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Integrative analysis of multimodal patient
data identifies personalized predictors
of tuberculosis treatment prognosis

Awanti Sambarey,1 Kirk Smith,1 Carolina Chung,1 Harkirat Singh Arora,1 Zhenhua Yang,2 Prachi P. Agarwal,3

and Sriram Chandrasekaran1,4,5,6,*

SUMMARY

Tuberculosis (TB) afflicted 10.6million people in 2021, and its global burden is increasing due tomultidrug-
resistant TB (MDR-TB) and extensively resistant TB (XDR-TB). Here, we analyze multi-domain information
from 5,060 TB patients spanning 10 countries with high burden of MDR-TB from the NIAID TB Portals
database to determine predictors of TB treatment outcome.Our analysis revealed significant associations
between radiological, microbiological, therapeutic, and demographic data modalities. Our machine
learning model, built with 203 features across modalities outperforms models built using each modality
alone in predicting treatment outcomes, with an accuracy of 83% and area under the curve of 0.84.
Notably, our analysis revealed that the drug regimens Bedaquiline-Clofazimine-Cycloserine-Levofloxa-
cin-Linezolid and Bedaquiline-Clofazimine-Linezolid-Moxifloxacinwere associatedwith treatment success
and failure, respectively, for MDR non-XDR-TB. Drug combinations predicted to be synergistic by the IN-
DIGO algorithm performed better than antagonistic combinations. Our prioritized set of features predic-
tive of treatment outcomes can ultimately guide the personalized clinical management of TB.

INTRODUCTION

Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis (Mtb), is currently the world’s deadliest disease due to a bacterial

infection. Of the approximately 10.6 million new cases of TB in 2021, nearly 5% of infections were accounted for by multidrug-resistant tuber-

culosis (MDR-TB) or extensively drug-resistant (XDR) strains,1 with the highest burden seen in theWorld HealthOrganization (WHO) European

Region including Ukraine, Moldova, Belarus, and Russia. The ongoing war and humanitarian crisis in Ukraine and bordering countries are pre-

dicted to result in increased MDR-TB cases and disruption of healthcare services.2 Additionally, the COVID-19 pandemic has resulted in

reduced access to TB diagnosis and treatment, reversing decades of progress in disease management globally. The WHO has now called

for entirely new strategies to meet the goals for ‘‘End TB,’’ which aims to reduce TB deaths by 95% by 2035.3

Treatments for TB typically involve combination therapy of 4 or more drugs, such as theWHO-recommended regimen of ‘‘isoniazid, rifam-

picin, pyrazinamide, ethambutol’’ (HRZE) for sensitive TB cases, to more complicated regimens that may exceed 9 months for drug-resistant

TB cases. Recent updates to TB treatments have included a shorter 6-month BPaLM regimen comprising bedaquiline, pretomanid, linezolid,

andmoxifloxacin. This regimenmay be used for MDR or rifampin-resistant TB patients in place of the previously used 9-month regimen or the

longer (R18 months) regimen.4 While encouraging, the duration is still long with noticeable side effects which can often lead to treatment

non-adherence.5 Thus there is a need to determine more optimal treatment strategies for TB.3

A key challenge has been the lack of integrative algorithms to predict treatment prognosis based on the relationships between different

features to identify patients needing tailored treatment approaches.6,7 Once diagnosis of TB has been confirmed, it becomes vital that clinical

healthcare workers make appropriate treatment decisions based on the individual clinical presentation of the disease. Delays in treatment

initiation or providing inappropriate treatment to treat drug-resistant strains results in poor prognosis and risk of death.8 Several factors

including presence of comorbidities, patient socioeconomic status, and drug resistance are associated with TB treatment failure. Imaging

techniques such as chest X-rays (CXRs) and computed tomography (CT) scans have also been shown to provide high sensitivity as a diagnostic

tool and additional insight into TB disease prognosis.9,10 We hypothesized that with the increasing availability of real-world multimodal pa-

tient information, it is now feasible to build prediction models to estimate an individualized probability of a specific treatment endpoint.11
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Prior studies have focused on individual data modalities separately to make TB treatment outcome predictions with limited success.11–14 An

unbiased approach that integrates all modalities of host and pathogen data available in the clinical setting is necessary to predict treatment

outcomes more accurately.

In this study, we analyze multimodal clinical data from drug-sensitive pulmonary TB, MDR non-XDR TB, and XDR TB patients across

different geographical populations and implement machine learning to identify patient, drug, and pathogen features predictive of treatment

prognosis.We leverage theNational Institute of Allergy and Infectious Diseases (NIAID) TB Portals database, an invaluable resource for multi-

modal TB data that is continuously updated with new patient information.15 The database consists of real-world patient data comprising

linked socioeconomic/geographic, radiological, clinical, and treatment data as well as genomic information of infecting Mtb strains from

patients of 10 countries with a high MDR-TB burden, including Ukraine, Moldova, Georgia, India, and Belarus. Further, in contrast to prior

predictive models of TB Portals that focus on a single modality and were evaluated using only cross-validation, we conducted additional vali-

dation of ourmultimodal predictions on newunseenpatient data that are populated in the TB Portals database, which providesmore rigorous

evaluation. We also analyze the longitudinal treatment regimens given to patients with different types of drug resistance and determine the

drug combinations that are most significantly associated with clinical success in drug-resistant TB at each line of treatment (LoT). Overall, our

integrated analysis of clinical, radiological, and genomic features can aid in clinical management of TB by identifying patients at risk of failure.

RESULTS

Statistical exploration of the TB Portals database

The TB Portals database has clinical data from 5,060 patients collected across 10 countries spanning Eastern Europe, Asia, and Africa at the

time of analysis (Figures 1A and S1A) and is constantly being populated with new patients from additional countries. Data from Moldova,

Georgia, and Belarus are most prevalent, followed by those of Ukraine, Azerbaijan, Romania, and Kazakhstan (Figure 1B). These represent

a high burden of drug-resistant TB cases, even though China and India have an overall higher burden of TB.1

The dataset had 203 features which we grouped as 3 different modalities: a) patient socio-demographic and clinical characteristics, b)

radiological imaging attributes derived from CXRs and CT scans, and c) pathogen drug susceptibility and genomic mutations implicated

in resistance to individual drugs. The dataset originally described 5 different treatment outcomes, as listed in Table 1. We pooled the out-

comes ‘‘cured’’ and ‘‘completed’’ as they depicted a ‘‘successful outcome,’’ while outcomes ‘‘failure,’’ ‘‘died,’’ and ‘‘palliative care’’ were

pooled together as ‘‘failure,’’ depicting unsuccessful outcome of treatment. After removing samples that had outcomes ‘‘Still on treatment,’’

‘‘unknown,’’ or ‘‘not reported,’’ there were a total of 4,139 TB patients with these two outcomes of success and failure that were then consid-

ered for further analysis for each modality.

