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Abstract

Parasitic hookworms and the free-living model nematode Caenorhabtidis elegans share a developmental arrested stage,
called the dauer stage in C. elegans and the infective third-stage larva (L3) in hookworms. One of the key transcription
factors that regulate entrance to and exit from developmental arrest is the forkhead transcription factor DAF-16/FoxO.
During the dauer stage, DAF-16 is activated and localized in the nucleus. DAF-16 is negatively regulated by phosphorylation
by the upstream kinase AKT, which causes DAF-16 to localize out of the nucleus and the worm to exit from dauer. DAF-16 is
conserved in hookworms, and hypothesized to control recovery from L3 arrest during infection. Lacking reverse genetic
techniques for use in hookworms, we used C. elegans complementation assays to investigate the function of Ancylostoma
caninum DAF-16 during entrance and exit from L3 developmental arrest. We performed dauer switching assays and
observed the restoration of the dauer phenotype when Ac-DAF-16 was expressed in temperature-sensitive dauer defective
C. elegans daf-2(e1370);daf-16(mu86) mutants. AKT phosphorylation site mutants of Ac-DAF-16 were also able to restore the
dauer phenotype, but surprisingly allowed dauer exit when temperatures were lowered. We used fluorescence microscopy
to localize DAF-16 during dauer and exit from dauer in C. elegans DAF-16 mutant worms expressing Ac-DAF-16, and found
that Ac-DAF-16 exited the nucleus during dauer exit. Surprisingly, Ac-DAF-16 with mutated AKT phosphorylation sites also
exited the nucleus during dauer exit. Our results suggest that another mechanism may be involved in the regulation DAF-16
nuclear localization during recovery from developmental arrest.
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Introduction

The insulin/insulin growth factor (IIS) pathway is involved in

embryogenesis [1], cell differentiation [2], development, and aging

[3,4] in diverse species. In the free-living nematode Caenorhabditis

elegans, this pathway mediates entry into and exit from the

developmentally arrested dauer stage by negatively regulating the

activity of a FoxO-family forkhead transcription factor DAF-16

[5–10]. The developmentally arrested, resistant dauer stage allows

C. elegans to survive in unfavorable environments for several

months after its second molt [11]. In C. elegans, DAF-16 localizes to

the nucleus under dauer-inducing conditions, where it binds to

promoter regions of target genes that induce and maintain dauer

[8,12]. In responses to IIS, DAF-16 is phosphorylated by the

activated serine-threonine protein kinase AKT/protein kinase B

(AKT/PKB), therefore creating binding sites for 14-3-3 proteins

(FTT). Interaction between FTT and phosphorylated DAF-16

results in its nuclear exclusion and cytoplasmic retention leading to

reproductive growth [13,14].

The free-living infective third stage larvae (L3) of parasitic

nematodes, such as hookworm, are biologically and functionally

analogous to the C. elegans dauer stage [15–17]. During infection,

hookworm L3 encounter a signal in the host that activates

suspended developmental pathways that lead to resumption of

development and progression to the L4 and adult stages. This

is exactly analogous to recovery from dauer in response to

environmental cues in C. elegans. Therefore, the ‘‘dauer parasitism

hypothesis’’ proposes that common molecular mechanisms mediate

both the resumption of development by hookworms during

infection of the host, and recovery from the dauer stage in response

to improved environmental conditions in C. elegans [17–19].

The inability to resume development in vitro necessitates main-

taining hookworms in an animal host, which precludes the

development of genetic systems. Consequently, little is known

about the molecular events of early infection. What is known is

centered on the larval activation process, in which L3 can be

induced to resume feeding and secrete infection-associated

molecules in vitro [20–25]. Evidence indicates that activation is

regulated by IIS and DAF-16 in hookworms. Orthologs of C.

elegans DAF-16 and 14-3-3, Ac-DAF-16 and Ac-FTT-2, have been

identified recently from the hookworm Ancylostoma caninum [26,27].

Ac-DAF-16 contains a highly conserved forkhead DNA-binding

domain and three potential AKT phosphorylation sites (S107,

T312, and S381). Recombinant Ac-DAF-16 bound to and drove
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transcription from a consensus binding element found in the

promoters of FoxO/DAF-16 target genes from C. elegans and

mammals [26]. Ac-DAF-16 also bound recombinant Ac-FTT-2, an

interaction that required intact AKT phosphorylation sites [27].

These experiments indicated that Ac-DAF-16 is a functioning

transcription factor and further support that IIS pathway plays a

critical role for hookworm L3 re-activation during infection.

