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Reward modulation is represented in the motor cortex (M1) and could be used to
implement more accurate decoding models to improve brain-computer interfaces (BCIs;
Zhao et al., 2018). Analyzing trial-to-trial noise-correlations between neural units in the
presence of rewarding (R) and non-rewarding (NR) stimuli adds to our understanding
of cortical network dynamics. We utilized Pearson’s correlation coefficient to measure
shared variability between simultaneously recorded units (32–112) and found significantly
higher noise-correlation and positive correlation between the populations’ signal- and
noise-correlation during NR trials as compared to R trials. This pattern is evident in
data from two non-human primates (NHPs) during single-target center out reaching
tasks, both manual and action observation versions. We conducted a mean matched
noise-correlation analysis to decouple known interactions between event-triggered firing
rate changes and neural correlations. Isolated reward discriminatory units demonstrated
stronger correlational changes than units unresponsive to reward firing rate modulation,
however, the qualitative response was similar, indicating correlational changes within
the network as a whole can serve as another information channel to be exploited
by BCIs that track the underlying cortical state, such as reward expectation, or
attentional modulation. Reward expectation and attention in return can be utilized with
reinforcement learning (RL) towards autonomous BCI updating.

Keywords: motor cortex, reward, reinforcement learning, temporal difference, reward prediction, reward
prediction error

INTRODUCTION

The neural representation of reward has been traced to deep brain structures including the
substantia nigra pars compacta and ventral tegmental area (Schultz et al., 1997). Reward
associated signals have also been shown to occur in multiple cortical areas including the
orbitofrontal and sensorimotor cortices (Tremblay and Schultz, 1999; Marsh et al., 2015; McNiel
et al., 2016a; Ramkumar et al., 2016; Ramakrishnan et al., 2017; An et al., 2018; Zhao et al., 2018).
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Previous studies have linked cortical responses to dopaminergic
pathways, which can explain cortical responses on multiple time
scales (Kunori et al., 2014) and indicates the complex interactions
that exist between deep structure reward signaling and M1 units.
For example, dopamine has proven necessary for learning in
M1 (Molina-Luna et al., 2009) and has a significant effect on
long-term potentiation (LTP) in the motor cortex, for review see
Francis and Song (2011).

Studies of the motor cortex reveal a complex dynamical
system (Shenoy et al., 2013). In addition to kinematic, directional
(Georgopoulos et al., 1982), and force tuning information
(Graham et al., 2003; Chhatbar and Francis, 2013), M1 neurons
encode value and demonstrate reward modulation (Marsh et al.,
2015; Ramkumar et al., 2016; Ramakrishnan et al., 2017; An et al.,
2018, 2019; Zhao et al., 2018), as do regions associated with
motor output (Platt and Glimcher, 1999; Musallam et al., 2004;
Tanaka et al., 2004; Campos et al., 2005; Shuler and Bear, 2006;
Louie et al., 2011; Toda et al., 2012; Zhao et al., 2018). Models
indicate that signals encoding value and reward expectations
in M1 play a significant role in the reinforcement learning
(RL) process (Dura-Bernal et al., 2015; Tarigoppula et al.,
2018). This information is encoded during active movement, as
well as during action observation and motor planning which
further implies an interconnection between reward, learning, and
expectation (Tkach et al., 2007; Dushanova and Donoghue, 2010;
Marsh et al., 2015).

Many of the single and multi-unit activity studies on reward
modulation in M1 have utilized firing rate, with some exceptions
(Marsh et al., 2015; An et al., 2018, 2019), where the local field
potential (LFP) was studied. However, the correlation between
individual units can also provide insight into how populations
of neurons change with the task at hand (Lee and Maunsell,
2009; Maynard et al., 2011). There is notable variability in
individual unit responses to repeated stimuli (Tolhurst et al.,
1983), and this variation is often shared between neurons
(Shadlen and Newsome, 1998). Research has shown that the
correlation between trial-to-trial fluctuations has a significant
impact on coding efficiency, specifically concerning attention,
learning, and behavior (Zohary et al., 1994; Abbott and Dayan,
1999; Nirenberg and Latham, 2003; Averbeck and Lee, 2006;
Cohen and Newsome, 2008).

Changes in correlation occur even in the absence of changes in
firing rate, suggesting that correlation dynamics are a critical part
of the neural code (Vaadia et al., 1995). Correlation reveals neural
population interactions that contribute to our understanding
of network architecture. Analysis of changes in correlation in
different contexts indicates an increased correlation between
similarly tuned ensembles and local circuits, affecting learning-
related plasticity (Komiyama et al., 2010). Also, the correlation
has proven useful in understanding potential connectivity across
regions and populations (Reid and Alonso, 1995).

In studying the correlation of M1 units in the presence of
cues associated with rewarding (R) and non-rewarding (NR)
results, there are several factors to consider. Previous work has
demonstrated correlation changes related to spatial attention,
learning, and other aspects of the internal neural state. These
factors are likely to coexist in a R task experimental paradigm

with conditioned visual cues and may also be driving factors
in our results. However, fluctuations in aspects of cortical state
may occur on distinct and significantly different timescales,
such as attentional shifts vs. circadian related changes. Second,
correlation can be significantly affected by the strength of the
stimulus-response (Ecker et al., 2010), which was shown to
contribute to 33% of the across-study variance reported in
V1 (Cohen and Kohn, 2011). Last, the composition of the
population plays a role in the relationship between correlation
and coding efficiency, which means that the results obtained
may be interpreted differently depending on the ensemble of
units with predictable variations across subpopulations. For
example, while increasing correlation has proven detrimental
in homogenous populations and similarly tuned neurons, it
may increase information carrying capacity in heterogeneous
populations and differently tuned units (Abbott and Dayan,
1999; Chelaru and Dragoi, 2008). As our task utilized a single
target, we did not probe such relationships with tuning properties
(see ‘‘Materials and Methods’’ section).

