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Abstract
Breeding programs for different species aim to improve performance by testing members of full-sib (FS) and half-sib (HS) 
families in different environments. When genotypes respond differently to changes in the environment, this is defined as 
genotype by environment (G × E) interaction. The presence of common environmental effects within families generates 
covariance between siblings, and these effects should be taken into account when estimating a genetic correlation. 
Therefore, an optimal design should be established to accurately estimate the genetic correlation between environments 
in the presence of common environmental effects. We used stochastic simulation to find the optimal population structure 
using a combination of FS and HS groups with different levels of common environmental effects. Results show that in a 
population with a constant population size of 2,000 individuals per environment, ignoring common environmental effects 
when they are present in the population will lead to an upward bias in the estimated genetic correlation of on average 
0.3 when the true genetic correlation is 0.5. When no common environmental effects are present in the population, the 
lowest standard error (SE) of the estimated genetic correlation was observed with a mating ratio of one dam per sire, and 10 
offspring per sire per environment. When common environmental effects are present in the population and are included 
in the model, the lowest SE is obtained with mating ratios of at least 5 dams per sire and with a minimum number of 
10 offspring per sire per environment. We recommend that studies that aim to estimate the magnitude of G × E in pigs, 
chicken, and fish should acknowledge the potential presence of common environmental effects and adjust the mating ratio 
accordingly.
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Introduction
The purpose of animal breeding programs is to select and 
breed animals that will produce more efficiently under future 
production settings. How well these animals perform depends 
on both their genotype and the production environments 

where they are selected and later kept (Falconer, 1952; Falconer 
and Mackay, 1996). Ranking of animals may differ between 
environments as a result of genotype by environment (G × E) 
interaction (Falconer and Mackay, 1996). The presence of G × 
E can be determined by estimating the genetic correlation (rg) 
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between the environments, using measurements of related 
individuals for a given trait in two environments (Falconer, 
1952). Having unbiased and accurate estimates of the genetic 
correlation is important when predicting the response in 
another environment than the one where the selection 
took  place and when optimizing genetic improvement 
programs in terms of collecting phenotypic and genotypic 
information in production environments (Mulder and Bijma, 
2005; Mulder, 2016).

Genetic correlations can be estimated based on records of 
relatives in two environments. Similarities between related 
individuals can be not only due to heritable genetic effects 
but also due to common environmental effects. Estimating 
the correlation can be done from data collected in breeding 
programs (Falconer, 1952), from specifically designed 
experiments, or a combination of both (Sae‐Lim et al., 2016). 
Estimating genetic correlations between environments based 
on full-sibs (FSs) and half-sibs (HSs) in different environments 
is common in pigs, poultry, and fish, while in cattle 
estimation of genetic correlations between environments is 
almost entirely based on HSs. FS or HS animals are initially 
kept together as, for example, litter groups (pigs), hatched 
chicks in pens (chickens), or hatched fry and fingerlings in 
tanks or cages (fish) until the age of weaning or individual 
tagging. This group rearing period potentially leads to 
common environmental effects. To get an accurate and 
unbiased estimate of the genetic correlation, this common 
environmental effect should be taken into account.

Predicting the standard error (SE) of the genetic correlation 
has been studied for many years. Robertson (1959) presented 
a theoretical basis for predicting the SE of the genetic 
correlation for specific types of relatives (i.e. either only FS 
or only HS) in the absence of common environmental effects. 
Sae-Lim et al. (2010) studied the SE of the estimated genetic 
correlation for a specific combination of an FS–HS design 
in which one male was mated to two different females and 
common environmental effects were not accounted for. 
Omitting the common environmental effects (c2) can lead to 
severely biased estimates of the genetic parameters (Clément 
et al., 2001), and, therefore, accounting for these effects is of 
importance when estimating genetic correlations. Bijma and 
Bastiaansen (2014) presented a formula for the SE of genetic 
correlation estimates taking common environmental effects 
into account, but their work was developed for a purebred–
crossbred scenario, thereby limiting the family design to only 
HS groups.

Knowledge on the optimal FS–HS structure to minimize 
bias and SE of the estimates of the genetic correlation between 
performance in different environments is currently lacking for 
situations where common environmental effects are suspected 
to be present, such as in chicken and fish. The main objective of 
this study was, therefore, to identify optimal mating designs for 
the estimation of genetic correlation between environments in 
the presence of common environmental effects. To achieve this, 
we used stochastic simulations to compare scenarios where 
the ratio of FS and HS relationships, as well as the mating ratio, 
was varied. Results of the simulations were compared with the 
deterministic equations by Robertson (1959) and Bijma and 
Bastiaansen (2014).