In the present study, we used in vitro and heterologous systems to

investigate the mechanism of DAF-16 action. We demonstrate that

the predicted sites on Ac-DAF-16 are phosphorylated by AKT in

vitro. Using cell culture, we show that Ac-DAF-16 is negatively

regulated by IIS, and that Ac-DAF-16 is exported from the nucleus

in response to IIS. Finally, using transgenic C. elegans, we

demonstrate that Ac-DAF-16 partially complements daf-16 loss of

function mutations to restore dauer formation. Our studies lend

support for the dauer parasitism hypothesis, and indicate that the

IIS pathway is important, but not exclusively responsible for the

regulation of recovery from the arrested L3 via Ac-DAF-16.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the George Washington University

Medical Center Institutional Animal Care and Use Committee

(protocol number: A147).

In vitro phosphorylation assay
Ac-DAF-16 has three potential AKT phosphorylation sites base

on primary amino acid sequence analysis. To determine if AKT

phosphorylated Ac-DAF-16 on the predicted sites, 2 mg of

recombinant human AKT (Upstate) were incubated with

1.25 mM rATP (Sigma-Aldrich), 2 mg Ac-DAF-16-peptide and

30 ml kinase buffer from ADP Quest System (Discoverx) for 1 h at

30uC. Three DAF-16 peptides of 15 amino acids length containing

the putative AKT phosphorylation sites were used as substrates.

Crosstide was used as substrate in the positive control, and

reactions with phosphorylated peptides and without AKT and

rATP served as negative controls. The kinase reactions were

stopped by adding ADP detection reagents A and B, and the

fluorescent light emission was determined after 30 minutes at RT

in a 96-well plate reader (DTX Multimode detector Biomek FX/

NX, Beckman Coulter, CA, USA) according the manufacturer’s

instructions. ADP concentrations proportional to the light

emission were calculated from an ADP standard curve. The

kinase reactions were also analysed by Western blotting using

phospho-specific rabbit Ac-DAF-16-peptide antibodies following

SDS-PAGE as described below.

Luciferase assay
In response to IIS, C. elegans DAF-16/FoxO is phosphorylated

by AKT. To determine if Ac-DAF-16 was phosphorylated in

response to IIS, HepG2 cells were co-transfected with pCMV4-Ac-

DAF-16 wildtype or phosphorylation site mutant constructs (single

mutants, S107A, T312A, S381A; double mutants, S107A/T312A;

S107A/S381A, T312A/S381A; and triple mutant, S107A/

T312A/S381A) [27], the luciferase reporter vector p6xDBE-luc

containing 6 copies of the canonical DBE upstream of firefly

luciferase [26] and a Renilla luciferase reporter plasmid as an

internal control. Cells co-transfected with pGL3 vector (Promega)

with intrinsic promoter activity and Renilla reporter plasmid served

as positive control. Transfections were performed in 24 well plates

according to the Genporter3000 protocol (Genlantis). The cells

were grown in Dulbecco’s Modification of Eagle’s medium

(DMEM; Cellgro) supplemented with 10% FBS, 100 U/ml

Penicillin and 0.1 mg/ml Streptomycin (Cellgro) for 24 h. After

incubation, the cells were starved in DMEM without FBS for 16 h

and treated with insulin at a final concentration of 10 ng/ml for

1 h. Finally, the cells were treated with 100 mM AKT inhibitor IV,

AKT inhibitor IX and LY294002 (Calbiochem) for another hour.

Control cells were treated with solvent alone (0.1% DMSO). The

cells were washed and the luciferase activities measured with a

Sirius luminometer using the Dual-Glo Luciferase Assay system

(Promega). Treatments were performed in triplicates. The ratio of

firefly to Renilla luciferase were calculated and the mean and SD

determined. The experiment was repeated three times.

Cell fractionation and Western blot
The mammalian cell line HEK293 was transfected with a

construct encoding full-length wildtype Ac-DAF-16 (clone

Daf16.4Ba.pCMV.2J, [26]) using the lipotransfection reagent

Genporter3000 (Genlantis) in 6 well plates according to the

manufacturer’s instructions. After 48 h in DMEM with 10% FBS

(Gibco), the cells were starved for 24 h in 2 ml medium without

FBS. A mock transfection of HEK293 with the empty pCMV-

Tag4 vector served as a control. After treatment, the cells were

washed three times with 1x PBS-Tween 0.05% (PBS-T) and

fractionated using the Qproteome cell compartment kit (Qiagen).

Following acetone precipitation, the protein fractions were

separated by SDS-PAGE and transferred to nitrocellulose

membranes. The membranes were incubated in 5% skim milk

in 1x PBS-T and subsequently probed with mouse anti-GAPDH

(1:2,000 Abcam), mouse anti-histone (1:500) (Chemicon Interna-

tional) or the rabbit DAF-16 anti-serum (1:20,000) for 16 h at 4uC
with shaking. After three washes in 1x PBS-T, the membranes

were incubated with the HRP-conjugated anti-mouse (1:10,000) or

anti-rabbit (1:5,000) secondary antibody for 1 h at RT. The

washing steps were repeated and the membranes exposed to X-ray

film following incubation with ECL chemiluminescence reagent

(Pierce) for visualization.