The goals of this study were to: (1) determine the extent
and direction of changes in correlation in response to R and
NR visual cues on M1 neural activity; and (2) interpret the role
of correlation in improved neural encoding of R vs. NR trials.
Given the capacity for reward modulation observed in previous
studies within the sensorimotor cortices (Marsh et al., 2015;
McNiel et al., 2016a,b; Ramkumar et al., 2016; Ramakrishnan
et al., 2017; Zhao et al., 2018; An et al., 2019) and the association
of decreased correlation with increased encoding accuracy, we
predicted that the mean response of the M1 population would
show noise-correlation decreases during R trials and that this
decrease would include not only reward modulated units but the
M1 network at large. We recently showed evidence in line with
this hypothesis in the interaction between neural spike trains and
the underlying LFP in M1 (An et al., 2019) with higher phase-
amplitude coupling (PAC) and spike-field coherence (SFC) seen
during the NR trials as compared to R trials, however, we did
not report on interactions between single and multi-units, such
as changes in the correlational structure between pairs of units as
we do here.

MATERIALS AND METHODS

The data used in this study was originally collected and processed
as described in Marsh et al. (2015).

Experimental Task
The non-human primates (NHPs) performed two tasks, manual
and observational, that were used for analysis. First, the animals
were trained to perform a single target center-out reaching task
using their right arm inside a KINARM exoskeleton (BKIN
Technologies). For the manual task, a right-hand movement was
made from a central target to a peripheral target (0.8 cm radius)
located 5 cm to the right (Figure 1). A cursor provided visual
feedback of the hand position. The NHP initiated each trial by
holding on the neutral (green) center target for 325 ms, followed
by a variable color cue period (100–300 ms) where the colored
peripheral target appeared as red of blue to indicate a R or NR
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FIGURE 1 | Schematic of the single target reaching task. (A) Manual task and (B) observational task (OT).

trial, respectively. At the same time, the center target turned to
the same color as the peripheral target. After a required hold
period of 325–400 ms, a GO, marked by the disappearance of
the center cue, indicated the NHP could move to the peripheral
target where it had to hold for 325 ms (Figure 1A). At that time
the animal would receive a liquid reward (R) or no reward (NR),
depending on the trial type. If the NHP failed to correctly finish a
trial, the same trial type would be repeated. For the manual task,
the trial types were randomized otherwise. For the observation
task, the trials were presented in a sequenced pattern alternating
between R and NR trial types for NHP-Ac. For NHP-Zi the

observational data was biased with a 2:1 ratio in favor of R trials,
but otherwise randomized.

For the observational task (OT), the NHPs observed the
hand feedback cursor as it automatically moved at a constant
speed from the center to the peripheral target (Figure 1B).
The KINARM was locked into place and the NHP’s left arm
was restrained to prevent reaching movements. Eye-tracking
was used to ensure that the NHP was looking at the computer
projection in the horizontal plane on a semi-transparent
mirror where the tasks were displayed during the
OT trials.
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For each trial, there were four defined task phases or period
for analysis: pre-cue (500 ms), post-cue (500 ms), pre-reward
(500 ms), and post-reward (500 ms).

Surgery
Two bonnet macaques (Macaca radiata) were implanted in
M1 with a 96-channel microelectrode array (10 × 10 arrays
separated by ∼400 µm, 1.5 mm electrode length, 400 kOhm
impedance, ICS-96 connectors, Blackrock Microsystems) using
techniques detailed in our previous work (Chhatbar et al.,
2010). All surgical procedures were conducted in compliance
with guidelines set forth by the National Institutes of Health
Guide for the Care and Use of Laboratory Animals and were
further approved by the State University of New York Downstate
Institutional Animal Care and Use Committee.

NHPs were implanted with a head post (Crist Instrument)
3 to 6 months before the electrode implantation. Implantation
was performed after animals were trained to complete themanual
task (see below) with a success rate of 90%.

Data Collection
After 2–3 weeks of recovery, single-unit and multi-unit activity
were recorded using multichannel acquisition processor systems
(Plexon). The signals were amplified, bandpass filtered from
170 Hz to 8 kHz, and sampled at 40 kHz before the waveforms
were sorted using principal component (PC) methods (Marsh
et al., 2015). There was no segregation between single (SU) and
multi-unit (MU) for our analysis, as the use case is towards brain-
computer interface (BCI) applications where both SU and MU
have been shown useful in providing information. For NHP-Ac
(contralateral M1), data was taken from the contralateral M1 and
the ipsilateral M1 for NHP-Zi (ipsilateral M1) concerning the
right arm that was used in the reaching task.