Materials and Methods
Animal Care and Use Committee approval was not needed 
because data were simulated.

Experimental populations data were created by stochastic 
simulations in R software version 3.2.2 (R Development Core 
Team, 2016) running in RStudio version 1.0.153 (RStudio Team, 
2015). The genetic correlation between environments was 
estimated using an animal model implemented in ASReml 
(Gilmour et  al., 2014b). Simulation was performed with and 
without the presence of common environmental effects for 
each FS family, and estimation was performed with and without 
accounting for common environmental effects, resulting in a 
2 × 2 design of presence or absence of common environmental 
effects.

Populations

The testing structure was based on a split-family design, 
where the generated FS offspring were divided equally over 
two environments, had trait records, and only their parents 
contributed to the one-generation pedigree. To compare 
scenarios with equal requirements for phenotyping efforts, all 
our designs had a constant population size of 2,000 individuals 
per environment. This population size is the same as the starting 
point for simulations in Sae-Lim et  al. (2010), who showed 
unbiased estimates of rg for designs with 100 families with 20 
offspring. The trait heritability (h2) was 0.3 in each environment, 
and the genetic correlation (rg) between environments was set 
equal to 0.5. The investigated variables were the number of 
sires (20 to 1,000), number of dams per sire (1,5, or 10), and the 
resulting number of offspring per dam was adjusted to keep 
the total population size constant. All scenarios were simulated 
with and without common environmental effects and all 
datasets were analyzed with a model accounting for or ignoring 
the common environmental effects. The value c2 is the variance 
of the common environmental effect (σ2

C)as a proportion of the 
total phenotypic variance. The simulated values for c2 were 
0, 0.05, and 0.1, which is in the range of what is commonly 
observed in livestock and fish (Table 1).

Breeding values and phenotypes

True breeding values of the parents for two environments 
were drawn from a bivariate normal distribution with means 

of zero, variance–covariance matrix equal to 

ñ
0.3 0.15
0.15 0.3

ô
, and 

using a heritability of 0.3 in both environments. The phenotypic 
variances (σ2

P) were set to 1 in both environments. The genetic 
correlation between the two environments was set to 0.5. 
Common environmental effects in, for example, chicken, pigs, or 
fish are typically due to common rearing of juveniles before they 
are exposed to the different growing environments. Therefore, 
due to these same rearing conditions, the correlation between 
common environmental effects for the two environments was 
set to 1. For each FS group, the common environmental effect 
was equal for all individuals. The common environmental 
effects for each FS group were simulated by drawing values 
from a standard normal distribution with a mean of zero and 
variance equal to the common environmental effect variance 
(N(0, σ2

C)).
A true breeding value for each individual offspring, for each 

specific environment (i) in which it was kept, was simulated as:

TBV0i = 0.5
(
TBVmi + TBVfi

)
+msi,

Abbreviations 

FS	 full-sib
HS	 half-sib
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where TBVmi and TBVfi are the true breeding values previously 
assigned to the male and female parents respectively, and msi 
is the Mendelian sampling term. The Mendelian sampling term 
was drawn from a normal distribution with mean of zero, and a 
variance equal to half the additive genetic variance (N(0, 0.5σ2

A)). 
Offspring phenotypes were obtained by adding their true 
breeding value, common environmental effect, and a simulated 
environmental effect sampled from a normal distribution N(0, 
(1− σ2

A − σ2
C)). Simulations experiments were replicated 500 times.

Estimation of genetic parameters

The genetic correlation was estimated from the simulated data 
using two different models, one accounting for the presence 
of common environmental effects and another ignoring these 
effects. The models were fitted as follows:
Model 1

ñ
y1

y2

ô
=

ñ
x1 0
0 x2

ô ñ
µ1

µ2

ô
+

ñ
Z1 0
0 Z2

ô ñ
a1

a2

ô
+

ñ
W1

W2

ô
c +

ñ
e1
e2

ô
� (1)