Genetic stocks of C. elegans and transformation
constructs

The C. elegans double mutant strain daf-2(e1370);daf-16(mu86)

was used as the parent strain for microinjection and as control in

dauer assays. The control strain daf-2(e1370) was obtained from

the Caenorhabditis Genetics Center (University of Minnesota). The

third control strain, CF1449, was a daf-2(e1370);daf-16(mu86)

double mutant carrying the transgene construct encoding an

N-terminal fusion of GFP and wildtype C. elegans DAF-16

downstream of the daf-16a promoter was kindly provided by

Cynthia Kenyon [28]. All strains were maintained on E. coli OP50

growing on NGM plates at 16uC according to standard methods.

For the complementation experiments, the coding region of wildtype

Ac-daf-16 (GenBank accession number ACD85816) [29] was initially

cloned into pWZ128 with pdpy-30 as the promoter. However, several

of the transgenic lines were unstable. Therefore, the coding region of

Ac-daf-16 was switched into pPV207 to create pWZ401 containing

the C. elegans daf-16a promoter upstream of Ac-daf-16. In a further

step the coding region for GFP was added at the end of the Ac-daf-16

ORF leading to C-terminal GFP fusion protein. Mutant plasmids of

Ac-daf-16 (single mutants, S107A, T312A, S381A; double mutants,

S107A/T312A; S107A/S381A, T312A/S381A; and triple mutant,

S107A/T312A/S381A) were described previously [27]. All con-

structs were confirmed by DNA sequencing.

Hookworm DAF-16/FoxO Mutant Dauers Exit Dauer
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Establishment of C. elegans transgenic lines and
complementation assays

Constructs of the transgenes to be tested for rescue were mixed

with marker plasmid (encoding rol-6) at equal volume, both at

100 ng/ml, and injected into gonads of young hermaphrodites

of double mutant strain daf-2(e1370);daf-16(mu86). Microinjected

animals were reared and screened for transformed F1 progeny

based on the roller phenotype. Positive F1 progeny were re-plated

and roller F2 progeny selected again. Positive F2 generation and

beyond were propagated as transgenic lines. Two to six lines per

transgene were obtained.

For dauer switching assays in C. elegans, egg-laying hermaphro-

dites from each transgenic line and control strains were placed on

NGM plates seeded with E. coli OP50 lawns for 3-4 h at RT and

subsequently removed. The plates were incubated at 25uC and

after 96 h animals were scored. For the dauer rescue assay, the

hermaphrodites were sustained on plates. After 96 h, dauer larvae

were isolated by incubation in 1% SDS [11] and transferred to

NGM OP50 plates. The plates were incubated at 16uC and

observed daily for 7 days. The number of worms that developed

were enumerated daily, and subsequently removed from the plate

before they reproduced. Worms that failed to develop or died were

also noted. Dauers isolated from the daf-2(e1370) strain and from

daf-2;daf-16 expressing Ce-DAF-16 were used as controls. All assays

were conducted 3-4 times for each transgenic line, the scores

combined, and the means in percentage displayed. Chi square-

tests (with Yates correction, degrees of freedom = 1) were

conducted to determine significant differences between the lines.

Confocal microscopy of transgenic C. elegans strains and
localization of Ac-DAF-16::GFP

Dauer larvae were prepared for confocal microscopy on a Zeiss

LSM 710 with a 20x/1.0 water immersion objective immediately

before image acquisition by transfer into M9 buffer containing

10 mM levamizole. Photographs were taken within 15 min of

removal from incubators and exposure to levamizole. Photomi-

crographs represent?multichannel?l-stacks recorded between 500-

550 nm by a 32-channel spectral detector and reveal both GFP

and autofluorescence as different spectra.

Results

Ac-DAF-16 as substrate of AKT
In C. elegans, AKT modifies DAF-16 at the four phosphorylation

sites (Ser54, Ser240/242, Ser314), thereby creating the binding

site for the FTT-2 interaction [14,30]. We recently showed that

Ac-DAF-16 was immunoprecipated with Ac-FTT-2 from serum-

activated L3 lysates, and that the interaction required intact AKT

phosphorylation sites at Ser107 and Thr312 [27]. To determine if

AKT similarly modified Ac-DAF-16, we incubated 3 peptides

containing the predicted phosphorylation sites (Fig. 1A) with

recombinant AKT in vitro, using ADP formation as an indicator

of kinase activity. As shown in Fig. 1B, the ADP concentration in

all three reactions was significantly increased in the presence of

AKT and the single peptide compared to the negative controls,

indicating that the hydrolysis of ATP by AKT kinase occurred.

The conserved motif for AKT phosphorylation is RxRXXS/

THyd, where x represents any amino acid residue [31], and is

present in all three peptides. In addition to these sites, motif

recognition software [32] predicted a possible AKT phosphory-

lation site adjacent to Thr312 at Ser311. However, there was no

increase in ADP concentration in kinase reactions using a peptide

phosphorylated at Thr312, indicating that Thr312 was the only

reactive site on the peptide, and that Ser311 was not phosphor-

ylated by AKT.

