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Abstract
Purpose Dietary advanced glycation end products (AGEs) have been implicated in promoting insulin resistance. However, 
their impact on insulin resistance in a mixed population made up of males and females remains controversial. The aim of 
this study was to evaluate whether the relationship between dietary AGEs and insulin resistance may be sex-dependent.
Methods 195 males and 239 females were included in this cross-sectional study. Study participants underwent anthropomet-
ric and metabolic assessments. AGE intake was estimated using food frequency questionnaires and databases reporting AGE 
content in individual food items. The relationship between AGE intake and insulin resistance, estimated using HOMA-IR, 
was assessed using Pearson correlation test. The predictive power of dietary AGEs towards HOMA-IR was investigated 
using stepwise linear regression.
Results AGE intake correlated positively with HOMA-IR in females (p < 0.01) but not in male study participants (p > 0.05). 
Moreover, AGE intake was able to increase the predictive power of BMI towards insulin resistance in females but not males. 
Instead, anthropometric variables were the only discriminants able to predict insulin resistance in males.
Conclusion Dietary AGEs exert a sex-dependent effect on insulin resistance as their intake is associated with and able to 
predict HOMA-IR in females but not males. This suggests that females may be more susceptible to the deleterious impact 
of these glycotoxins on insulin sensitivity. Nevertheless, considering this study not involving a nutritional intervention to 
directly elucidate whether the effect of AGEs on insulin resistance is sex-dependent, further studies are warranted to confirm 
the present findings.
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Introduction

Developed and increasingly developing countries are facing 
a diabetes epidemic predominantly driven by the exponential 
increase in the cases of type 2 diabetes mellitus (T2DM) 
[1]. Obesity, particularly central adiposity, is a key risk fac-
tor for T2DM in light of its close relationship with insulin 
resistance, the hallmark of T2DM [2]. From a pathogenetic 
perspective, obesity contributes to insulin resistance by 
fostering metabolic inflammation and lipotoxicity which, 
in turn, are two pivotal mechanisms in impairing insulin 
signaling [3–5]. In this context, the Western diet is crucial, 
not only because it is the main modifiable and independent 
risk factor [6], but also because of its role in supporting the 
chronic low-grade inflammation typical of obesity [7] and 
in promoting lipotoxicity [8]. The consumption of highly 
processed foods represents one of the key actors in mediat-
ing the metabolic aberrations associated with the Western 
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diet. Indeed, they have been implicated in promoting body 
weight gain and obesity [9], T2DM [10] and increased car-
diovascular risk [11]. Although highly processed foods are 
high in long-chain saturated fatty acids and sugars and low 
in dietary fiber, these nutrients may not be the only media-
tors of their effect on metabolic health and insulin resist-
ance in particular. Indeed, food processing also affects the 
nutritional quality of foods by promoting the formation of 
advanced glycation end-products (AGEs) which, in turn, are 
another link between the Western diet and poor metabolic 
health [12].

AGEs represent a heterogeneous group of molecules 
produced non-enzymatically as a consequence of the 
interaction between reducing sugars and the free amino 
groups of proteins, nucleic acids, and lipids via the Maillard 
reaction during dry heat food processing, including cooking 
[13]. Besides heat processing, AGE formation is dependent 
on the nutritional composition of food items, with AGE 
content being higher in foods rich in fat and proteins 
[13]. Considering their heterogeneity, AGEs include 
molecules like carboxyethyl lysine, carboxymethyl lysine, 
glyoxal lysine dimer, 3-deoxyglucosone lysine dimer and 
pyrroline [12]. AGEs introduced with foods, particularly 
low-molecular weight AGEs, are absorbed in the small 
intestine [14] and their biological effects are mediated 
by the activation of the receptor for AGEs (membrane 
RAGE, mRAGE; soluble RAGE, sRAGE) [15] which 
culminate with the induction of oxidative stress and the pro-
inflammatory pathways, namely c-Jun N-terminal kinase and 
the factor nuclear-factor-kappa B (NF-κB) [16–18].

From a metabolic perspective, AGEs have been reported 
to promote insulin resistance in vivo in rats [16] and mice 
[19] as well as in  vitro in rodent skeletal muscle cells 
[16] and 3T3-L1 adipocytes [19]. Remarkably, a diet 
low in AGEs increased insulin sensitivity in overweight 
but otherwise healthy individuals [20] and in individuals 
with T2DM [21], further supporting the implications of 
dietary AGEs on insulin resistance. In humans and animal 
models, AGEs intake effects on insulin resistance remain 
controversial; indeed, other studies have not identified a 
relationship between habitual AGEs intake and insulin 
sensitivity [22, 23]. The reason for these discrepancies 
may be related to the fact that females appear to be more 
susceptible to the metabolically detrimental effects of AGEs. 
In support of this, while studies only including males did 
not identify a relationship between serum AGEs and insulin 
sensitivity [24], in study cohorts only made up of overweight 
women, AGE restriction improved insulin sensitivity 
[25]. Additionally, the knock of the RAGE resulted in an 
improvement in insulin sensitivity in female but not in male 
mice fed a high-fat diet [26].