Successful outcomes were present at least 3-fold more than failure. We take this data imbalance into consideration while building and

analyzing ourmodels. We also observe a highermale population with TB compared to the female population both overall (Figure 1C), consis-

tent with most TB reports globally. The majority of TB cases in the dataset were new or first instances of TB reported for that patient, while

more than 500 patients show instances of relapse, as per the case definition (Figure S1B). There were 6 types of drug susceptibilities observed

in theMtb strains namely a) Sensitive, implying no resistance to any anti-TB drugs, b)Mono-DR, where resistance is seen to one first-line anti-

TB drug, c) Poly-DR, where resistance is seen to more than one first-line anti-TB drug, d) MDR non-XDR, where resistance is seen to at least

both isoniazid and rifampin, e) Pre-XDR, TB caused byMtb strains that are multidrug resistant and rifampicin resistant (MDR/RR TB) and also

resistant to any fluoroquinolone, and f) XDR-TB caused byMtb that is resistant to isoniazid and rifampin, plus any fluoroquinolone and at least

one of three injectable second-line drugs (i.e., amikacin, kanamycin, or capreomycin).16,17 TheMDR non-XDR type of resistance is observed to

be most prevalent across infected populations in the dataset (Figure 1E). Patients with drug-resistant TB show a corresponding increase in

treatment times compared to drug-sensitive TB, with the longest average treatment duration seen for patients with MDR non-XDR and

XDR TB (Figure S1C).

Drug combinations associated with successful outcomes for drug-resistant TB

In the TB Portals dataset, we observe patients with up to 12 lines of treatment as seen in Figure 2A. We further broke down the cohort to look

at individual types of drug resistance, and the regimens most associated with success in each instance. We chose a subset of regimens which

were given to a minimum of 10 patients for statistical analysis. Majority of patients received a single line of treatment (LoT 1), and 70.3% of

these patients had a successful outcome (Figure 2A).

To determine associations of drug regimens with outcome, we focused on drug regimens given up to 3 LoTs. For each LoT, we calculated

the number and prevalence of each treatment regimen in both outcome classes of success and failure. A Fisher’s exact test was performed to

determine the significant associations between regimen and outcome, broken down by type of resistance using Fisher’s exact test (Table 2).

The odds ratios are indicative of the likelihood of patients receiving this regimen having a successful outcome, with values > 1 implying likeli-

hood of success, while values < 1 are associated with failure.

As seen in Figure 2B, the number of treatment regimens a patient received variedwith the type of resistance of the infectingMtb strain, as a

majority of Sensitive TB patients (1,110) and MDR non-XDR TB patients (1,089) received a single treatment regimen (LoT1) (Figure 2B). Of the

1,110 Sensitive TB patients in LoT1, 1,025 patients received the standard-of-care regimen of HRZE, of which 84.2% (864 patients) had success-

ful outcomes. For patients with MDR non-XDR TB who received a single LoT, the treatment regimen ‘‘bedaquiline, clofazimine, cycloserine,

levofloxacin, linezolid’’ was strongly associated with treatment success, and most patients with MDR non-XDR TB were given this regimen

(p = 0.0004). Surprisingly, the regimen of ‘‘bedaquiline, clofazimine, linezolid, and moxifloxacin’’ showed significant association with failure
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Figure 1. Statistical exploration of the TB portals database

(A) Workflow adopted in this study to analyze multimodal clinical data of TB patients. A total of 5,060 patients from 10 different countries were considered for the

analysis, with over 200 features available representing pathogen genomic features, patient clinical and social features, as well as radiological features derived

from patient chest X-rays. We analyzed each of these categories separately. Data analysis involved building machine learning models (random forests) and

conducting statistical analyses to predict disease outcomes—grouped as Success and Failure, respectively. Feature importance was performed using

Shapley analysis as well as hypergeometric tests to determine the predictors associated with both success and failure. A final unified model was built

comprising top features across all modalities. All model performances were evaluated by 2 types of validation: a) cross-fold validation (k = 5) where the input

data were split into training and test sets and b) predicting outcomes on newer patients that were populated in the TB Portals database.

(B) Overview of the data present in the TB Portals database. Distributions of number of patients per country for all 10 countries present in the TB Portals database.

(C) Distributions of gender by 2 pooled outcomes of success and failure.

(D) Distribution of BMI levels seen across outcomes of success and failure.

(E) Drug susceptibility in Mtb strains isolated from patients implicated in resistance to individual drugs.

ll
OPEN ACCESS

iScience 27, 109025, February 16, 2024 3

iScience
Article



for MDR-TB (p = 0.003). There were no regimens significantly associated with success or failure for Mono-DR, Pre-XDR, or XDR-TB in the

first LoT.

There were only 2 longitudinal regimens with 2 LoTs for MDR non-XDR TB that were given to at least 10 patients. The regimen ‘‘bedaqui-

line, clofazimine, cycloserine, levofloxacin, linezolid’’ followed by ‘‘clofazimine, cycloserine, levofloxacin, linezolid’’ was given to 22 patients,

and all of them showed a successful treatment outcome (p = 0.0004). The regimen ‘‘clofazimine, capreomycin, ethambutol, isoniazid, pyra-

zinamide,moxifloxacin, prothionamide’’ followedby ‘‘clofazimine, ethambutol, moxifloxacin, pyrazinamide’’was also associatedwith success,

although not statistically significant.

There were 193 Mono-DR TB patients who received 2 LoTs. Patients who received HRZE followed by HR showed significant success

(p < 0.05). For 147 XDR-TB patients that had 2 LoTs, only 1 regimen bedaquiline, clofazimine, cycloserine, levofloxacin, linezolid followed

by bedaquiline, clofazimine, cycloserine, delamanid, linezolid was given to at least 10 patients all of whom had a successful outcome. There

were no regimens significantly associated with success for Poly-DR and Pre-XDR TB at the 2nd LoT.

A total of 326 patients received 3 LoTs. For these patients, there were no regimens that were given to at least 10 patients, so there was not

enough statistical power to analyze them. There was 1 regimen given to MDR non-XDR TB patients: ethambutol, isoniazid, rifampin, pyrazi-

namide -> cycloserine, ethambutol, kanamycin, levofloxacin, protionamide, pyrazinamide -> cycloserine, ethambutol, levofloxacin, protiona-

mide, pyrazinamide that was given to 4 patients who all had a successful outcome, and no failures.