The phosphorylation of the peptides by AKT was verified by

Western blot analysis using phospho-specific anti-DAF-16 anti-

bodies (Fig. 1C). Phosphorylated peptides were detected in the

AKT + ATP + peptide reactions, but not in reactions without the

enzyme. Together, these data indicate that Ac-DAF-16 is

phosphorylated on the conserved residues Ser107, Thr312 and

Ser381 by AKT.

Figure 1. AKT phosphorylates Ac-DAF-16 on conserved phos-
phorylation sites. A) Graphical scheme of Ac-DAF-16 indicating the
localization of the predicted AKT phosphorylation sites at position S107,
T312 and T381 and the peptides (P1, P2, P3) of 15 amino acids lengths
used in the in vitro phosphorylation assay. B) In vitro phosphorylation
assay of Ac-DAF-16 peptides by AKT. The means 6 SD of the ADP
concentration after incubation of rAKT with the Ac-DAF-16 peptides in
the presence of ATP is shown. Crosstide was used as a control substrate.
Negative controls were reactions without AKT as well as phospho-
peptides (PP1, PP2, PP3) containing the phosphorylated residue of
interest. The experiments were repeated three times. Asterisks
represent p- values ,0.05 in T-tests between the sample versus
controls. C) Reactions from the in vitro phosphorylation assay were
separated by PAGE and blotted on nitrocellulose membrane. Proteins
were detected by phospho-specific peptide antibodies as described.
doi:10.1371/journal.pone.0025996.g001
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Sub-cellular localization of Ac-DAF-16
Phosphorylation by AKT, together with our previous studies

[27] suggested that Ac-DAF-16 is regulated by the 14-3-3

dependent shuttling mechanism seen in C. elegans [14]. We used

a cell culture system to determine if Ac-DAF-16 changes sub-

cellular compartments in response to IIS stimulation. HEK293

cells expressing full length wildtype Ac-DAF-16 were incubated

with or without serum, followed by sub-cellular fractionation and

Western blotting to determine the location of DAF-16 (Fig. 2).

Antibody against GAPDH was used as a marker for the

cytoplasmic compartment, and histone H1 for the nuclear

compartment. Both marker proteins were detected at similar

levels in the appropriate fraction. Ac-DAF-16 was detected in both

compartments in serum-starved cells, but only in the cytoplasm in

fed cells, suggesting that Ac-DAF-16 localization is controlled by

IIS, similar to C. elegans DAF-16.

Negative regulation of Ac-DAF-16 transcriptional activity
To analyze the function and regulation of Ac-DAF-16, we

assessed its transcriptional activity from a DAF-16 derived

promoter element under the influence of serum and IIS. Insulin

sensitive HepG2 cells were co-transfected with a construct

encoding full-length Ac-DAF-16, and a reporter construct

containing 6 copies of the DAF-16 binding element (DBE)

upstream of the firefly luciferase gene. A construct encoding

Renilla luciferase under the CMV promoter was also included as an

internal control, and a plasmid encoding constitutively expressed

luciferase served as positive control. The ratios of the luciferase

activity of cells incubated in medium with serum, serum-starved

cells, and cells stimulated with insulin following starvation are

depicted in Figure 3A. Luciferase expression was five-fold higher

in starved cells than serum-fed cells, whereas addition of insulin to

starved cells depressed luciferase expression to the level of serum-

fed cells. Next, inhibitors of IIS were tested for their effects on

insulin stimulated cells. As shown in Figure 3B, AKT inhibitors IV

and IX (Calbiochem) increased normalized luciferase expression

48% and 47%, respectively, and the PI3K inhibitor LY294002

increased expression by 24%. These data confirm that Ac-DAF-16

Figure 2. Ac-DAF-16 is localized in cytoplasm and, in the
absence of IIS, also in the nucleus. Western blot analyses of the
cytosolic (C) and the nuclear (N) fractions of HEK293 cells expressing
Daf16.4Ba.pCMV.2J are shown. After incubation for 2 days in the
presence of 10% FBS, the cells were further cultivated in the medium
containing 10% FBS (lane w/FBS) or medium without FBS (lane w/o FBS)
for 24 h. MOCK cells were transfected with the empty pCMVtag4 vector
and treated as the cells w/o FBS. As controls antibodies against the
cytoplasmic enzyme GAPDH and the nuclear histone were used to
determine the purity of the fractionation.
doi:10.1371/journal.pone.0025996.g002

Figure 3. Gene transcription from DAF-16 binding elements
driven by Ac-DAF-16 is negative regulated by IIS. A) Luciferase
activity of insulin sensitive HepG2 expressing full-length Ac-DAF-16
treated with serum (+ FBS), without serum (2FBS) and insulin (+Ins). B)

Hookworm DAF-16/FoxO Mutant Dauers Exit Dauer
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drives transcription from the DBE in the absence of IIS, and that

IIS negatively regulates DAF-16 mediated reporter transcription.