Thus, despite dietary AGEs being implicated in 
promoting insulin resistance in mixed male and female 

study cohorts, their effects are controversial and may be sex-
specific. In light of this, the aim of this study was to evaluate 
the relationship between AGE intake and insulin resistance 
and if the ability of these glycotoxins to predict deterioration 
of insulin sensitivity is sex-dependent.

Subjects and methods

Participants

Participants in the cross-sectional PANGeA (Physical 
Activity and Nutrition for Quality Aging) project were 
considered for this study [27]. The study conducted in 
northern Italy, recruited free-living individuals aged between 
55 and 80 years and able to walk for 2 km independently. 
Subjects with anticoagulant therapy or previous cancer 
diagnosis or hospitalization in the last year or missing were 
excluded. After the exclusion of twenty-five PANGeA study 
participants without food frequency questionnaire data, four 
hundred and thirty-four participants (195 males and 239 
females) were included in this study.

Subjects enrolled gave their written consent to participate 
in the study and were subjected to anamnestic and nutritional 
interviews, anthropometric measurements and a blood 
sampling as previously described [27] and detailed below.

Dietary assessment and semi‑quantitative dietary 
AGEs evaluation

Study participants completed a 90-item food frequency 
questionnaire with indications of food portion sizes. Dietary 
AGE intake was estimated for each participant using their 
food intake frequencies, after adjusting portion sizes for 
study participant total energy intake, and the AGE content of 
food samples reported in previously published databases [13, 
28]. For some food items, it was not reported the cooking 
method in the food frequency questionnaire. In this case, the 
AGE content of the food was expressed as the mean of the 
most common cooking methods used for that specific item. 
Then, the AGE intake for each participant was obtained by 
multiplying the frequency of single food item, referred to 
as frequency of consumption over a year, by the mean AGE 
content, expressed as kiloUnits (kU) per serving of each 
food item consumed by study participants. Finally, the AGEs 
intake for each participant was expressed as kU AGEs/day.

Supplements if consumed were not considered for the 
estimation of AGEs intake. Nutrient and energy intake 
were assessed using 24 h recalls. The adherence to the 
Mediterranean Diet was computed using a Mediterranean 
Diet adherence score (MDA) as detailed previously [27].
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Biochemical analysis

Blood samples were collected after an overnight fast and 
centrifuged at 1600 g for 15 min at 4 °C to obtain serum or 
EDTA plasma. Aliquots were stored at −80 °C until use. 
Serum triglycerides, total cholesterol, HDL cholesterol 
(HDL), glucose and insulin concentrations were measured 
by standard enzymatic-colorimetric methods. LDL 
cholesterol (LDL) levels were computed by the Friedewald's 
formula [29]:

Serum High-sensitivity C-reactive protein (hsCRP) 
was measured by immune-turbidimetry (CRP OSR6147, 
Beckman Coulter, Brea, CA, USA). Insulin resistance was 
calculated using the Homeostasis model assessment index 
(HOMA-IR) formula [30]:

Visceral adipose Index (VAI) was estimated according to 
Amato et al. [31] as follows:

For female

For male

(BMI = body mass index).

Anthropometric measurements and body 
composition

Anthropometric measures were performed on participants 
wearing light clothing and no restrictive underwear nor 
shoes. Body weight was rounded to the nearest 100 g 
whereas height and waist circumferences were all rounded 
to the nearest 0.1 cm. Waist circumference was measured 
between the lowest rib and iliac crest around the smallest 
circumference.

Bioelectrical impedance (tetrapolar impedance meter, 
BIA101, Akern, Florence, Italy) was used to determine 

LDL cholesterol = Total cholesterol − HDL cholesterol

−
Tryglicerides

5

HOMA − IR index =
Glucose (mg∕dL) ∗ Insulin (mU∕L)

405

VAI =
Waist circumference (cm)

((1.89 ∗ BMI) + 36.58)
∗
Tryglicerides (mg∕dl)

0.81

∗
1.52

HDL cholesterol (mg∕dl)

VAI =
Waist circumference (cm)

((1.88 ∗ BMI) + 39.68)
∗
Tryglicerides (mg∕dl)

1.03

∗
1.31

HDL cholesterol (mg∕dl)

body composition: fat mass (FM), fat-free mass (FFM) and 
muscle mass. Bioimpedance was performed by a trained 
staff member on subjects in a horizontal position, after 8 h 
of fasting.

Statistical analysis

Continuous variables were analyzed using Shapiro–Wilk 
tests. Non-normally distributed variables were expressed 
as median (Quartile 1–Quartile 3). The comparison of 
variables between males and females was carried out 
with Mann–Whitney tests for non-normally distributed 
parameters. Pearson correlation analysis was used to 
evaluate the association between AGEs or HOMA-IR and 
the anthropometric and metabolic parameters. Stepwise 
multiple regression analysis was performed to assess the 
predictive power of AGEs and other parameters of interest 
for HOMA-IR. In these analyses, the variables not normally 
distributed were log-transformed. Data analysis was 
performed using SPSS Statistics for Windows, version 26.0 
(SPSS, Inc., Chicago, IL) and a p ≤ 0.05 was considered 
statistically significant.