Modeling socio-demographic and clinical modalities reveals comorbidities and drug interactions as most predictive of

treatment failure

We grouped different features by modality and built machine learning models separately for each modality as illustrated in Figure 1A. There

were a total of 20 features describing patient clinical, social, and demographic aspects. After cleaning and imputation of the data, we built a

random forest machine learning model. The random forest algorithm was chosen due to its ability to handle mixed data and its interpret-

ability.18,19 Additionally, random forest performed best in a cross-validation test that we performed on our multimodal data using a variety

of machine learning algorithms (Figure S3). We conducted 5-fold cross-validation and hold-out validation on blinded test data as well as on

newer patient data populated in the TB Portals database from August 2021 to January 2022. Our model predictions had accuracies of 74.1%,

Table 1. Pooled treatment outcomes considered for this study

Outcome Definition Number of patients

Outcome assigned

for this study

Cured Treatment completed as recommended by

the national policy without evidence of failure

AND three or more consecutive cultures taken

at least 30 days apart are negative after the

intensive phase

2,556 Success

Completed Treatment completed as recommended by the

national policy without evidence of failure BUT

no record that three or more consecutive

cultures taken at least 30 days apart are

negative after the intensive phase

537 Success

Failure Treatment terminated or need for permanent

regimen change of at least two anti-TB drugs

because of a lack of conversion by the end of

the intensive phase or a bacteriological

reversion in the continuation phase after

conversion to negative, or evidence of additional

acquired resistance to fluoroquinolones or

second-line injectable drug, or adverse drug reactions

481 Failure

Died A patient who dies for any reason during the

course of treatment

565 Failure

Palliative Care An approach that improves the quality of life of patients and

their families facing the problems associated with life-

threatening illness, through the prevention and relief

of suffering by means of early identification and impeccable

assessment and treatment of pain and other problems,

physical, psychosocial, and spiritual

101 Failure

Definitions of the outcomes were provided by the TB Portals data dictionary.
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78.3%, and 81.7% as well as Matthews correlation coefficient (MCC) values ranging from 0.25 to 0.40 for the cross-validation, hold-out vali-

dation, and validation on new patient datasets, respectively (Figures 3A and 3B, and Table S5). The MCC is a robust statistical metric which

produces a high score only if the predictions have high precision, recall, and accuracy (i.e., all of the confusionmatrix categories) and accounts

for the biased distribution of success and failure in the dataset.

The most important predictors of failure were determined by Shapley analysis, a game-theoretic approach that measures each feature’s

marginal contributions to themodel.20,21 Shapley values provide additional insight into the predictors compared to othermeasures of feature

importance. Rather than a global, unidirectional importance score, Shapley values provide local scores at individual observations and inform

us which direction the model’s prediction was pushed by the feature. For the socio-demographic model, the top predictors based on the

Shapley analysis included case definition, BMI, employment, and age of onset (Figures 3C and 3F).

To further inspect what values among these features were truly associated with failure, we analyzed these feature value distributions for

patients for each country as well as across countries. Figure 3G shows the Shapley feature value distributions for the 3 most populated

Figure 2. Distribution of treatments across lines of therapy and varying drug resistance

(A) Treatment outcomes for patients who received different lines of therapy (LoT). For each LoT, the number and percentage of patients by outcome are shown.

(B) Patients with different types of resistance and the LoT they received.
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countries in the dataset, namely Belarus, Moldova, and Ukraine. We observe similar trends in the values for top features across the remaining

countries (Figure S2) and see similar performancemetrics for models built and tested independently on social features for individual countries

(Table S6).

BMI ranked as one of the top predictors, with lower values (in blue) associatedmore with failure compared to higher values. Higher age of

onset (red), higher resistance (red/purple), and lower education (blue) are significantly associated with failure. Patients with BMI values less

than 18, classified as ‘‘Underweight’’ have strong associations with treatment failure (p = 1.32 x 10�23), compared to those that were classified

healthy, overweight, or obese. (Figure 3H). We also observe more failure in patients with disability (p = 3.55 x 10�25), lower employment (p =

2.09 x 10�5), and lower education levels (p = 1.26 x 10�25). Prior history of alcohol (p = 4.46 x 10�34), drug abuse (p = 1.01 x 10�16), and smoking

(p = 3.76 x 10�10) impacts the treatment outcome as well. Patients with HIV (p = 3.25 x 10�32), anemia (p = 2.34 x 10�31), or hepatitis B/C (2.6 x

10�4) as comorbidities are also seen to have poorer outcomes, in concordance with what has been formerly observed in the literature.22 Inter-

estingly, while diabetes is a prevalent comorbidity commonly and has been previously associated with an increased risk of failure and death in

TB patients,23,24 we do not see it significantly associated with poor treatment outcomes in our retrospective analysis.

Analysis of pathogen features identifies co-occurring mutations linked with treatment failure

There are 27 different Mtb families represented in the data encompassing 3 major genetic lineages L2, L4, and L1, with the L2-Beijing sub-

lineage seen to bemost prevalent in patients across countries (Table S1). L2 has receivedmuch attention due to its high virulence, fast disease

progression, and association with antibiotic resistance.25 The Mtb strains show varying drug susceptibilities to the 28 different drugs in the

clinical dataset. The Beijing, H3, and T1 families were most prevalent in all infections observed, and strains from these families show all types

of drug susceptibilities, from Sensitive TB to XDR TB (Figures 4A–4C).

Our machine learning analysis using the pathogen genomics and drug resistance modality could predict treatment failure with accuracies

of 72%, 74%, and 74%using cross-validation, hold-out validation, and the newpatient data, respectively (Figures 4D and 4E, and Table S5).We

observe that the prediction accuracy was relatively lower using pathogen features alone, compared to using clinical features. Feature analysis

revealed that higher numbers ofMtb colonies as determined by culture and the presence of mycobacterial growth were strongly associated

Table 2. Treatment regimens across different lines of therapy and type of drug resistance associated with treatment success

Line of

therapy

Type of Mtb

resistance Regimen

Success

with

regimen

Failure

with

regimen p value

FDR-corrected

p value Odds ratio

95% confidence

interval

1 Sensitive TB ‘Cm’, ‘E’, ‘H’, ‘Lfx’, ‘Z’, ‘R’ 6 4 0.05972* 0.0192 1.3444 0.258–4.483

’E’, ’H’, ’Lfx’, ’Z’, ’R’ 16 7 0.07698* 0.0192 1.1794 0.432–4.001

’E’, ’H’, ’Z’, ’R’ 864 161 0.04975* 0.0068 1.028 0.706–1.969

MDR non-XDR TB ’Bdq’, ’Cfz’, ’Cs’, ’Lfx’, ’Lzd’ 399 95 0.00061* 0.0004 1.6083 1.222–2.116

’E’, ’H’, ’Z’, ’R’ 14 20 0.00001* 0.0217 0.2139 0.107–0.429

’Bdq’, ’Cfz’, ’Lzd’, ’Mfx’ 10 15 0.00013* 0.0033 0.2064 0.092–0.464

’Cm’, ’Cs’, ’Eto’, ’Lfx’, ’Z’ 2 8 0.00032* 0.048 0.0786 0.017–0.372

2 Sensitive TB [’E’, ’H’, ’R’, ’S’]->[’H’, ’R’] 45 3 0.7502 1 0.9018 0.271–3.005

[’E’, ’H’, ’R’, ’Z’]->[’E’, ’H’, ’R’] 21 0 0.6264 1 Inf NaN - Inf

[’E’, ’H’, ’R’, ’Z’]->[’H’, ’R’] 347 21 1 1 0.9985 0.564–1.766

[’E’, ’H’, ’R’]->[’E’, ’H’] 9 1 0.4457 1 0.5394 0.067–4.34

[’E’, ’H’, ’R’]->[’H’, ’R’] 409 25 1 1 0.9794 0.559–1.715

MDR non-XDR TB [Bdq’, ’Cfz’, ’Cs’, ’Lfx’, ’Lzd’]->

[’ Cfz’, ’Cs’, ’Lfx’, ’Lzd’]