In C. elegans, AKT phosphorylates DAF-16 on conserved sites in

response to IIS, creating a binding site for the shuttle protein 14-3-3.

The bound DAF-16 is translocated from the nucleus to the

cytoplasm, resulting in negative regulation of DAF-16 transcription.

To determine the mechanism by which insulin negatively regulates

Ac-DAF-16 in cells, the effect of phosphorylation site null mutants

on DAF-16 driven transcription was tested. Ac-DAF-16 constructs

containing single, double and triple mutants of the three AKT

phosphorylation sites were co-transfected with the reporter and

Renilla control plasmids in HepG2 cells. As shown in Figure 3C,

wildtype Ac-DAF-16 drove transcription in the absence of serum,

whereas insulin inhibited transcription. As expected, all of the AKT

site mutants were able to drive transcription from the DBE in the

absence of serum. However, mutation of any of the phosphorylation

sites to Ala prevented inhibition of transcription by insulin. The

higher read-out for mutated Ac-DAF-16 when insulin was added

could be due to longer lasting mutated Ac-DAF-16 which are not

degraded as fast as wildtype Ac-DAF-16 [33]. This indicates that

insulin-induced inhibition of transcription is mediated by phos-

phorylation of the consensus AKT sites, and that mutation of any of

the sites prevents inhibition of transcription by insulin.

Rescue of the dauer phenotype in C. elegans daf-2; daf-16
strain expressing Ac-DAF-16

As genetic manipulation of hookworms is currently not possible,

we used C. elegans as a surrogate to study the function of Ac-DAF-

16 in vivo during dauer entry and exit. Whereas daf-2(e1370)

mutants reared at the restrictive temperature form 100% dauers,

the dauer phenotype is completely suppressed in daf-2(e1370); daf-

16(mu86) double mutants. Thus, rescue of the dauer phenotype in

daf-2(e1370);daf-16(mu86) double mutants provides a convenient

assay for Ac-DAF-16 function in C. elegans. The C. elegans dauer

defective double mutant strain daf-2(e1370);daf-16(mu86) was

complemented with constructs expressing either Ac-DAF-16

wildtype or AKT site phospho-mutants by microinjection and

incubated at the daf-2 restrictive temperature of 25uC, and stable

extrachromosomal strains established. Transgenic animals were

selected, their progeny allowed to hatch after which they were

shifted to restrictive temperature; 4 days later animals were scored.

The majority (83%) of the offspring developed into dauers, 16%

were arrested larvae and less then 1% developed into the adult

hermaphrodites, indicating that Ac-DAF-16 can partially rescue

the dauer phenotype (Fig. 4 A and B). Single mutation on S381

and double mutations on two of the AKT phosphorylation sites

S107, T312 and S381 had no effect on the capability of Ac-DAF-

16 to rescue the dauer phenotype. Only worms expressing the Ac-

DAF-16 single mutants S107A and T312A or the triple mutant

showed statistically significant development to the adult (p-

values,0.0002; Fig. 4 A and B).

Dauer exit of transgenic C. elegans daf-2;daf-16 dauers
We hypothesized that Ac-DAF-16 is one of the major regulators

of exit from the developmentally arrest L3 stage during hookworm

infection of the host. Therefore, we asked whether transgenic C.

elegans dauers are able to exit dauer. We predicted that daf-2;daf-16

dauers expressing wildtype Ac-DAF-16 would exit the dauer stage

and develop into adults when returned to permissive temperatures.

We would further expect that daf-2;daf-16 dauers expressing AKT

phosphorylation mutants of Ac-DAF-16 might fail to exit dauer,

depending on the importance of the mutated sites for 14-3-3

binding. For example, triple mutated Ac-DAF-16 would not be

phosphorylated by AKT and therefore dauers expressing the Ac-

DAF-16 triple mutant would not be expected to exit dauer. Single

mutations, however, might have a more subtle effect, and some

dauers may be able to progress in development.