For NHP-Ac manual task, there were four same-day
recording sessions included in this analysis with 80, 80, 80, and
112 units detected after offline sorting from sessions 1, 2, 3, and
4 respectively. For NHP-Ac’s observation task, there were three
same-day recording sessions included with 91 units recorded
in each using the same MAP sort file (Plexon) indicating these
may be the same units (SU and MU). The number of trials for
NHP-Ac was N = 190 R and 61 NR for manual and 469 for
both R and NR observational trials. The data collected from
NHP-Ac OT was a perfectly predictable sequence of R trials
followed by NR and repeating. This structure allowed the NHP
to learn the trial value sequence as shown in Tarigoppula et al.
(2018) with this same data. For Monkey Z manual task, there
were three different-day recording sessions used for this analysis
with 38, 36, and 32 units detected after offline sorting (Offline
Sorter from Plexon). For the observation task, there were also
three different-day recording sessions included with 42, 45, and
40 units recorded in each. The number of trials for NHP-Zi was
N = 326 R and 159 NR for manual, and 519 R and 258 NR for
observational data. It should be noted that the total number of
units recorded from was most likely less than the full numbers
above, especially for the same day sessions of NHP-Ac as many
of the units may have been the same between sessions, however,
for this analysis, we did not separate SU and MU data explicitly.

Data Analysis

Firing Rate
To determine differences between R and NR trials for each unit,
firing rates were calculated using overlapping bins of 100 ms
moving in increments of 5 ms. For each unit, n, the firing rate,
Vk
n(b), of each bin, b, of each trial, k, was determined by:

Vk
n(b) =

ckn(b)
T

(1)

where ckn(b) is the number of spike counts per bin and T
is the length of the bin in ms. For each unit, the firing
rate was normalized across the entire session using min-max
normalization on a per unit basis,

Vnormalizedkn
(b) =

Vk
n(b)−min(Vn)

max(Vn)−min(Vn)
(2)

The normalized firing rate,Vnormalizedkn
(b), is distributed between

0 and 1. For certain analyses, the firing rate data was not
normalized, such as when looking at the influence of rate on
noise-correlation described below.

Noise Correlation
Noise-correlation refers to the trial-to-trial variations that are
shared between pairs of units (Cohen and Kohn, 2011). Noise-
correlation is equivalent to the Pearson cross-correlation of
the trial-by-trial firing rate variation of two units about their
respective bin-wise means (Bair et al., 2001; Kohn and Smith,
2005). The trial-by-trial firing rate variation was calculated for
each unit, n, by

Vnoisekn
(b) = Vnormalizedkn

(b)−

∑K
k = 1 Vnormalizedkn

(b)

K
(3)

where K was the total number of trials. The Pearson coefficient
of Vnoise was found by

rnoise(n1, n2) =
cov

(
Vnoise1 ,Vnoise2

)
√
var

(
Vnoise1

)
var

(
Vnoise2

) (4)

and was calculated using the MATLAB function ‘‘corr.’’ The
correlation was calculated separately for each trial period, and all
trials of the same trial type were concatenated to find a single
coefficient per unit pair per task phase.

Population-Level Noise-Correlation
Analysis
In addition to the above NC analysis conducted on unit
pairs, we additionally utilized principal component analysis
(PCA) to determine from the population of units a measure
of the dimensionality of the dataset during R vs. NR trials.
The hypothesis was that during NR trials there would be less
variability in the data, as seen previously (An et al., 2019),
and therefore the amount of variability from the full dataset
accounted for by 20 PCs should be greater during NR trials as
compared to R trials. PCA was run separately on the R and NR
trials. We then determined the % variance accounted for and
used that measure as our variable to compare.
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Rate vs. Noise-Correlation
The effect of firing rate on noise-correlation was quantified by
analyzing the relationship between the arithmetic mean of the
unit’s raw activity determined for R and NR data separately.
The noise-correlation coefficients during the post-cue response
period of all unit pairs were determined for R and NR data
separately. Next, we determined which unit pairs from all units
had mean absolute differences in their mean post-cue period
rate less than 0.8 Hz, which was chosen such that for each data
set there was data within each bin. We then took these pairs
of units from the R and NR datasets and formed 10 bins, with
each bin containing data with a mean individual unit rate within
the 0.8 Hz bin. We then plotted this mean rate (x-axis) against
the mean of the absolute value of the noise-correlation between
the unit pairs within that rate bin. We ran a Wilcoxon Signed
Rank test (signed-rank test in MATLAB set with ‘‘tail,’’ ‘‘left’’)
on the data as well as a Kolmogorov–Smirnov test (kstest2 in
MATLAB). Both statistical tests were used as they are sensitive to
different features, such as the KS test being more sensitive to any
differences between the two distributions being compared, while
the rank-sum test is more sensitive to differences in the medians.
Also, we utilized the one-sided signed-rank test to address the
hypothesis that NC was higher for NR trials as compared to
R trials. We focused on the post-cue response period, which
was consistently different between R and NR trials for all tasks
and NHPs for the median noise correlations (Figure 4). Unit
pairs from all sessions for a given NHP-Ac and task type were
combined for this analysis (Figure 5). For individual session
median noise correlations see Figure 4.

Relationship Between Signal and Noise
Correlation
We conducted an analysis of covariance (ANCOVA) between
the signal- and the noise-correlation for all unit pairs recorded
during R and NR trials separately. We utilized the MATLAB
function aoctool for this analysis with the model set to ‘‘separate
lines,’’ such that there were no added constraints to the model.
We have plotted for each unit pair the signal correlation
(x-axis), which is simply the crosscorrelation between the mean
unit responses (PSTH, post-stimulus-time-histogram) during the
given task period, against the noise-correlation for the unit
pair. The aoctool outputs statistical confidence on the model
parameter values as well as an ANOVA table on the signal
vs. noise, the trial type of R vs. NR, and interaction of
Signal-correlation ∗ Reward level vs. noise-correlation, and we
have included the ANOVA outputs on the related figure, or
accompanying text (Figure 6).