22 0 0.01114* 0.00046 Inf NaN - Inf

[’Cfz’, ’Cm’, ’E’, ’H’, ’Mfx’,

’Pto’, ’Z’]->[’Cfz’, ’E’, ’Mfx’, ’Z’]

16 2 0.5469 0.7268 2.1068 0.474–9.368

MonoDR TB [’E’, ’H’, ’R’, ’Z’]->[’E’,

’Lfx’, ’R’, ’Z’]

33 5 0.5444 0.7935 0.6696 0.225–1.991

[’E’, ’H’, ’R’, ’Z’]->[’H’, ’R’] 42 3 0.0512* 0.0135 1.7364 0.482–6.254

[’E’, ’H’, ’R’]->[’H’, ’R’] 45 6 0.5951 0.7935 0.7738 0.278–2.158

XDR TB [Bdq’, ’Cfz’, ’Cs’, ’Lfx’, ’Lzd’]->

[’Bdq’, ’Cfz’, ’Cs’, ’Dld’, ’Lzd’].

10 0 0.03097* 0.0048 Inf NaN - Inf

Legend: Significant values (p value < 0.05) are marked with an asterisk. Abbreviations: Bdq - Bedaquiline; Cm - Capreomycin; Cs - Cycloserine; Dld - Delamanid;

E� Ethambutol; Eto- Ethionamide; H- Isoniazid; Lfx - Levofloxacin; Lzd - Linezolid; Rifampin - R; Z - Pyrazinamide.
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Socio-demographic model: All patients

Socio-demographic model: Drug-resistant patients

Shapley values for 3 highest populated countries
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with treatment failure. Of the 28 different drugs present in treatment combinations across all regimens, resistance to rifampin, isoniazid, kana-

mycin, streptomycin, ethambutol, capreomycin, and amikacin was more significantly predictive of treatment failure as determined by Shapley

feature analysis. It is important to note that the TB Portals data only reportmutation at the gene level and not the overall variant level. Notably,

co-occurring mutations in Mtb genes gyrA, inhA, katG, rpoB, and rpsL were seen to be strongly linked with unfavorable treatment outcomes

(odds ratio 8.6, Table S3). Mutations in the gyrA gene, particularly at positions 90, 91, and 94, have been frequently reported among fluoro-

quinolone-resistant Mtb (FQr-MTB) isolates.

For the different drug regimens assigned per patient (1,084 unique regimens in total), drug interaction scores were calculated using the

machine learning tool INDIGO-MTB.25 These scores provide a quantitative description of the nature of interaction between drugs (synergy,

additivity, and antagonism), with lower scores associated with strong synergy among the drugs in each regimen. Here, a drug combination

predicted as synergistic implies that the same amount of growth inhibitionwould be achievedwith a lower dosewhen the drugs are combined

compared to them acting individually. We observe that regimens used to treat drug-sensitive TB have the strongest synergy and correspond-

ingly lower treatment times (Figures S1C and S1D), while drug combinations used to treat resistant TB cases show a wider range including

weak synergistic and antagonistic interactions. These interactions may lead to increased treatment times for drug-resistant TB.

Lung volume, pleural effusion, and bronchial obstruction are significantly predictive of treatment failure and associated

with drug-resistant TB

Radiological imaging using CXR and/or CT scans are typically used to aid clinicians in reaching a diagnosis of TB andmonitoring clearance of

infection. They complement Mtb culturing and symptoms. Imaging can reveal TB lesions of differing size, shapes, and characteristics (e.g.,

cavitation) occurring anywhere in the lungs. This dataset had 406 patients with at least 1 X-ray available, with an average of 3 X-rays per patient

taken over their course of treatment. We chose the CXR taken closest to the date of treatment initiation to assess if there were any features

that would help indicate treatment prognosis at that time.We validated ourmodel on 289 new patients with CXR available in the January 2022

dataset. As only 59 additional patients had CT scans available, we conducted validation with new patient entries from TB Portals using CXR

data alone.

Machine learningmodels built on CXR and CT data individually could predict treatment prognosis reasonably well within the training data

(accuracies of 74% and 83%, respectively) (Figures 5A–5C and Table S5). Validation with new patient CXR data showed an accuracy of 75% and

MCC of 0.22 (Figure S3). Despite the CT model predicting well within cross-validation, it performed very poorly in the external validation set

(accuracy 80%,MCC= 0). This ismost likely due to the small number of observations and poor imputation ofmissingdata. Themost significant

TB-related manifestations that are predictive of both treatment outcome and resistance are shown in Figures 5C and Table 3.

The TB Portals database annotates each CXR into sextants to highlight regions that were afflicted in the patient’s lungs viz. upper left (UL),

upper right (UR), middle left (ML), middle right (MR), lower left (LL), and lower right (LR). TB is typically manifested as an upper respiratory

infection, but it has been shown to infect different parts of the lung based on disease severity.13 Our analysis indicated that the overall affected

abnormal volume across both lungs was more significant in predicting poor disease prognosis rather than individual affected sextants. The

presence of bronchial obstruction, pleuritis (inflammation of the tissues that line the lungs and chest cavity), a decrease in lung capacity, and

the presence of lung opacities due to nodules, nodes (seen in shadow patterns), and airspace disease (infiltrates) were strongly predictive of

both treatment failure and were significantly associated with drug-resistant TB. It is important to note that we analyzed the clinical presen-

tation of drug resistance as seen through imaging data for our study, as drug resistance can only be predicted directly by culturing the infect-

ing Mtb strain. Interestingly, the presence of calcified or partially calcified nodules across most sextants, nodes larger than 10 mm, and the

presence of post-TB residuals were seen to be associated with drug resistant TB (DR-TB) cases, but they were not especially predictive of

treatment failure (Table 3). The overall percentage of abnormal lung volume, which is a quantification of TB severity, was most predictive

of treatment failure. Similarly, lymph node enlargement (lymphadenopathy)14,26 and collapse of the upper or middle lung were indicative

of a poor treatment prognosis. Chest imaging usually results in several hundred features (152 imaging features in this dataset), and our anal-

ysis identified 21 TB manifestations to be most clinically predictive.

Figure 3. Modeling patient socio-demographic and clinical features

(A) All patients: Model predictions on 80% training data using 5-fold cross-validation with model evaluation metrics of accuracy, recall, precision, F1 score, MCC,

and AUC values (error bars represent 95% CI); top features predictive of the failure outcome.

(B) Model evaluation on 20% hold-out validation data.