To determine the effect of phosphorylation site mutations on

dauer exit, we isolated dauer larvae after 4 days incubation at

restrictive temperature, followed by incubation at the permissive

temperature of 16uC. All of the control daf-2(e1370) dauers

recovered at permissive temperature. Surprisingly, most of dauers

developed to L4/adults in transgenic lines expressing Ac-DAF-16

(Fig. 4C and D). However, fewer of the dauers carrying the Ce-

DAF-16 transgene formed adults; about 51% of dauer larvae died,

14% remained dauers and only 35% were able to resume

development. Most of the dauer larvae expressing wildtype Ac-

DAF-16 exited dauer and developed into adults (72%), whereas

23% died and only 5% persisted as dauer larvae. A similar

outcome was seen for the Ac-DAF-16 single mutant S381A (74%

adults, 6% dauer larvae) and the Ac-DAF-16 double mutant

T312A/ S381A (73% adults, 8% dauer larvae). A significantly

higher fraction remained as dauer larvae when Ac-DAF-16 was

mutated on the first and/or second, first and third phosphoryla-

tion site, and on all three phosphorylation site. We found 15% of

the larvae were dauers in the S107A mutants, 9% in the T312A

mutants, and 11% each in the S107A/T312A and S107A/S381A

mutant. When all three sites were mutated, 17% of the larvae

remained dauers, 23% died and 60% developed to the L4/adult

stage. The statistical analysis indicated that phosphorylation on

S107 and T312 are the most important residues for AKT

regulation of Ac-DAF-16. Both residues were previously shown to

be required for 14-3-3 binding [27]. However, most dauer larvae

recovered even when all three AKT regulation sites were mutated.

This suggests that an AKT-independent mechanism is involved in

the regulation of Ac-DAF-16 in C. elegans during the dauer exit. It

further suggests that hookworm L3 might exit arrest similarly by

an AKT-independent mechanism.

Localization of Ac-DAF-16 expressed in C. elegans during
dauer and dauer exit

Regulation of DAF-16 by IIS is associated with shuttling from

the nucleus to the cytoplasm. However, the majority of transgenic

larvae entered and exited the dauer stage, even without

phosphorylation-competent sites. Therefore, we asked where Ac-

DAF-16 is localized during dauer and when the larvae exit the

dauer stage, and whether mutations on the AKT phosphoryla-

tion sites affect its localization. Using confocal microscopy, the

localization of wildtype and phosphorylation site mutant Ac-DAF-

16::GFP fusion proteins was determined in dauers and recovering

dauers 16 h after downshift to 16uC. At this time, the larvae were

recovering, but remained morphologically dauers.

In dauer larvae incubated at 25uC, Ac-DAF-16 wildtype was

localized primarily in nuclei of hypodermal and body wall muscle

cells, as well as some intestinal cells; these cells also had very low

cytoplasmic levels of GFP. Wildtype Ac-DAF-16 was never

observed exclusively in the nuclei of any cells in dauers (Fig. 5).

When dauer larvae were downshifted to 16uC, wildtype Ac-DAF-

16 was expressed in the same cells, predominantly in the nuclei,

Relative luciferase activity of cells cultivated without serum, treated
with insulin and subsequent treated with IIS inhibitors. LY294009 is a
specific inhibitor of PIP3K and AKT Inhibitor IV and IX specifically inhibit
AKT. The luciferase activity is depicted relative to starved cells (100%
gene expression) and to insulin treated cells (0% expression). C)
Comparison of DBE-driven transcription of Ac-DAF-16 wildtype and
AKT-phospho-mutants when cells were treated as described in A).
doi:10.1371/journal.pone.0025996.g003
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but a higher proportion was localized in the cytoplasm. Single or

multiple mutations on S107, S381 and T312 in Ac-DAF-16 did not

alter the localization pattern in the different cell types (Fig. 5 and

6), but the mutations did affect sub-cellular localization. These

differences were quantified by counting dauers with purely nuclear

DAF-16::GFP signal and those with DAF-16::GFP in both cellular

compartments. Exclusively cytoplasmic expression of either wild-

type or mutated Ac-DAF-16 was never observed. As shown in

Figure 7, Ac-DAF-16 S107A was more frequently localized in the

nuclei of dauer larvae, and larvae with exclusively nuclear

localization were observed. Induction of dauer exit shifted the

localization towards the cytoplasmic compartment so that Ac-

DAF-16 (S107A) was found in both compartments in all worms. A

similar response was observed in dauers expressing Ac-DAF-16

single mutant T312A and the double mutants (S107A/T312A,

S107A/S381A and T312A/ S381A) during dauer and dauer exit.

Dauers expressing the single Ac-DAF-16 mutation S318A and the

triple mutant showed a different pattern. In these cases, DAF-16

remained in the nucleus in a significant number of dauers during

dauer exit, although slightly less so in the triple mutant Ac-DAF-

16. These data indicate that the S381 site can mediate nuclear

exclusion during dauer recovery.