Model 2

ñ
ly1

ly2

ô
=

ñ
x1 0
0 x2

ô ñ
µ1

µ2

ô
+

ñ
Z1 0
0 Z2

ô ñ
a1

a2

ô
+

ñ
e1
e2

ô
� (2)

where y1 and y2 are vectors with the phenotypes measured in 
environment 1 and 2, x1 and x2 are the incidence vectors relating 
the traits to the mean in environment 1 (µ1) or environment 2 (µ2), 
Z1 and Z2 are the incidence matrices relating the phenotypes to the 
random additive genetic effect in environments 1 (a1) and 2 (a2), 
W1 and W2 are the incidence matrices relating the phenotypes 
per sire offspring to the common environmental effect (c), 
and e1and e2 are the vectors containing the random residual 
effects. The estimated breeding values were assumed to follow 

a normal distribution (∼ N

Çñ
0
0

ô
,

ñ
Aσ2

A1 AσA1,2

AσA1,2Aσ2
A2

ôå
), where A is 

the pedigree relationship matrix, σ2
A1 is the genetic variance 

in environment 1, σ2
A2 is the genetic variance in environment 

2, and σA1,2 is the genetic covariance between environments 1 
and 2. The residual covariance was fixed at zero, because each 
animal is performing in only one environment. The residuals 

were assumed to be independent (∼ N

Çñ
0
0

ô
,

ñ
Iσ2

e1 0
0 Iσ2

e2

ôå
), 

where σ2
e1 and σ2

e2 are the residual variances in environments 

1 and 2, respectively. The residual covariance was fixed at zero, 
because each animal is performing in only one environment.

Summarizing simulation output

The estimates and SEs were obtained as reported by ASReml 
version 4.1 software (Gilmour et al., 2014b) for each of the genetic 
parameters h2

1, h
2
2, rg, and c2. Replicates with estimates of rg in the −1 

to 1 range, that had converged, and where the variance–covariance 
matrices were positive definite were kept for further analysis. 
The proportion of replicates that did not converged ranged from 
0.2% to 49.2% (Supplementary Table S1). For most scenarios, the 
SE of the genetic correlation was negatively correlated with the 
size of the correlation estimate. However, for the same level of 
correlation, the SEs still differed considerably between replicates; 
therefore, the SE could not be predicted from the estimate. This 
illustrates the scenarios cannot be evaluated based on only one 
replicate (Supplementary Figure S1). The R-script used for the 
simulations is included as Supplementary Material S1.

Accuracy of genetic correlation estimates

The accuracy of the estimated genetic correlation was obtained 
by 1)  the standard deviation across estimates from different 
simulation replicates and 2)  the average of the approximated 
SEs reported by ASReml (Fischer et  al., 2004; Gilmour et  al., 
2014a). If the true and statistical models are the same, it is 
expected that the standard deviation across estimates is similar 
to the average SE if the approximation is accurate. For scenarios 
without a common environmental effect, the SEs of the genetic 
correlation were compared with deterministic predictions, 
which assume that the true parameters are known. First, for 
scenarios with only FSs, or only HSs, the SE was predicted by 
Robertson’s equation (1959):

SE
(
r̂g
)
≈

Ãî
1+ nt

Ä
1− r2g

äó2
+ r2g

(N− 1)n2t2
� (3)

Where N is the number of sire families, n is the number of 
offspring per environment, and t is the intra-class correlation (e.g., 
for HSs, t = 0.25h2),and rg is the known genetic correlation between 
environments. Second, for scenarios with only HSs, the SE was 
predicted using the equation from Bijma and Bastiaansen (2014):

SE(r̂g) ≈

√
1

ρx2ρy2
+ (1+ 0.5

ρx4
+ 0.5

ρy4
− 2

ρx2
− 2

ρy2
)r2g + r4g

N− 1
� (4)

Table 1.  Simulated population structures for three different mating ratios, each one with three different levels of common environmental 
effects (c2) 

Mating ratio c2 Population structure

1:2 0; 0.05; 0.1 Number of sires 1,000 500 200 100 50 40 25 20
HS number per environment1 2 4 10 20 40 50 80 100
Number of dams 2,000 1,000 400 200 100 80 50 40
FS number per environment 1 2 5 10 20 25 40 50

1:5 0; 0.05; 0.1 Number of sires 400 200 100 80 40 20   
HS number per environment1 5 10 20 25 50 100   
Number of dams 2,000 1,000 500 400 200 100   
FS number per environment 1 2 4 5 10 20   

1:10 0; 0.05; 0.1 Number of sires 200 100 50 25 20    
HS number per environment1 10 20 40 80 100    
Number of dams 2,000 1,000 500 250 200    
FS number per environment 1 2 4 8 10    

1Sire offspring per environment.