(C) Top features predictive of failure for all patients.

(D) Drug-Resistant TB patients: Model predictions on 80% training data using 5-fold cross validation with model evaluation metrics of accuracy, recall, precision,

F1 score, MCC and AUC values (error bars represent 95% CI).

(E) Model evaluation on 20% hold-out validation data for Drug resistant TB patients.

(F) Top features predictive of failure for drug resistant TB patients.

(G) Top features and their Shapley values across the 3 most populated countries in TB Portals. Each dot represents a single patient, with blue color representing

lower values for each feature. The X axis represents the impact of the feature value drivingmodel outcomes, with values above 0 associated with failure, and those

below 0 associated with success.

(H) For 6 features identified to be significantly associated with failure (p < 0.05), the feature category is broken down to depict significant associations between

feature subtypes and failure, highlighted by different colors. All p values are significant (p < 0.05) after multiple hypothesis correction (FDR <0.1). The scale

represents negative log p values determined by hypergeometric tests.
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Pathogen model: All patients

Pathogen model: Drug-resistant patients

Drug regimen
Drug Interaction FIC score

Moxifloxacin resistance  S | I | R
Gene mutations

Type of resistance
Ofloxacin resistance S | I | R

Fluoroquinolones resistance  S | I | R
Levofloxacin resistance  S | I | R

Isoniazid resistance S | I | R
Mtb family

Drug regimen
Drug Interaction FIC score

Moxifloxacin resistance  S | I | R
Gene mutations

Type of resistance
Ofloxacin resistance S | I | R

Levofloxacin resistance  S | I | R
Fluoroquinolones resistance  S | I | R

Mtb family
PAS resistance S | I | R

A B C

D

E

Figure 4. Modeling pathogen genomic features and drug susceptibilities

(A) Distribution of Mtb families across different types of resistance observed in the TB Portals data.

(B) Resistance to individual drugs associated with failure determined by hypergeometric tests.

(C) Gene mutations associated with failure. All p values are significant (p < 0.05) after multiple hypothesis correction (FDR <0.1).

(D) All patients: model predictions on 80% training data using 5-fold cross-validation with model evaluation metrics of accuracy, recall, precision, F1 score, MCC,

and AUC values (errors bars represent 95% CI); model predictions on 20% hold-out validation data; top features predictive of the failure outcome.

(E) Model evaluation and top features predictive of failure for drug-resistant patients only.
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CXR

CT Scan

Shapley values

CXR CT

Overall % of abnormal volume
LR non-calcified nodule exist Yes | No
ML non-calcified nodule exist Yes | No

LL low ground glass density
UL low ground glass density
UR low ground glass density

UL medium density
LR multiple nodules exist Yes | No

UL non-calcified nodule exist Yes | No
LL non-calcified nodule exist Yes | No

Body site coding CD
Lung cavity size
Shadow pattern

Affected segments
Total cavernum

Post TB residuals
Limfoadenopatia

Affectpleura
Affect level

Bronchial obstruction Yes | No

A

B

C

Figure 5. Modeling imaging modalities (CXR and CT data)

(A) CXR data: model predictions on 80% training data using 5-fold cross-validation with model evaluation metrics of accuracy, recall, precision, F1 score, MCC,

and AUC values and model predictions on 20% hold-out validation data.

(B) CT scans data: model predictions on 80% training data using 5-fold cross-validation with model evaluation metrics of accuracy, recall, precision, F1 score,

MCC, and AUC values and model predictions on 20% hold-out validation data; top features predictive of the failure outcome.

(C) Top features predictive of the failure outcome identified for both CXR and CT data.
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Integrated multimodal analysis outperforms model predictions of individual modalities

Amultimodalmachine learningmodel was trained using the socio-demographic, pathogen, andCXRdatasets. CT data were excluded due to

the low number of overlapping patients. In the primary model, we prioritized sample size and therefore used patients in any of the three data-

sets, which led to imputing a large amount of missing X-ray data. Using this model, which included 163 features after data cleaning, treatment

failure was predicted with an accuracy of 79% (area under the curve [AUC] of 0.826 andMCC of 0.495) in the cross-validation, and an accuracy

of 83.2% (AUC of 0.84 and MCC of 0.451) on an external validation set with new patients (Figure 6A and Table S5). A secondary model, which

prioritized data completeness, used only patients present in all three datasets and performed almost as well, despite themuch smaller sample

size (Figure S4). For comparison, the primary integrated model performed better in the external patient predictions than the individual

models for clinical (AUC 0.797, MCC 0.253), pathogen (AUC 0.704, MCC 0.216), CXR (AUC 0.645, MCC 0.216), and CT (AUC 0.504, MCC

0.0) featuremodels (Table S5). These results are comparable to or better than those of prior models in the literature that predict TB treatment

failure (AUC = 0.70 28, 0.74 29, and 0.79 13).

For model interpretation, a simplified decision tree model was created to visualize the typical prediction path that a patient observation

follows when its clinical outcome is being decided. The complexity of the tree was constrained by limiting the tree depth to enable ease of

interpretation and visualization. The random forest model is made of an ensemble of such decision trees. The simplified decision tree (Fig-

ure 6E) used in the integrated model is helpful to understand which features are instrumental in differentiating between success and failure.

For example, following the rightmost path through the tree, patients that are unemployed (employment field <2), older (age >57), prescribed

a mostly non-synergistic drug regimen with INDIGO score >0.88, and a smoker (social risk factor score = 1) are at a high risk of failure (3-fold

increase in odds).

We next analyzed correlations among the top 30 features based on Shapley values (Table 4), from the integrated model (Figure 6D).

We find high correlations (p < 0.05) among features within each modality, as well as between features across modalities (Table S4). The

type of resistance is significantly associated with the drug regimen and corresponding drug interaction score determined by INDIGO-

MTB. We also observe that higher drug interaction scores are more associated with drug regimens used to treat drug-resistant TB in

comparison with drug-sensitive TB (as seen in Figure S1D), implying lesser synergy among combination therapies used to treat drug-

resistant TB. Interestingly, we observe higher INDIGO scores (i.e., more antagonistic interactions) correlated with worse clinical presen-

tation of TB, as indicated by overall percentage of abnormal lung volume. Resistance to isoniazid, rifampicin, and fluoroquinolones

emerges as the top feature among the pathogen modality (Table 4).27 The type of resistance is also correlated with the imaging attri-

butes of increased bronchial obstruction and affected lung segments as seen in the clinical presentation of drug-resistant TB. We spec-

ulate that this is likely due to the association between chronic obstructive pulmonary disease (COPD) and drug-resistant TB.28 COPD

patients also have weakened immunity which makes them more susceptible to MDR-TB. Disease severity as reported by diagnosis code

correlated with the number of Mtb colonies and the affected lung segments. Social risk factors and comorbidities show associations

with gender and education; employment and BMI are correlated, highlighting the socioeconomic impact in TB prognosis and

management.29,30

Table 3. Imaging features associated with treatment failure and drug-resistant TB