Identifying Reward Modulated
Subpopulations
Selecting reward discriminatory units was achieved using the
Pearson correlation between reward value on a given trial and
unit firing rate, where R was assigned a value of 1, and NR
was assigned a value of 0. We arbitrarily used the top 20%
of units with the highest correlation coefficients, showing a
strong positive correlation with reward, which were classified as
‘‘High Positive’’ units. The bottom 20% of units with the lowest

correlation coefficients, showing a strong negative correlation
with reward, were classified as ‘‘High Negative’’ units. Last, the
middle 20% of units within the middle of the distribution of
absolute value correlation coefficients, were classified as ‘‘middle-
responsive’’ units. These subpopulations were determined for
each period separately, whichmeans theymay consist of different
units during each period. This analysis was carried out to
determine if all three types of units would still show modulation
in their noise-correlation and if these populations would differ
towards finding the best information channels on cortical state
related to reward expectation, reward-associated motivational
salience, or attention.

RESULTS

We present our results addressing our main hypothesis that
reward expectation influences trial-to-trial noise-correlation,
such that this measure could be used to track the cortical state
of expecting reward vs. not expecting a reward, which we aim to
use towards autonomously updating BCIs. Toward this aim, we
recorded from neural ensembles simultaneously (30–112 units)
in contralateral or ipsilateral M1 in NHPs performing a single
target reaching task, or observing such a task, as seen in Figure 1.
To present a fuller story we first show raw data that indicates
reward expectation modulates M1 rates as we have previously
described (Marsh et al., 2015; Tarigoppula et al., 2018; An et al.,
2019). We start our results with raw PSTHs between R and
NR trials (Figure 2), moving onto inquiry about the % of units
that modulate their rate to reward-level cueing (Figure 3), after
which we show the mean noise-correlation for each dataset for
R and NR trials (Figure 4). We then looked at how the firing
rate influences noise-correlation using mean matched methods
(Figure 5) and then shows a correlational structure between
the noise-correlation and the signal correlation (Figure 6).
Finally, we look more closely at how subpopulations of units
noise-correlation are modulated by reward expectation, such as
units which have increased rate modulation due to reward, or
decreased rate, or no reward modulation shown in rate, as well
as how high positive correlated units are modulated by reward
cueing vs. highly negatively correlated units.

In Figure 2, we have plotted the average min-max normalized
mean firing rate by trial type, R (red) and NR (blue), across all
units for all sessions. NHPs (A, contralateral, and Z, ipsilateral)
and task types (manual and observational). These results align
with previous work showing an increased firing rate in response
to a preferred stimulus and a higher overall rate for R stimuli
(Marsh et al., 2015; Tarigoppula et al., 2018) and utilized some
of the same datasets used here from the same NHPs. This
trend can be seen in both the manual and observation tasks,
indicating that reward modulation occurs in the motor cortex
while performing a reaching movement and during passive
observation as expected (Marsh et al., 2015; An et al., 2019). Also,
there are differences between the manual and OTs consistent
with previous research, where neural responses to observation
tend to be weaker than during the manual version of the task.
We have plotted two example units for NHP-Ac manual and
OTs in the bottom row of Figure 2. NHP-Ac’s observational data
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FIGURE 2 | Normalized (min-max) mean firing rate ± SEM for rewarding (R, red) and non-rewarding (NR, blue) trials averaged across all units and sessions as
follows, NHP-Ac manual, N = 80, 80, 112, 80 units across four sessions, NHP-Ac observational, N = 91 across all three sessions, NHP-Zi manual N = 38, 36,
32 units across three session and NHP-Zi observational N = 42, 35, 40 units across three sessions. In cue plots, zero is the time of the cue being shown, and in
result columns, zero is the time the result started. Plotted data was binned at 100 ms and a moving window of 5 ms was used to smooth the data for
presentation purposes.

is separated between R and NR even at the start of the pre-cue
period. This separability can be attributed to the predictable
nature of the trial value sequence for NHP-Ac’s OT, which had
a repeating sequence of R followed by NR trials, in comparison
to the more randomized trial sequence in the manual task
(see ‘‘Materials and Methods’’ section). As NHP-Ac learned
the sequence of R-NR the difference in firing rate can be seen
before the cue onset as shown in Tarigoppula et al. (2018) for
these data sets. Please note results on the above datasets, and
related datasets, for differences in firing rate, duration of trials,
and EMG have been presented previously by us showing the
expected results, such as slightly increased trial duration during
manual tasks for NR trials as compared to R trials (Marsh
et al., 2015; Tarigoppula et al., 2018; An et al., 2019; Hessburg
et al., 2019). However, the OTs have no such differences, and
as seen in our results still show clear differences due to reward
level cuing.

Figure 3 illustrates the percentage of units in each period
that were modulated by the cued reward level. In each graph,
red indicates a higher firing rate for R-trials, blue indicates a
higher firing rate for NR-trials, and gray indicates no significant
difference between the two trial types (Wilcoxon rank-sum,
p < 0.05). For both NHPs, most of the units were modulated for

reward when the firing rate was compared in each period. There
is a larger percentage of units with significantly higher firing rates
for R trials in the post-cue period, and this percentage decreases
as the trial phases move forward (Figure 3). During the pre-result
and post-result periods of the OT, both NHPs show a greater
percentage of units with an increased firing rate in NR trials as
shown previously (Tarigoppula et al., 2018).

