For instance, while QUARTER-
plus produces disorder predictions with the overall MCC of 0.61,
using the QA scores we are able to identify the better half of these
predictions where MCC is 0.76. We also provide a convenient web-
server for QUARTERplus at http://biomine.cs.vcu.edu/servers/
QUARTERplus/. To sum up, QUARTERplus is a convenient tool that
provides highly accurate disorder predictions, empowers the users
to easily pinpoint which predictions are more trustworthy with the
help of the easy to interpret QA scores, and generates these scores
for several popular disorder predictors.
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