Chest imaging features Association with failure (p < 0.05) Association with resistance (p < 0.05)

Body site: Both lungs 4.16e-06 9.09e-04

Pleuritis: Yes 4.15e-05 2.11e-60

Bronchial obstruction: Yes 7.33e-04 0.04

Lung capacity decrease: Yes 0.0017 4.35–04

Opacity due to nodule, node, and infiltrate 0.0068 3.22e-04

Overall percent of abnormal volume 3.1e-013 p > 0.05

Small cavities: UL|UR 4.2e-11 p > 0.05

Small cavities: ML|MR 5.4e-06 p > 0.05

Collapse: UL|UR 7.5e-05 p > 0.05

Enlarged lymph nodes: Yes 4.75e-04 p > 0.05

Nodes more than 10 mm p > 0.05 7.16e-011

Affect pleura: Yes p > 0.05 0.022

Post TB residuals: Yes p > 0.05 0.0028

LL| LR calcified or partially calcified nodules: Yes p > 0.05 6.03e-05

ML|MR calcified or partially calcified nodules: Yes p > 0.05 3.12e-08

UL| UR calcified or partially calcified nodules: Yes p > 0.05 7.00e-11

Chest imaging features that are significantly associated with both resistance and treatment failure (p < 0.05) and those associated with either failure or drug

resistance.
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DISCUSSION

TB remains a significant challenge globally, especially in the aftermath of the COVID-19 pandemic as TB services have been disproportion-

ately affected.31,32 Of particular concern are the regions in Eastern Europe which have a high incidence of TB, TB-HIV co-infection, and

MDR-TB (MDR non-XDR TB).33,34 The ongoing war and humanitarian crisis in Ukraine have also affected the healthcare systems in the

area. Given these scenarios, it becomes especially important to analyze available clinical data to aid in TB prognosis and guide optimal treat-

ment decisions for each patient.8,35–38

We performed a novel multimodal data integration from over 5,000 patients across 10 countries from the NIHNIAID TB Portals. In contrast

to black box machine learning models, we implemented a ‘‘transparent’’ machine learning model to identify patient, drug, and pathogen

features predictive of drug resistance and treatment prognosis in individual patients. Our analysis of over 200 different features across

different host and pathogenmodalities revealed several significant predictors associated with successful clinical outcomes.Whilemultimodal

integration has recently been applied to other diseases and has shown promising results,39 this is the first such analysis for TB and our study

integrates a wide range of features and data types.

Multimodal analysis also highlights the relative importance of features, which can help prioritize public health efforts to mitigate TB. For

example, we observe that BMI is more important than drug regimens in our Shapley importance analysis. Features related to nutrition, partic-

ularly lower BMI, and the presence of HIV and anemia are significantly associated with failure. TB is typically more prevalent in the undernour-

ished population.40,41 Our findings are thus consistent with these reports.

Multimodal analysis also revealed novel associations that have not been previously reported, such as between imaging modal-

ities and type of resistance and drug combinations. Here we discovered that the type of resistance is correlated with the imaging

attributes of increased bronchial obstruction and affected lung segments. Further, drug combinations with antagonistic drug inter-

actions predicted by INDIGO correlated with worse clinical presentation of TB, as indicated by overall percentage of abnormal lung

volume.

Our study provides three key insights related to predicting TB prognosis and determining optimal treatment regimens. Firstly, multimodal

integration outperforms models using a single data modality (such as imaging or pathogen features alone). Secondly, analysis of different

patient populations grouped by type of resistance and treatment regimens revealed drug combinations that are associated with clinical suc-

cess in drug-resistant TB. Thirdly, drug interactions are predictive of treatment success with INDIGO-predicted synergistic drug combinations

outperforming antagonistic combinations. These insights are discussed in the following.

Our integrated multimodal machine learning model could predict treatment outcomes with an accuracy of 83.2% and an MCC of

0.451. These results are especially encouraging, as data were collected across several hospitals within each country, each of which

had their own data collection and reporting criteria. As a result, and as is common with real-world patient data, there were several re-

dundancies, missing information, and poor labeling, which made the data noisy. Despite these limitations, our final integrated model

proved to be quite robust when predicting on unseen patient data. We also demonstrated that the model performed well at various

levels of missing data imputation, as we achieved a similar accuracy in our secondary model that prioritized data completeness over

sample size. The final model developed in our study can help predict TB prognosis and determine optimal treatment regimens based

on real world multimodal data.

Notably, we identified drug combinations that are associated with clinical success in drug-resistant TB. Interestingly, the regimen

‘‘bedaquiline, clofazimine, cycloserine, levofloxacin, linezolid’’ as 1st LoT showed significant success in MDR-TB patients. This is concor-

dant with recent reports on new regimens approved by the Food and Drug Administration (FDA) involving bedaquiline and levofloxacin.42

In addition, for those MDR patients that progressed to an additional round of treatment, the same regimen followed by ‘‘clofazimine,

cycloserine, levofloxacin, linezolid’’ showed a higher success rate. Recent studies have shown improved outcomes after additions of be-

daquiline and clofazimine to combination therapies for treating MDR-TB,43 and these results further underscore the clinical importance of

these treatments. Surprisingly, we observed the regimen ‘‘bedaquiline, clofazimine, linezolid, and moxifloxacin’’ to be associated with fail-

ure for MDR non-XDR TB. Prior studies have shown that moxifloxacin-containing regimens for TB were mostly antagonistic,44 and that lev-

ofloxacin-based regimens have better outcomes compared tomoxifloxacin-based combination treatments for MDR-TB.45 Further, cyclo-

serine is known to be effective in MDR cases and is recommended by the WHO for treating MDR-TB, and its presence in the first regimen

may increase treatment success.46,47

For XDR TB we observe that patients initially received ‘‘bedaquiline, clofazimine, cycloserine, levofloxacin, linezolid’’ similar to the

MDR non-XDR TB patients, and, as they progressed, they were prescribed ‘‘bedaquiline, clofazimine, cycloserine, delamanid, linezolid.’’

Here, the only difference with MDR treatment is the inclusion of delamanid in place of levofloxacin, which showed high success for XDR

TB. This is consistent with delamanid’s effectiveness against XDR-TB, which are resistant to fluoroquinolones like levofloxacin.48,49

Figure 6. Integrated multimodal model

(A) For the integratedmodel, themodel predictions on 80% training data using 5-fold cross-validation withmodel evaluationmetrics of accuracy, recall, precision,

F1 score, MCC, AUC values and correlations are shown.

(B) Top features identified by Shapley values predictive of failure for all patients.

(C) Top features identified by Shapley values predictive of failure for drug-resistant patients.

(D) Feature associations between top features across all modalities. The color scale is based on -log(p values) for correlations between these features.