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skaa034#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skaa034#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skaa034#supplementary-data
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Where N is the number of sire families, ρx2 and ρy2 are the 
reliabilities of estimated breeding values in each environment 
calculated using formulas 2 and 3 in Bijma and Bastiaansen 
(2014), and rg is the true genetic correlation between 
environments.

Results
The average SEs as reported by ASReml were not different from 
the standard deviation estimated over replicates. Therefore, we 
only report the latter. The SE of the r̂g for the scenarios where 
equations from Robertson (1959) and Bijma and Bastiaansen 
(2014) could be applied (i.e., only FS or only HS) did not differ 
from SE obtained by the simulations (see Supplementary Table 
S2 for the SEs). Only results from simulations are reported here.

SE of estimated rg with c2 = 0

In the absence of common environmental effects, the smallest 
SE was obtained with FS groups only, where the minimum SE 
for our population size of 2,000 per environment (0.097) was 
found for 10 offspring per sire per environment (Figure 1). With 
HS groups only, the minimum SE (0.144) was obtained with 20 
offspring per sire per environment (Figure 1).

In the absence of common environmental effects, having 
an FS–HS structure gave higher SE of the r̂g than having only 
FS, but lower SE than having only HS (Figures  1 and 2a). 
With 10 offspring per sire per environment, the SE of the r̂g
increased from 0.097 in a 1:1 mating ratio (Figure 1) to 0.100, 
0.114, and 0.128 for a 1:2, 1:5, and 1:10 ratio, respectively 
(Figure  2a). When the number of offspring per sire per 
environment increased, and consequently the number of 
sires decreased, the SE increases rapidly with a 1:1 mating 
ratio (Figure  1) but much slower with more than one dam 
per sire (Figure  2a). When the number of offspring per sire 
per environment was equal or greater than 40, the SE for a 
1:1 mating ratio (FS family design) was larger than the SE for 
all the other mating ratios (Figure  2a). In summary, in the 
absence of common environmental effects, a 1:1 mating ratio 
with no more than 10 offspring per sire per environment will 
result in the smallest SE.

SE of estimated rg with c2 > 0

In the presence of c2 in the population, and when accounting 
for c2 in the model, the smallest SE of the r̂g for all mating 
ratios was found when the number of offspring per sire per 
environment was equal to 20 (Figure 2b and c). The lowest SE 
of the r̂g was reached when the mating ratio was 1:10 with 

Figure 1.  SE of the estimated genetic correlation for simulated scenarios for only HS and only FS for a population size of 2,000 individuals per environment and no 

common environmental effects (c2). 

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skaa034#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skaa034#supplementary-data
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20 offspring per sire per environment, which resulted in each 
offspring having 1 FS and 18 HS in the same environment 
(SE  =  0.131; Figure  2b and c; Table  1). When c2 was present, 
and included in the model, the SEs of the r̂g increased for 
all scenarios, compared with the scenarios when c2 was not 
present and not included in the model (Figure 2). When the 
number of offspring per sire per environment increased, the 
SE for the 1:2 mating ratio became extremely large. However, 
when there were more females mated per male, the SE of  
the r̂g  also increased when the number of offspring per 
sire per environment increased, but at a much lower rate 
(Figure 2). In the presence of c2, the best design with smallest 

SE is of 10 females mated per male with 20 offspring per sire 
per environment.

Estimates of rg and c2 from the correct model

In the absence of c2 and without the common environmental 
effect in the model, the r̂g were unbiased (Figure  3c). When c2 
> 0, and the common environmental effect was included in 
the model, the r̂g were also unbiased (for all different mating 
ratios and levels of c2 tested (Figure  3b; only showing results 
for 1:10 mating ratio). The estimates of c2 themselves were also 
unbiased when common environmental effects were present in 
the population and included in the model (Figure 4b).