The differences in firing rate between R and NR trials confirm
that reward modulation occurs in the motor cortex during these
single target center-out reaching tasks (Marsh et al., 2015), which
has also been shown in multi-target tasks (Ramkumar et al.,
2016; Ramakrishnan et al., 2017; Tarigoppula et al., 2018; Zhao
et al., 2018). This metric alone, however, does not provide a
complete perspective on the dynamics of these populations.
Further analyzing the interactions between these units is critical
to understanding more broadly the cortical state.

Noise Correlation
The observed noise-correlation (NC) includes both positive and
negative coefficients which result in a mean NC close to zero,
similar to the range given by Ecker et al. (2010) of 0.01–0.03.
Figure 4 displays the absolute value of the unit pair NC for all
unit pairs. The results show NC for R and NR trials, with some
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FIGURE 3 | Percentage of units with significantly higher firing rates for R (red) and NR (blue) trials in each period, pre- post-cue, pre- and post-result, as well as the
percentage of units that did not significantly reward level modulated. The number of units for each NHP-Ac and task are as shown in Figure 2 at approximately
N = 272 NHP-Ac manual, 273 NHP-Ac observational, 100 NHP-Zi manual, and 117 NHP-Zi observational, see “Materials and Methods” section. There were
three sessions for each NHP-Ac and task except for the NHP-Ac manual with four.

variation across periods, task, and subject. During the manual
and OTs, as hypothesized, both subjects showed significantly
higher NC for NR trials during the post-cue period. During
the pre- and post-result period, both NHPs for the manual task
show the same relationship of higher NC for NR trials and
so did NHP-Zi for the OT. However, NHP-Ac, which had the
predictable trial value sequence for the OT, showed the opposite
relationship during the pre- and post-result periods as seen in the
second row of Figure 4.

In addition to the above pair-wise NC analysis, we also
conducted PCA at the population level of our datasets. PCA
determines the eigen-vectors and values of the covariance matrix
from the full population dataset, and we wished to know if we
would see similar results to those from the pair-wise analysis, as
we expected. In short, we did obtain the same qualitative trends.
We found that the first 20 PCs from PCA run on NR trial data
alone always accounted for more of the variance of the neural
population data than when conducting PCA on R trial data alone.
This result was expected due to the relationship between the

pair-wise analysis, and the use of the covariance matrix in PCA,
but allows us to show with clarity similar results for pairwise and
population-level analysis.

Percent of Population
Considering all unit pair noise-correlation coefficients, the
significance of the difference between R and NR NC was
determined by the Wilcoxon rank-sum (p-value < 0.05) for
each unit pair. Unit pairs were classified as: either having a
higher NC during R (red) or during NR trials (blue; Figure 5).
NHP-Ac showed a slightly greater percentage of unit-pairs with
higher NR NC in most periods. A larger percentage of unit pairs
do not demonstrate a significant difference between R and NR
trials for their NC (gray), suggesting that NC differences on the
Unit level are not strong and the population as a whole carries
this information (compare Figures 4, 5). NHP-Ac observation,
NHP-Zi manual, and NHP-Zi observation data all follow a
similar trend with slightly more unit pairs showing higher NC for
NR trials (Figure 5). The post-cue period consistently showed a
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FIGURE 4 | The median absolute value of noise correlations (NC) ± SEM, for R and NR trials during the post-cue, pre-result and post-result periods. Significant
differences were determined by Wilcoxon rank-sum (p < 1 × 10−10***). All bars deemed significant for the rank-sum test were also significant utilizing the
Kolmogorov–Smirnov test. The trial type is shown at the bottom and color indicates the data set # for the individual non-human primates (NHPs) in order from left to
right (red dataset #1, cyan dataset #2, et cetera), see “Materials and Methods” section for more on these sets. The black lines are used to show the trend between
the R and NR trial types. We have included the asterisks in the left bars for a pair being compared (R vs. NR).

slightly higher percentage of unit pairs with increased NC for NR
trials across all NHPs and tasks.

Effect of Firing Rate
Previous work indicated that an increase in firing rate causes
an increase in NC (de la Rocha et al., 2007). Both NHP-Ac
and Zi demonstrate higher NC for NR trials regardless of the
relationship between post-cue induced firing rate changes and
NC. The relationship between mean NC and mean matched
firing rates differed between the trial types and NHPs (Figure 6).
In NHP-Ac, NC showed a linear increase with the firing
rate during the manual task for NR trials. However, for the
observation task, there was an inverse effect on NR trials that

resulted in a sharp decrease in NC at higher firing rates,
where data from R trials showed a more linear increase in
NC with firing rate (Figure 6). For NHP-Zi, there was a
significant tendency for NR trials to have higher NC for all
rates as seen in Figure 6. However, the relationship between
rate and NC was not simply linear, as also seen for NHP-Ac
observational data. These relationships remained whether we
used the geometric mean (data not shown) or the arithmetic
mean. In Figure 6, green asterisks are used to report results
from KS-tests, while the pink asterisks are results fromWilcoxon
signed-rank tests. In Figure 6, we focus on the lower rage
of firing rates as R trials, as seen in Figure 2, had higher
rates and NR trials would have very few or no rate bins with
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FIGURE 5 | Percent of unit pairs that have higher noise-correlation for R (red), NR (blue), or neither (gray) trial type for both NHPs and tasks as labeled during the
pre- and post-cue, pre- and post-result periods. Note the break in the y-axis.

data in them at those higher rates. However, when using a
geometric mean binning method and spanning the full rate
space we did not see qualitatively different outcomes (data
not shown).