Discussion

Recent publications from our lab and others support the

hypothesis that recovery from developmental arrest by the

hookworm and other parasitic nematode infective stages is

regulated by IIS [27,29,34,35], similar to recovery from dauer in

C. elegans [36]. Here we provide further evidence supporting a

role for IIS in hookworm L3 recovery, in addition to evidence

indicating that another, as yet undefined, mechanism is also

Figure 4. Ac-DAF-16 complements missing endogenous Ce –DAF-16 in C. elegans double mutant daf-2; daf-16. A) Rescue of dauer
defective phenotype of C. elegans daf-2;daf-16 mutants by Ac-DAF-16 wildtype and AKT phosphorylation mutants at 25uC. B) Chi-square analysis of A)
showing significant p-values in bolt. C) Recovery of SDS isolated dauers complemented with Ac-DAF-16 wildtype and AKT phospho-mutants at 16uC.
D) Chi-square analysis of C.
doi:10.1371/journal.pone.0025996.g004
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involved. Using cell-based approaches and in vitro assays, we

demonstrated that hookworm DAF-16 is a downstream target of

IIS and a substrate of AKT kinase. Sub-cellular fractionation of

transfected cell lines indicated that a fraction of nuclear localized

Ac-DAF-16 in starved cells is shuttled to the cytoplasm in response

to serum, and Ac-DAF-16-driven transcription from the conserved

DBE was sensitive to insulin in cell culture. Together, these data

suggest that IIS mediates negative regulation of Ac-DAF-16.

Furthermore, complementation of C. elegans dauer defective

mutants with Ac-DAF-16 restored the dauer phenotype, confirm-

ing that Ac-DAF-16 is orthologous to Ce-DAF-16, and can function

in C. elegans dauer formation in the absence of functional

endogenous DAF-16.

While dauer formation has been a useful paradigm for framing

questions about hookworm developmental signaling, dauer recov-

ery is a more relevant process to the resumption of development that

occurs when hookworm L3 infect a permissive host. However, there

have been few investigations of dauer recovery reported in C. elegans.

For the first time, we examined the role of a heterologous DAF-16 in

recovery from dauer arrest using wildtype and phospho-null AKT

site mutants of hookworm DAF-16 in transgenic dauer larvae.

Transgenic C. elegans dauers expressing wildtype Ac-DAF-16 re-

covered from dauer when shifted to permissive temperature, as

would be expected for a DAF-16 ortholog. Surprising, however,

dauers expressing the phospho-null mutant Ac-DAF-16 also

recovered, indicating that the intact, phosphorylation-capable

AKT sites were not required for dauer recovery. This also suggests

that a mechanism other than AKT/14-3-3 mechanism can mediate

dauer recovery in C. elegans, and by extension, hookworms.

We also examined the localization of GFP labeled Ac-DAF-16

during dauer and dauer recovery. In general, the tissue expression

pattern of transgenic Ac-DAF-16 in the C. elegans daf-2;daf-16

mutants conformed to expression of Ce-DAF-16 under the pdaf16a
promoter, namely expression in hypodermis, intestine, body wall

muscles and neurons [8,34]. Dauers expressing wildtype Ac-DAF-

16 had some cells that had exclusively nuclear localized DAF-16,

but no worms were found that had nuclear expression in all cells.

This was similar to our cell culture results, in which Ac-DAF-16

was found distributed between both the nuclear and cytoplasmic

compartments in starved cells, the equivalent of dauers in that they

lack significant levels of IIS. This mixed distribution suggests that

some shuttling is occurring even under low insulin signaling

conditions. Interestingly, 40–60% of transgenic dauers expressing

Ac-DAF-16::GFP with any phospho-null AKT site mutation

showed exclusively nuclear localization of DAF-16, suggesting

that basal levels of 14-3-3 shuttling require phosphorylation of

these sites in the dauer.

During recovery, localization of wildtype Ac-DAF-16 shifted

from the nucleus to the cytoplasm, in accordance with AKT

phosphorylation and the 14-3-3 shuttle mechanism mediated by

IIS. Similarly, all of the transgenic worms expressing exclusively

nuclear localized phospho-null Ac-DAF-16 underwent a shift to

mixed cytoplasmic and nuclear expression with the exception of

the S381A mutant, in which only 8% of the worms switched to

Figure 5. Cellular localization of Ac-DAF-16 wildtype and single AKT-phospho-mutants in dauer larvae. Pictures are lambda stack
images from transgenic daf-2;daf-16 dauers, expressing fusion constructs of A) Ac-DAF-16 wildtype, single mutants B) Ac-DAF-16 (S107A), C) Ac-DAF-
16 (T312A), D) Ac-DAF-16 (S381A). ‘‘a’’ indicates the anterior end.
doi:10.1371/journal.pone.0025996.g005
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mixed localization. Approximately 11% of the triple mutants also

retained DAF-16 in their nuclei. This indicates a role for S381 in

translocation of DAF-16 to the cytoplasm during dauer recovery.

The requirement for an intact S381 is not absolute, however, as all

double mutants containing S381A showed nuclear localization

during recovery. This suggests that at least two independent

mechanisms control DAF-16 translocation during recovery. One

mechanism requires either intact S107 or T312 sites on DAF-16

for shuttling, whereas the other requires an intact S381 site. AKT

phosphorylation sites S107 and T312, but not S381, were shown

to be required for interaction with hookworm 14-3-3 [27],

suggesting that the S107/T312-dependent mechanism may

represent the canonical AKT/14-3-3 shuttle [14], and that S381

mediates a 14-3-3-independent translocation of DAF-16 from

the nucleus to the cytoplasm during dauer recovery. Previous

publications suggested already that shuttling is not a requirement

to silence DAF-16/FoxO transcriptional activity as shown in cell

based assays [14,37], but a mechanism was not defined.