Figure 2.  SE of the estimated genetic correlation for different simulated scenarios using the correct model for three mating ratios for a population size of 2,000 

individuals per environment, and three levels of common environmental effects (c2). In panel (a), c2 = 0 and no common environmental effects included in the model, 

in panel (b) c2 =0.05 and the common environmental effects are included in the model, and in panel (c) c2 =0.1 and the common environmental effects are included in 

the model.
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Estimates of rg and c2 from the incorrect model

In the absence of common environmental effects in the 
population (c2 = 0) but with the common environmental effects 
present in the model, there was a downward bias of the r̂g of on 
average 0.1 (Figure 3a), and an increase in the standard deviation 
of the genetic correlation estimates. The estimates of c2 were 
biased upward by on average 0.02 (Figure 4a). On the other hand, 
estimates of genetic correlations showed an upward bias of 
on average 0.3 (from 0.5 to 0.8) when common environmental 

effects were present in the population, but not included in the 
model (Figure 3d). We only show the results for the 1:10 mating 
ratio but this pattern was the same for all different mating ratios 
and levels of c2 tested.

Discussion
The aim of this study was to identify the optimal mating design 
to estimate the genetic correlation between environments in 

Figure 3.  Distribution of the estimated genetic correlation for 1:10 mating ratio for a population size of 2,000 individuals per environment when (a) c2 = 0 and (b) c2 = 0.05 

and common environmental effects are included in the model. When (c) c2 = 0 and (d) c2 = 0.05 and common environmental effects are not included in the model. The 

dashed line indicates the simulated value of the genetic correlation (rg=0.5).
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the presence of common environmental effects and different 
FS and HS ratios. Estimates of genetic correlations of traits 
between different environments are of crucial importance for 
the design and optimization of breeding programs. Neglecting 
the existence of a G × E interaction will lead to reduced response 
to selection (Mulder and Bijma, 2005; Dominik and Kinghorn, 
2008). For accurate estimates, experimental designs should be 
optimized. In many situations, the populations used to collect 
data can be designed to a certain degree.

Some studies can or have to use field data to estimate 
genetic correlations (Mulder et  al., 2004; Haile-Mariam et  al., 
2015; Sevillano et  al., 2016; Godinho et  al., 2018), but other 
studies use experimental designs under specific population 
structures to estimate the magnitude of G × E (Lwelamira, 2012; 
Trọng et  al., 2013; Sae-Lim et  al., 2014; Omasaki et  al., 2016; 
Dottavio et  al., 2019; Lillehammer et  al., 2019). As common 
environmental effects generate similarities between individuals, 
these effects should be taken into account when designing the 

best population structure to estimate the genetic correlations 
(Winkelman and Peterson, 1994). Here we show the importance 
of choosing the experimental design when taking common 
environmental effects into account. Not accounting for these 
effects will lead to biased estimates of the genetic correlation 
and common environmental effects will increase the SE of 
genetic correlations.

Levels of c2

Siblings often share a common environment during the early 
rearing stage, increasing the phenotypic covariance between 
relatives. In livestock, some studies have reported high levels of 
c2 ranging from 0.06 to 0.5. For example, in several pig breeds, 
the proportion of variance due to common environmental 
effects has been reported to be around 0.34 for intramuscular 
fat, between 0.06 and 0.53 for fat composition in Iberian pig 
lines (Ibáñez-Escriche et al., 2016) and between 0.22 and 0.26 for 
days to 100 kg (Li and Kennedy, 1994). For catfish body weight, 

Figure 4.  Distribution of the estimated common environmental effect for 1:10 mating ratio for a population size of 2,000 individuals per environment when (a) c2 = 0 

and when (b) c2 = 0.05. The dashed line indicates the simulated value of the common environmental effect c2 = 0.0, and c2 = 0.05, respectively.
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estimates reported range between 0.06 and 0.33 (Tran, 2016). 
For Venda chicken body weight, common environmental effects 
for weight at hatching and weight at 4 wk were reported to be 
0.39 and 0.18, respectively (Norris and Ngambi, 2006). Here we 
show that the higher the level of c2, the greater the bias of the 
estimated genetic correlation when not including common 
environmental effects in the model. Therefore, the high levels 
of c2 in these studies highlight the relevance to take common 
environmental effects into account in the model and to optimize 
the design for estimating genetic correlations.