Signal vs. Noise Correlation
Previous work has shown a relationship between the signal-
correlation and the NC, and we wished to determine if
the reward expectation level would influence this signal-
and noise-correlation relationship. We have plotted the
signal correlation for every unit pair for the R and NR
trials as red and blue points in scatter plots as seen
in Figure 7, along with linear fits to both data types
separately. In both NHPs and tasks there were significant
linear model parameters for intercept and slope (R vs. NR)
Prob > |T| = 0. In addition, both NHPs for manual data,
and NHP-Zi for observational, had significant differences
between signal-correlation ∗ trial-type vs. noise-correlation,
NHP-Ac manual task, p = 0, F(1,61,743) = 100, NHP-Zi

manual task p = 0.001, F(17,524) = 11, and NHP-Zi OT
F(19,016) = 23, p = 0. However, NHP-Ac’s observational
data did not show this relationship between group and
signal- vs. noise-correlation significantly, only for trial-type
p = 0, F(1,49,682) = 35, and signal- vs. noise-correlation
p = 0, F(1,49,682) = 3271 without regard to trial type that
is group.

Sign (+/−) of Noise-Correlation and
Stability
Figure 8 shows the separation of the median positive and
negative NC for each NHP-Ac and task during the post-cue
period (Figure 8, top row). Positive (Pos) and negative (Neg)
NC is shown for both R and NR trial types. It is clear
that the left two columns of each group of four bars, which
are for the positive NCs, are higher than the negative two
NC bar values seen in the right two columns of each group
of four bars. Likewise, NC is generally higher during the
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FIGURE 6 | The mean noise-correlation coefficient (y-axis) plotted against
the mean rate for unit pairs with similar mean rates (<0.8 Hz difference)
during the post-cue period. R (red) and NR (blue) trials are plotted ± SEM for
all unit pairs over all data sets for that NHP-Ac and task type. For each
subplot, we have included statistical results from both the
Kolmogorov–Smirnov test (green) as well as the Wilcoxon rank-sum test
(pink) with **p < 0.01, and ***p < 0.001, between R and NR trials.

NR trials as compared to the R trials. Previous studies have
related lower information encoding capacity to increases in
positive NC, referring to the mean response of a population
of neurons (Zohary et al., 1994). Dissecting the distribution of
these coefficients by separating positive and negative correlations
may explain discrepancies between subjects and task types and
reveal additional information about the role of NC (Chelaru
and Dragoi, 2016). For NHP-Ac manual task, the positive
and negative coefficients are both greater in absolute value
for NR trials during all periods within the trials. This aligns
with the mean and median NC, which are higher for NR
trials (Figure 4 and related text). In general, the other periods
within the task also show greater NC during NR trials for
both positive and negative coefficients, and NHP-Zi OT displays
similar trends to NHP-Ac manual data during all periods (data
not shown).

The bottom row of Figure 8 shows the stability of the
population of units within a given group, such as units with
positive NC during R trials, positive NC during NR trials,
negative NC during R trials, and negative NC during NR trials.
In general, one can see that the positive units are more stable
in the sense that they do not flip back and forth between
having positive NC during the different task phase, but remain
positive in their unit-pair NC, whether during R or NR trial
types. This stability was significant for all datasets except for
the NHP-Ac manual, which was unexpected when compared
to the previous results on NHP-Ac manual data set. NHP-Ac
was implanted in the M1 contralateral to the reaching arm and
therefore during manual trials, this cortical region was most in
direct control of the reaching movements, and NC may indicate
a decrease in information capacity, this might explain these
results. Nevertheless, NHP-Ac manual data still had the same
overall trends as the other datasets with R trials being lower than
NR trials.

FIGURE 7 | Signal- vs. noise-correlation. Plotted in red are the R trial
datapoints from all datasets for each NHP and task, while blue datapoints are
from the NR trials. Cyan line is a linear fit to the NR trials and green are linear
fits to the R data. The x-axis is signal-correlation while the y-axis is the
noise-correlation. All datasets had highly significant linear fits between most
of the variables involved, including trial-type, y-intercept and slope of the
linear fits. All datasets for NHP-Zi, and the manual datasets for NHP-Ac also
showed highly significant fits for signal-correlation ∗trial-type vs.
noise-correlation. Statistics included below from the ANOVA output for the
relationships between signal-correlation, noise-correlation and trial-type.
MATLAB aoctool was utilized for this analysis of covariance (ANCOVA).
Number of data sets was (N = 3 for all but NHP-Ac Manual N = 4, see
“Materials and Methods” section for trial and unit #s). NHP-Ac manual task,
group (R vs. NR), p = 0, F (1,61,743) = 63, group * X (signal correlation) p = 0,
F (1,61,743) = 100. NHP-Ac OT, group, p = 0, F (1,49,682) = 35. NHP-Zi manual
task group p = 0.0004, F (17,524) = 13, group * X p = 0.001, F (17,524) = 11.
NHP-Zi OT group p = 0, F (19,016) = 17, group * X F (19,016) = 23, p = 0.

Relationship Between Reward-Rate
Modulation and NC
While the combined neural firing rate of all recorded units
shows separability between R and NR trials, there is evidence
that this separability can be attributed to select units (Marsh
et al., 2015). Analysis of the currently presented data sets
revealed a subpopulation with an increased firing rate during
R trials and another with an increased firing rate during
NR trials (Marsh et al., 2015), which led directly to our
Figure 9 analysis.