As all of the worms expressing phospho-null Ac-DAF-16

recovered from dauer, even those lacking site S381 and the triple

mutants, recovery from arrest does not require phosphorylation of

the known AKT sites in Ac-DAF-16. Furthermore, while Ac-DAF-

16 exits the nucleus during recovery, translocation is not essential,

as most worms expressing S381 phospho-null Ac-DAF-16 recover

from dauer despite retention of DAF-16 in the nucleus. This

suggests that a molecular mechanism independent of, or in addition

to, AKT can negatively regulate DAF-16 activity in response to IIS.

Additional outputs of AKT or other IIS kinases might indirectly

regulate DAF-16.

Numerous studies describing the role of DAF-16 and IIS in C.

elegans dauer formation and aging have been reported. DAF-16

expression in neurons is required to restore the dauer phenotype in

dauer defective daf-2;daf-16 mutants, whereas intestinal expression

is required for increased longevity [28]. Expression of wildtype and

mutated versions of Ac-DAF-16 were sufficient to restore the dauer

phenotype in dauer defective daf-2;daf-16 mutants, suggesting

neuronal expression in transgenic dauers during recovery despite

our inability to confirm this visually. However, we could not

identify a comparable study addressing the localization of DAF-16

during dauer exit. In transgenic Strongyloides stercoralis L1,

Castelletto et al showed that phospho-null mutants of the DAF-

16 ortholog Ss-FKTF-1 are trapped inside the nucleus because

AKT/14-3-3 binding sites are missing [35], but the localization of

Ss-FKTF-1 during dauer exit was not addressed. Therefore, we

showed for the first time that DAF-16 of parasitic origin shuttles

from the nucleus to cytoplasm during dauer exit in a process that is

not exclusively dependent on AKT/14-3-3 regulation. Comple-

mentation assays of C. elegans double mutants with Ss-Fktf-1 also

restored the dauer phenotype [34], but the cellular localization of

Ss-FKTF-1 was not reported. In the same study, complementation

with the homogenous Ce-DAF-16 restored the dauer phenotype in

a lower percentage of worms than complementation with the

heterologous parasite transcription factor [34]. We saw similar

results in the dauer exit assays, a higher proportion of dauers

Figure 6. Cellular localization of Ac-DAF-16 double and triple AKT-phospho-mutants in dauer larvae. Pictures are lambda stack images
from transgenic daf-2;daf-16 dauers, expressing fusion constructs of double mutants E) Ac-DAF-16 (S107A/T312A), F) Ac-DAF-16 (S107A/S381A), G)
Ac-DAF-16 (T312A/ S381A) and H) Ac-DAF-16 triple mutant. ‘‘a’’ indicates the anterior end.
doi:10.1371/journal.pone.0025996.g006
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expressing Ac-DAF-16 exited than Ce-DAF-16 expressing dauers.

The reason for this anomaly is unknown, but may be construct-

related.

Cahill et al reported 14-3-3 dependent and independent

regulation of DAF-16 ectopically expressed in HepG2 cells

[14]. Our cell based approach, using Ac-DAF-16 wildtype and

AKT site mutants, confirms the results and showed that even

AKT/14-3-3 null mutants were insulin sensitive. Furthermore, all

cells expressing Ac-DAF-16 variants reacted much more strongly

to insulin than to FBS, suggesting regulation of Ac-DAF-16 is

highly complex, and that regulation in response to other growth

factors in addition to insulin contained in FBS might be involved

as well. Also, cell based assays involving growth factor treatment

to assess DAF-16 regulation must be interpreted carefully, as

ubiquitinylation processes have been reported to lead to

degradation of FoxO proteins [33,38]. However, in addition to

the cell based assay, our dauer rescue and recovery data strongly

suggest that an additional, AKT/14-3-3-independent mechanism

regulates Ac-DAF-16.

As DAF-16 is a convergence point for several developmental

pathways, it is also regulated by IIS dependent and independent

outputs from these pathways [39–46]. These include co-transla-

tional (i.e. myristylation) and post-translational modifications like

acetylation, deacetylation, methylation, dephosphorylation, and

phosphorylation by kinases other than AKT. The role of these

regulatory mechanisms in recovery from dauer and L3 arrest are

unknown, but it is possible that these may play a more significant

role in regulating hookworm L3 DAF-16 than in the C. elegans

dauer stage. Further investigations are necessary to shed light on

the regulation of the hookworm L3 arrest and the role of IIS, as

well as IIS independent mechanisms in the re-activation of

infective, developmentally arrested hookworms.
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