Optimizing mating designs

When the number of animals to be phenotyped is fixed, the SE 
of the estimated genetic correlation can still be influenced by 
the mating design. In animal breeding programs, nested designs 
are traditionally used, where one sire is mated to a different 
number of dams. Bijma and Bastiaansen (2014) predicted the 
SE of the estimated genetic correlation for mating ratios that 
are typically used for four species under different levels of c2. 
Comparing mating ratios of 1:2 for tilapia, 1:7 for laying hens, 
1:10 for pigs, and 1:12 for broilers, they report the highest SE of 
the estimated genetic correlation for a 1:2 design such as used in 
Nile tilapia. Increasing the number of dams per sire was found 
to lower the SE of the r̂g. This is in agreement with our study, 
where we show that having a higher number of dams per sire 
will give more accurate estimates of the genetic correlation 
regardless of the level of c2. Even though having more than 10 
dams per sire may give even smaller SE of the ̂rg, this will reduce 
the number of sires used considerably, which is not desired for 
reasons of genetic diversity, when the experiment is part of a 
breeding program.

With a given population size of, for example, 2,000 individuals 
per environment, having a higher number of females per male 
reduces the number of FSs (offspring per dam) per environment 
but keeps the number of HSs (offspring per sire) per environment 
the same. Distinguishing common environmental effects 
from genetic effects requires that related individuals exist in 
different environments, and that there is variation in the degree 
of relatedness between individuals that share the particular 
common environment (Kruuk and Hadfield, 2007). To minimize 
bias in the estimates of the genetic correlation, having more 
dams per sire should be implemented.

In cases when the number of offspring per sire per 
environment increases, the number of parents linking this 
offspring to each environment decreases. Therefore, when the 
number of offspring per sire is larger than 40, the number of 
dams per sire should be increased to be at least 5. With common 
environmental effects present in the population, the optimum 
number of offspring per sire per environment is equal to 20. 
Having more dams per sire, at least 5, will then be needed to 
compensate for the low number of sires.

In accordance with Robertson (1959), in the absence of 
common environmental effects, the 1:1 mating ratio gives the 
lowest SEs for the estimated genetic correlation. However, to 
benefit from using a 1:1 mating ratio, there has to be certainty 
about the absence of common environmental effects, so that 
there is no bias on the estimated genetic correlation. Under 
this mating ratio, the variance between FSs is half of the 
additive genetic variance plus the variance due to common 
environmental effects. Ignoring the common environmental 
effects will, therefore, overestimate the additive genetic variance 
by two times the common environmental effect variance (Kruuk 
and Hadfield, 2007). On the other hand, using only HSs gives 
the highest SEs for the estimated genetic correlation. Formulas 

and simulations assume a balanced design, and that the fixed 
effects are known, while the actual estimation of the genetic 
correlation typically involves unbalanced data and estimation of 
the fixed effects. It should be noted that the SEs of the estimated 
genetic correlation obtained from the Bijma and Bastiaansen 
(2014) formula are slightly lower for all the different population 
structures compared with the SEs obtained by the simulations 
and by the Robertson (1959) formula. Therefore, the formula 
presented by Bijma and Bastiaansen (2014) can be interpreted 
as a lower bound of the SE of the ̂rg for only HS relationships.

Nested designs, with a 1:2 mating ratio, are commonly seen 
in, for instance, Nile tilapia breeding programs. These designs are 
applied because FSs need to be reared separately until tagging 
before they are transferred to communal growth environment. 
Family production in some fish breeding programs like tilapia 
relies on natural mating and families are kept separate for 
a long period, making it likely that common environmental 
effects are introduced (Winkelman and Peterson, 1994; Trọng 
et  al., 2013). Two dams per sire is the minimum design to 
allow the estimation of c2. However, some G × E studies in Nile 
tilapia have shown difficulties when trying to estimate genetic 
parameters while including common environmental effects 
in the model. They attribute this problem to the low number 
of dams mated to each sire (1:2 or 1:3 mating ratio) and to a 
fixed effect such as spawning date being confounded with the c2 
(Omasaki et al., 2016). Other studies have estimated significant 
levels of common environmental effects present for different 
tilapia species (Thodesen et  al., 2013; Trọng et  al., 2013; Thoa 
et al., 2015). Using a 1:2 mating design in Red Tilapia, estimates 
for c2 ranging from 0.23 to 0.59 were found in fish kept in ponds, 
and estimates between 0.1 and 0.31 were found for fish kept in 
cages (Nguyen et al., 2017).  These significant levels of c2 and the 
fact that different studies had trouble in estimating c2 highlight 
the importance of optimizing designs to estimate both c2 and rg.