While it is apparent that NC differences in response to reward
level cueing are present in only a subset of unit pairs (Figure 5),
the defining features of these subpopulations are still unclear.
To use noise-correlations as an indicator of reward expectation,
selecting subpopulations that are known to modulate for a
reward through firing rate provides a more direct comparison
between these two factors. Figure 9 shows the median absolute
value of the NC for R and NR trials for each of the following
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FIGURE 8 | Median noise-correlation during the post-cue period for positive (Pos) and the absolute value of the negative (Neg) noise-correlation coefficients during
R (Rew) and NR (Non-Rew) trials from all data (Top Row, ± SEM, for the median, over all data points from all dataset). Significance was determined using KS-test
and Wilcoxon signed-rank) *,***, where p < 0.05, p < 0.001 respectively). All comparisons between Pos data sets for R and NR trials were significant, where
significance was determined by Wilcoxon rank-sum (p < 0.05) and KS-tests (p < 0.05), as were differences between Pos and the absolute value of the Neg trials (all
p < 0.001). The standard error of the medians was on the order of 0.0004–0.0008 for the median plots. (Bottom Row) The percentage of units that remain within a
single category (Pos_R, Pos_NR, Neg_R, Neg_NR) throughout the task from post-cue, during pre-results and post-result periods (± SEM over dataset percentages).
The Percent stable units were significantly different after post hoc testing between the groups with + on their bar. The number of + signs indicates how many out of
the three datasets showed post hoc differences between the Pos and Neg subsets for both R and NR trial types (p < 0.05 post hoc, MATLAB multicompare with
Tukey’s honest significant difference criterion). Note separate keys for top and bottom rows.

subpopulations: 1. units with rates that are upmodulated during
R trials (High Positive), units with rates that are downmodulated
during R trials (High Negative) and units not modulated
strongly by reward (Low). NHP-Ac’s contralateral M1 showed
the strongest relationship during the manual task with NR trials
having higher NC for all subpopulations, and this was also seen
for the high positive subpopulation for NHP-Ac’s observational
data. Though NHP-Zi’s ipsilateral cortex showed little of this
clear relationship, however, NHP-Zi’s data still maintained an
overall trend of higher magnitude NC during NR trials compared
to R trials (Figure 9).

DISCUSSION

The primary goal of this analysis was to determine if significant
differences in NC exist between cued R and NR trials, and if so, to
what extent might these differences relate to reward modulation
of firing rates. As previously described, units with firing rates
modulated by reward expectation are present in these data sets

(Marsh et al., 2015; Tarigoppula et al., 2018), with one subset of
M1 units demonstrating increased firing rates during R trials and
one subset showing increased rate during NR trials (Figure 3).
Because of the capacity for reward modulation demonstrated
by these M1 units during both manual and observation tasks,
it was hypothesized that there would be significant differences
in NC between R and NR trials. Based on our published LFP
work on increased levels of PAC and SFC in the alpha band
during NR trials as compared to R trials (An et al., 2018, 2019),
we expected to see increases in NC for NR compared to R trials
as well. Recent work on these measures (PAC, SFC, and NC) in
the frontal eye fields have suggested that NC modulations
are due to long-range connections via LFP influences
(Hassen et al., 2019).

Our presented results follow what would be expected if
information capacity within the M1 network was governing the
changes in neural rate, and correlational structure. To be clear,
we hypothesize the M1 network is carrying the most information
about the environment during the task cue period, when the
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FIGURE 9 | The median correlation coefficient for the High Positive, High Negative, and Low-responsive subpopulations each NHP-Ac and task as labeled. Black
and pink asterisks located on the graph indicate there is a significant difference between the subpopulations during R and NR trials for Wilcoxon rank-sum and
KStest2 respectively (p < 0.05, and p < 0.001 denoted by * and *** respectively).

NHP subjects learn the value of the given trial, as well as
having information on the cursor position, velocity, and the
target, etc. During this post-cue period, both the contralateral
and ipsilateral M1s showed an increase in firing rates during
R vs. NR trials (Figure 2). Corresponding to this increase in
rate was a decrease in the median NC for R trials during the
post-cue period (Figure 4), and an increase in NC for the NR
trials. A potential factor impacting increased NR NC is the
firing rate. Previous studies have demonstrated that increases
in firing rate are related to increases in correlation (de la
Rocha et al., 2007). However, we see the opposite influence
of NR on the firing rate, that is NR decreases the firing rate
on average. ‘‘Integrate-and-fire’’ models indicate that output
correlation increases in response to increasing firing rate when
the input correlation remains unchanged (de la Rocha et al.,
2007). This pattern is illustrated by the increase in NC with
increasing response firing rates seen in (Figure 6). However,
despite the relationship with the firing rate, NR trials continue
to exhibit higher NC than R trials. The response to changes in
R stimuli is similar to the pattern seen in attention, with higher
evoked rates leading to greater differences between the two states
(Cohen and Maunsell, 2009). With increases in response to the
value cue, the difference between NR and R NC increased in

general, but not all responses were linear, and some decreased
after reaching a given rate (Figure 6), and again, NR trials
had lower firing rates than R trials. Thus, the increased rate
for R trails is accompanied by a decrease in NC, a situation
that could allow for more information-carrying capacity vs. the
NR trials.