(E) Decision tree for the integrated model showing features differentiating between success and failure at each leaf of the tree. The black arrows indicate if the

condition in the leaf is true, and the red arrow implies that the condition is false.
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Swapping levofloxacin with delamanid is also predicted to make the combination slightly more synergistic (INDIGO interaction score =

0.87 with bedaquiline, clofazimine, cycloserine, delamanid, linezolid vs. 0.94 for bedaquiline, clofazimine, cycloserine, levofloxacin,

linezolid).

Interestingly, we discovered that synergistic drug combinations were associated with treatment success. The drug interaction score was a

top predictor according to the Shapley importance analysis. Currently, the role of drug interactions in treatment outcome is unclear. Prior

studies have found that drug interaction scores correlate with TB clinical trial outcomes and mouse models. For example, Ma et al.50 per-

formed ameta-analysis of clinical trials of drug combinations against drug-sensitive TB and found a significant correlation between drug inter-

action scores and percentage of patients with negative sputum clearance. In this study, we observe a similar trend but with a larger number of

drug combinations and with DR-TB patients. The standard 4-drug regimen of HRZE was synergistic (drug interaction score = 0.8) and asso-

ciated with treatment success of Sensitive and Mono-DR TB cases. Treatment regimens involving the combination of bedaquiline, levoflox-

acin, clofazimine, and Linezolid (drug interaction score = 0.87) see more success in treating MDR and XDR TB. Drug interaction scores for all

regimens predicted by INDIGO are included in Table S2.

In sum, our study analyzesmulti-domain information frompatients across geographical regions and focuses on the urgent need to improve

TB clinical management particularly in the face of increasing drug resistance. The findings of our study are especially important given various

humanitarian crises worldwide to meet the WHO’s goals to ‘‘End TB’’ by 2035. This study can serve as a framework for managing other drug-

resistant infections as well and presents a way for integrating large clinical and bio-molecular datasets51 to further translational medicine.

Limitations of the study

There are some limitations to our study. As with any real-world patient data, the TB Portals dataset has several missing and noisy information,

since it collects information frommultiple hospitals across 10 countries, each with their own collection and reporting protocol. Further, there is

a significant imbalance in the outcomes, with successmore prevalent than failure.We address these limitations by considering random forests

with an inverse weighting approach, with failure assigned higher weight than success. Random forests perform better than other modeling

approaches as they can work with mixed data types and with missing values.11 Despite the missing information, our models were robust and

performed significantly well statistically. While the accuracy is not high enough for clinical implementation, this study represents a significant

improvement over prior studies that utilize limited data types. Future models may incorporate data from more countries and also additional

data within each country to build separate models and improve accuracy further.

Other limitations include that the drug interaction scores determined by INDIGO-MTB are computed based on in vitro interaction data,

with the assumption that drug regimens are provided simultaneously. It would be more clinically relevant to calculate sequential drug inter-

action scores for longitudinal treatments52 and account for pharmacokinetics and dynamics.44,52 Further, genomic information is only avail-

able for a few patients, based on sequencing availability at the time of collection. Whole-genome sequencing is expensive in high-burden TB

countries andmay not always be feasible. For this study, we analyzed the prevalence of mutations at the gene level for the 8 genes associated

with drug resistance, and in future studies we plan to analyze the individual DNA sequences of infectingMtb strains where available to look at

individual pathogenic variants and co-mutation prevalence and their associations with treatment outcomes. Of particular value is the CRyPTIC

consortium to further analyze Mtb genetic variants and associations with resistance as a next step.53 Finally, we used a transparent machine

learning approach here to enable both interpretation and prediction of TB treatment outcomes. The use of black box methods like deep

neural networks may lead to models with higher predictive accuracy. Nevertheless, our multimodal machine learning model’s performance

is better than prior models’ in the literature that were built with fewer modalities.13,54,55

Table 4. Top features determined across modalities

Socio-demographic and

clinical features

Pathogen genomic features and

drug susceptibilities Imaging modalities (CXR and CT)

Country Ofloxacin resistance Overall percentage of abnormal volume

Employment Moxifloxacin resistance ML calcified nodules

Age of onset Levofloxacin resistance ML_smallnodules

Case definition Fluoroquinolones resistance MR_non-calcified nodules

Education Isoniazid resistance UR_largecavities

BMI Drug regimen LR_non-calcified nodules

Social risk factors Indigo_score UR_lowgroundglassdensity

Number of daily contacts Rifampicin resistance

Number of children Type_of_resistance

Comorbidity Gene mutations

Gender No. of genes with mutations

Mtb Colonies
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RESOURCE AVAILABILITY

Lead contact

Requests for further information should be directed to and will be fulfilled by the lead contact, Sriram Chandrasekaran (csriram@umich.edu).

Materials availability

This study did not create new unique reagents.

Data and code availability

� This paper analyzes data from the NIH-NIAID TB portals database for patient cases available from 2008 until August 2021 [TB_portals_

Update_Aug2021] after signing a data-sharing agreement.
� The code for machine learning and statistical analysis conducted in this study is available on Synapse: TB - syn32884986 -Wiki (synapse.

org).

� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODELS AND STUDY PARTICIPANT DETAILS

This study did not use experimental models.

METHOD DETAILS

Data compilation

Patient data was obtained from the TB portals database for patient cases available from 2008 until August 2021 [TB_portals_Upda-

te_Aug2021] after signing a data-sharing agreement. The patient data is encoded with unique IDs determined by the database, with no

disclosure of the individual patient’s name. The database includes patients from 10 countries spanning Eastern Europe, Central Asia, and

Africa with a heavy burden of drug-resistant TB. It continues to be actively populated with new patient data, including those who are still un-

dergoing treatment. For every patient, we obtained associated information pertaining to patient cases (clinical features), Radiological infor-

mation (chest X-ray images, CT scans and their annotations), drug regimens, biochemistry, drug sensitivity profile for the pathogen associated

with each infection and the corresponding specimen. The data collected comes from a range of sources – clinical trials, research studies, as

well as routine collection of atypical patient cases receiving medical care. There is no single identifiable data collection protocol that is uni-

formly enforced. They utilize a uniform data dictionary with generally accepted medical terminology and data field values. The TB Portals

program uses multiple mechanisms to ensure quality of the data submitted and data checks and uniformity are embedded into the system

using dropdown lists and ranges of permissible values.56

Data processing

The dataset had missing values for several features as well as entries with values ‘Not Reported’, ‘Unknown’, ‘Others’, ‘Not Specified’. These

were collectively labeled as ‘‘NaN’’ for further processing. Duplicate patient records as determined by patient id numbers were removed.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Multimodal TB patient data Rosenthal, A. et al. The TB Portals: an

Open-Access, Web-Based Platform for

Global Drug-Resistant-Tuberculosis Data

Sharing and Analysis. J. Clin. Microbiol. (2017)

https://doi.org/10.1128/jcm.01013-17.

https://tbportals.niaid.nih.gov/

Software and algorithms

Python v. 3.7.14

Shapley package

Python Software Foundation https://www.python.org/downloads/

https://pypi.org/project/shapley/#files

Matlab R2021b Mathworks https://www.mathworks.com/products/matlab.html

RStudio 4.3.0 The R project for statistical computing https://www.r-project.org/
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Entries with conflicting values (eg. entries reporting ‘Yes AND No’ or ‘Resistant And Sensitive’) were also reported as NaN for that feature if

the entries for other features for that patient were not conflicting. For every patient, there were 203 variables of mixed data types, with 11 nu-

merical and 192 categorical features. The categorical features were encoded into numerical values, with numerical values assigned based

upon the number of levels an attribute, starting from 0. For example, the attribute ‘education’ has six levels, ranging from ‘‘no education’’

- which is assigned 0, to ‘‘college and higher’’ which is encoded as 6. This process is repeated for all categorical attributes accordingly.