With an appropriate experimental design to estimate the 
presence of common environmental effects, the question arises 
of when to include or not the common environmental effects 
in the model. With small estimates of common environmental 
effects, in the range of 0.01 to 0.02, a logical conclusion could be 
to remove it from the model. The downside of considering these 
range of effects being close to 0, or very small, and removing 
them from the model, can still lead to a bias in the estimates 
of the genetic correlation and heritabilities. The population 
structure will also play a role in this decision. Based on the 
scenario presented here with a constant population size of 2,000 
offspring per environment, the common environmental effects 
should be always included in the model when these common 
environmental effects are likely to be present based on the 
husbandry system and biology of the trait.

Impact of biased rg estimates

Based on the scenario presented here of a constant population 
size of 2,000 individuals per environment, and a true genetic 
correlation equal to 0.5, if common environmental effects are 
present in the population, and are not considered in the model 
will lead to an overestimation of the genetic correlation of on 
average 0.3.  Biased genetic parameter estimates will lead to an 
erroneous conclusion about the genetic values of individuals 
for the different environments, to over- or underestimating 
the importance of G × E, and possibly suboptimally designed 
breeding programs. Biased genetic correlation estimates 
can also lead to erroneous conclusions about the genetic 
improvement in breeding programs (Dominik and Kinghorn, 
2008; Chu et  al., 2018). Overestimated genetic correlations 
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would result from wrongly ignoring the presence of c2, and 
could lead to the conclusion that G × E is absent, when in 
fact it exists. These biased estimates of genetic correlations 
may cause the decision to have a single breeding program to 
serve the different environments, while the optimal decision 
would be to have multiple separate breeding programs 
(Mulder et al., 2006).

In cases where the genetic correlation is estimated between 
traits measured in the same individuals, ignoring the common 
environmental effects is likely to lead to bias similar to what is 
observed for the G × E scenario presented in this study. In those 
estimates, the common environmental effects are more likely 
to have a non-unit correlation, as some traits are more affected 
by maternal care or other early-life conditions than others. As 
presented in this study, with a correlation of 1 between common 
environmental effects, under a 2,000 population size scenario, 
the estimates of the genetic correlation are severely biased. 
The extent of the bias may vary with the level of common 
environmental effects, and with the correlation between effects 
in different environments, but the bias is not expected to 
disappear under certain conditions except when the common 
environmental effects are truly zero.

Robertson (1959) presented a formula to predict the SE of the 
genetic correlation for restricted family groups, either only FSs 
or only HSs in the absence of common environmental effects. 
Later on, Bijma and Bastiaansen (2014) presented a formula 
to estimate the SE of the genetic correlation accounting for 
common environmental effects but restricted the family design 
to only-HS groups. In animal breeding, it is common to estimate 
the genetic correlation between environments for a combination 
of FS and HS separated in two environments. With these family 
designs, the presence of common environmental effects is 
very likely. Therefore, the previous theoretical bases should be 
considered with some caveats, as they do not resemble the actual 
genetic improvement programs. This study acknowledges the 
combination of FS and HS groups and the presence of common 
environmental effects for the estimation of the SE of the genetic 
correlation. This will allow for animal breeders to decide on the 
appropriate population structure needed to achieve unbiased 
estimates under more realistic scenarios.

Currently, genomic information is widely implemented to 
estimate genetic parameters. A  study that compared the use 
of pedigree vs. genomic relationships to estimate the genetic 
correlation between different traits showed that there was an 
increase in the accuracy of the estimated genetic correlation 
when using only genomic relationships. Combining both 
pedigree and genomic relationships gave the most accurate 
estimates of the genetic variance and genetic correlations. They 
conclude that the combination of both relationships can be 
beneficial for small data sets (Veerkamp et  al., 2011). Optimal 
designs that use genomic relationships to estimate the genetic 
correlation in the presence of common environmental effects 
can show different results than the ones illustrated here. We 
encourage this to be investigated. 

This simulation study focused on finding the optimal 
population design to minimize the SE of the genetic correlation 
in the presence of common environmental effects. The constant 
population size of 2,000 individuals per environment allowed us 
to make comparisons across different mating ratios. We show 
that mating structures with more than two dams per sire should 
be used to better disentangle the common environmental 
effects from the genetic effects, thereby obtaining a lower SE of 
the estimated genetic correlation. Only when there is certainty 
about the absence of common environmental effects in the 

population, a single dam per sire will give the lowest SE and an 
unbiased estimate of the genetic correlation.
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Supplementary data are available at Journal of Animal Science 
online.
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