In addition to studying the pair-wise correlational structure,
we also conducted Principal Component (PC) Analysis (PCA)
on our data, finding the same trends seen in Figure 4 between
R and NR trial type. Using PCA we asked when the latent
dimensionality of the data was lower, during R or NR trials.
More of the data’s variance was consistently explained by 20 PCs
for NR trials than for R trials, again indicating that there is
more correlational structure during the NR trails, leading to
a lower-dimensional latent space, as compared to the R trials
(data not shown). This increased correlation and decreased
firing rate during NR trials, shown above, could indicate a
cortical state with less information-carrying capacity, perhaps
as a strategy to conserve energy during low reward expectation
moments, which would likely correspond to states of low
motivation and decreased attention, this is purely speculative
though. By information-carrying capacity, we mean in the
information-theoretic sense, where correlation decreases the
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capacity for a network to transmit information. One can imagine
if all the neurons were perfectly correlated it would be similar
to having just one neuron, whereas if they are all uncorrelated
each neuron could be transmitting independent information at
the same time (see for review or introduction respectively; Rieke
et al., 1996; Magri et al., 2009).

Several possible explanations underlie the increase in NC
during the post-cue period of NR trials including changes in
attention, firing rate, motivation, and reward expectation. The
first relies on changes in visual attention, where attention may
either be a coexisting, or driving factor of correlation, or a
separable, but resembling factor that produces similar dynamics
to those induced by reward or reward-related motivation.
Given the predictable nature of the trial reward value sequence
(NHP-Ac observation), visual attention could be a confounding
factor when discussing the relationship between reward and
NC. It is possible that the subjects’ ability to anticipate a
lack of reward resulted in a shift to an unattended state
during NR trials, even before the trial started. Unattended
trials show increases in correlation (Cohen and Maunsell,
2009; Mitchell et al., 2009; Herrero et al., 2013) and could
account for the higher correlation coefficients seen in the
NR trials. We have shown previously that using a task with
multiple levels of reward leads to both linear trends in
firing rate with value (Tarigoppula et al., 2018), as well as
non-linear gain modulated activity patterns (Hessburg et al.,
2019), making it seem unlikely that all of our results are
attributed to attention alone unless the attention is modulated
as one would expect the state-value to be modulated, or
the state-motivation. However, further analysis and more
directed experiments are needed to convincingly address
these questions.

Attention, stimulus contrast (Kohn and Smith, 2005),
learning (Gu et al., 2011; Jeanne et al., 2013), and global
cognitive factors (Ruff and Cohen, 2014) have been shown to
decrease NC in neurons within the same cortical area. Given
the wide variety of factors impacting correlation, the increases
during the NR trials could be the result of the independent
modulatory influence of reward on NC. Previous studies provide
insight into how this difference in correlation between states
serves to improve information encoding. High levels of positive
correlation can be detrimental to the coding accuracy of a
similarly tuned population of neurons (Zohary et al., 1994).
Cohen and Maunsell (2009) determined that the ‘‘modulation
of noise-correlation accounts for the majority of the attentional
improvement in population sensitivity,’’ with modulation of
firing rate and single unit variabilities accounting for a much
smaller portion of the change. Similarly, high correlation limits
signal-to-noise ratios (SNR), with higher correlations leading to
lower saturation of SNR as a function of neuronal pool size
(Mitchell et al., 2009). Much like the trends seen in this research,
Mitchell et al. (2009) noted that the effects of firing rate on
the SNR saturation point do not adequately account for the
differences in SNR ratios observed between units with high or
low correlation.

There is evidence that increases in NR trial NC are related
to reward modulation. However, the mean correlation does

not provide a complete picture of the correlation activity in
the population. An additional factor that may be impacting
reward modulation is the distribution of positive and negative
correlation coefficients. A mean positive correlation reduces the
coding capacity of similarly tuned neurons by reducing the
beneficial effects of adding or averaging responses, a limitation
not present with units showing negative correlation (Zohary
et al., 1994). More unit pairs share a positive correlation and
the change in the positive correlation coefficients between NR
and R trials shows a greater impact on the mean correlation.
This aligns with previous evidence that changes in positive
correlation specifically are the primary cause of the overall
change in mean correlation. In the visual cortex, orientation
changes have been found to decrease positive correlation
while negative correlation remained stable with shifts in the
preferred direction (Chelaru and Dragoi, 2016). In a recurrent
network model, a lower firing rate and decreased negative
NC is generated with increased local inhibition and reduced
excitation, resulting in an increased SNR (Chelaru and Dragoi,
2016). However, our results lean in the direction of decreased
SNR as NC increases with a decreased firing rate for our
data as NR trials had both a decreased overall rate and an
increased NC.

Our results show that R trials have decreased positive NC
and a negative NC that most often either decreases or remains
unchanged (Figure 8). The combined effect typically results in
a decrease in median NC, indicating perhaps more information
encoding capacity. Our results could be adhering to the trends
seen in tuning direction, where the negative correlation is
unchanged in response to changes in condition.

Our results support the hypothesis that NR trials should
have higher NC coefficients. The lower overall correlation values
during R trials align with previous research suggesting that
decreases in correlation correspond with increased encoding
capacity is similarly tuned neurons and homogeneous
populations. Based on this, it is possible to conclude
that NC plays a role in reward modulation in the motor
cortex. Moving forward, this work has applications for the
improvement of BCIs. Incorporating the context-dependent
changes in NC into neural decoding models may improve
decoding efficiency and increase BCI performance, as we
have shown utilizing a neural critic based on classifiers
of neural rate and LFP-PAC (An et al., 2018; Zhao et al.,
2018). Likewise, incorporating NC into the neural state
representation for a neural critic to be used in a RL
BCI should help improve the performance of such RL-
BCIs, where the neural critic would track the user’s brain
state related to reward expectation and reward prediction
error and be used to autonomously update the BCI to
perform better for the user (Sanchez et al., 2011; Prins
et al., 2017; An et al., 2018), or inform the decoder/policy
(Zhao et al., 2018).
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