For themachine-learningmodels, features with over 90%missingness and patients with over 40%missingnesswere dropped from the analysis

prior to imputation.

Culture and microscopy

For culture types, the first culture report of the number of colonies identified in the specimen were considered. Instances which don’t report

the number of colonies weremapped to the individual sample results associatedwith specimen id. Growth ofmycobacteria is also reported as

either positive, negative or both, as well as reports of non-specific mycobacteria and Mycobacteria other than tuberculosis (MOTT). Micro-

scopy results describe the number of acid resistant bacteria in different fields of view. For entries with multiple codes per cell, only the first

entry was considered for analysis.

Drug sensitivity test (DST)

The dataset describes DST results for 24 different drugs. Entries are marked R (resistant), S(sensitive) or I (intermediate) to describe observed

DST profiles for each drug. For each drug, the DST results are indicated by up to 5 types of test conducted, namely bactec, hain, Le,

GeneExpert and lpa.57 In cases where the tests report different results for the same strain, we consider a cumulative DST case based on

the profile reported by the majority of tests.

Drug-interaction scores

For all combinations of drug regimens given to each patient, we computed a ‘drug-interaction score’ using the INDIGO-MTB tool,50 which

uses Random forests to assign drug interaction scores that capture the nature of interaction between drugs using individual drug response

transcriptomics data. The interactions are considered synergistic (score <0.9), additive (scores 0.9-1.2), and antagonistic (scores >1.2) respec-

tively as used in prior studies.

Mtb genotype, lineage, and families

Several Mtb families belonging to multiple lineages are represented in this dataset across different populations. The dataset reports

Mtb strains from 27 different families in infected patients, with some patients infected with 2 or more families (which is unlikely). The TB

portals database refers to these families as lineages, which is inaccurate. Lineage refers to the Mtb classification based on Large sequence

polymorphism (LSP) or Single nucleotide polymorphisms (SNP). Family/sub-lineages refer to the classifications based on spoligotyping. We

determined the prevalence of the reported gene mutations in patients with drug-resistant TB. We analyzed the genes with reported

mutations individually and those co-occurring with other gene mutations to be strongly associated with failure by a Fisher’s exact test, as

seen in Table 2.

Chest X rays and CT data

Chest X rays were available for a subset of the patients, taken across multiple time points, with Day 0 considered as the time TB infection was

confirmed and treatment was initiated for the patient. Manual annotations of these X rays performed by radiologists and/or general physi-

cians weremade available. We chose the annotation information for X Rays recorded at day 0, and in instances where day 0 was not available,

we chose the day closest to Day 0 to capture the early days of infection before treatment takes effect. Similarly, we chose the CT annotations

closest to day 0 when available.

Outcomes

The outcomes of infection for each patient was considered as a response variable in our analysis. Outcomes of infection and treatment are

described for each patient, with 6 outcomes provided, namely Cured, Completed, Failure, Died, Palliative Care, Lost to Follow up, Still on

treatment and Unknown. As we are interested in analyzing successful and unsuccessful treatment outcomes, we pooled the outcomes ‘Cured’

and ‘Completed’ as ‘‘Success’’, while outcomes ‘Failure’, ‘Died’ and ‘‘Palliative Care’’ were grouped together under the outcome ‘‘Failure’’, as

they all indicate unfavorable treatment outcomes per patient. We did not consider patients with outcomes Lost to Follow up, Still on treat-

ment and Unknown for our analysis.

Data imputation

Initially, complete case analysis was performed with only patients that had less than 50% NaN values across all features. We repeated

the analysis by imputing missing values using the K-nearest neighbor (KNN) imputation method, with k set to 3. This method was

chosen as nearest neighbor imputation methods have been shown to be effective for machine learning with missing data for EHR

analysis.58
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Data modalities

The data was split into 3 categories for analysis describing different aspects of host and pathogen data. These categories were a) patient

social, clinical and demographic features b) patient radiological features as determined by chest X rays (CXR) and CT scans and c) pathogen

genomic features which include gene mutations and drug sensitivity analyses.

Machine learning

We randomly split the input data into training (80%) and test (20%) samples for each category. The training data was then used to build a

Random forest model to determine outcomes of Success and Failure. The function uses RandomizedGridSearch within cross-validation to

tune the hyperparameters and estimate model performance. The final model uses the hyperparameters from the best-scoring CV fold

and is trained on the entire dataset. To account for the class imbalance in the two outcomes of success and failure, we considered an inverse

weighting approach to balance the two classes (e.g. if success represents 80% of the outcomes, weights assigned are 1/0.08 and 1/0.02 for

success and failure respectively). We performed a 5-fold cross validation and assessedmodel performance in predicting disease outcome on

the training data. Themodel performancewas further evaluatedon the test dataset containing the remaining 20%data. Differentmetrics were

considered to evaluate model performance including Accuracy, Precision, Recall, F1 score, Matthews Correlation coefficient and the Pear-

son’s R, to predict the outcome of infection. After identifying the top features for each category, we further evaluated the associations of

different levels within the feature with the outcome by calculating p-values based on the hygecdf function (hypergeometric cumulative dis-

tribution)59 in MATLAB. Additional validation was performed on newer data populated in the TB portals database (January 2022).

QUANTIFICATION AND STATISTICAL ANALYSIS

Pairwise statistical tests were performed for all features in the dataset. For comparing two continuous variables, the Kendall rank correlation

was used, which is a non-parametric alternative to Pearson’s correlation.60 For two categorical variables, the Chi-squared test was performed

to determine if there is a significant difference between the observed and expected frequencies of the associated contingency table. When

comparing continuous and categorical variables, the Kruskal-Wallis test was used, which tests whether there is a difference between the

groups of the continuous feature. The p-values from all of these tests were combined into a matrix and plotted as a heatmap. For all com-

parisons, a Bonferroni correction test61 was applied.

Data visualization

Weuse the Python Shapley package for data visualization. All machine learning and statistical analysis was conducted in Python version 3.7.13

and repeated in Matlab version R2021b. Fisher’s exact test to determine associations between treatment regimens and gene mutations and

outcomes of success/failure were performed in Rstudio using R version 4.3.0 (2023-04-21).
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