The missing data for each variable of interest did not 
exceed 5%.

Results

General, anthropometric, metabolic characteristics 
and AGE intake of the study participants

The characteristics of the study participants divided by 
sex are reported in Table 1. As expected, male, compared 
to female study participants, had a higher BMI, waist 
circumference, FFM, and systolic and diastolic blood 
pressure (all p ≤ 0.001) (Table 1). On the contrary, FM in 
percentage but not in Kg, and VAI (p = 0.007) was higher 
in females compared to males (p < 0.001) (Table 1). From 
a metabolic perspective, total, LDL and HDL cholesterol 
was higher in females than in males (all p < 0.001), whereas 
fasting blood glucose (p < 0.001), blood insulin (p = 0.012) 
and HOMA-IR (p < 0.001) were higher in males (Table 1). 
Finally, the consumption of AGEs adjusted for energy intake 
was higher in males relative to females (p = 0.003) (Table 1). 
Furthermore, the number of individuals with hypertension, 
taking anti-hypertensive drugs or metformin was higher 
among males compared to females (Table 1).

In terms of nutrient and energy intake, males consumed 
more energy, carbohydrates, proteins and lipids than females 
(Table S2). However, diet quality expressed as MDA did not 
differ between the two groups (Table S2).
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The relationship between AGE intake, 
anthropometric and metabolic health‑related 
parameters

Considering the relationship between dietary AGEs, 
insulin resistance and obesity [32, 33] which, however, 
remains controversial [22], it was investigated whether the 
habitual AGE consumption correlated with anthropomet-
ric and metabolic health-related parameters. The intake 
of AGEs in the whole study cohort correlated positively 
with FFM and negatively with visceral adiposity index 
(VAI), fasting triglycerides, total and LDL-cholesterol. 
Additionally, AGE intake did not correlate with fasting 
glycemia nor HOMA-IR (Table S3). However, considering 

that the present study cohort was made up of both males 
and females, to evaluate whether AGE intake affected dif-
ferently males and females, the relationship between AGE 
intake and metabolic parameters was investigated in both 
sexes separately. While dietary AGEs in male correlated 
with fasting triglycerides (p = 0.034) but not with insu-
lin resistance (Table 2; Fig. 1A), in females the intake 
of AGEs correlated positively with fasting blood insu-
lin (p = 0.034) and HOMA-IR (p = 0.022) (Fig. 1B) and 
negatively with total (p = 0.005) and LDL-cholesterol (p 
= 0.002) (Table 2). Additionally, in females dietary AGEs 
tended to correlate positively with fasting blood glucose 
(p = 0.065). 

Table 1  General characteristics of male and female study participants

The comparison between male and female was carried out with Mann–Whitney  test1 or Fisher Exact  Test2

*0.050 > p-value ≤ 0.010; **0.010 > p-value < 0.001; ***p-value ≤ 0.001
BMI, body mass index; FFM, fat free mass; FM, fat mass; VAI, visceral adiposity index; SBP, systolic blood pressure; DBP, diastolic blood 
pressure; AGEs, advanced glycation end products; HOMA-IR, homeostatic model assessment for insulin resistance; HDL, high density 
lipoprotein; LDL, low density lipoprotein; hsCRP, high-sensitivity C-reactive protein; IL-18, interleukin-18

Male (n = 195) Female (n = 239) p-value1

Median (IQR) Median (IQR)

Age (years) 66 (63–70) 65 (63–70) 0.103
BMI (kg/m2) 26.8 (24.7–29.3) 25.7 (23.2–28.2) 0.001***
Waist circumference (cm) 96.0 (90.0–103.0) 89.0 (83.0–96.0) < 0.001***
FFM (%) 68.8 (65.1–72.5) 61.2 (57.1–64.8) < 0.001***
FM (%) 31.2 (27.5–34.9) 38.8 (35.2–42.9) < 0.001***
FFM (Kg) 54.7 (51.5–58.6) 39.2 (36.6–42.3) < 0.001***
FM (Kg) 24.5 (20.7–29.7) 24.82 (20.6–29.5) 0.907
Muscle Mass (Kg) 34.9 (32.0–37.3) 23.9 (21.9–26.0) < 0.001***
VAI 0.91 (0.61–1.46) 1.0 (0.81–1.51) 0.007**
SBP (mmHg) 143 (132–158) 133 (120–146) < 0.001***
DBP (mmHg) 88 (81–94) 82 (76.67–90.) < 0.001***
AGEs (kU/day) 11,925.2 (8811.6–17,030.5) 10,492.7 (8103.9–14,692.8) 0.003**
Glucose (mg/dL) 100 (91–110) 94 (88–102) < 0.001***
Insulin (U/L) 8.8 (6.1–12.4) 7.50 (5.6–10.0) 0.012*
HOMA-IR index 2.2 (1.4–3.4) 1.7 (1.2–2.4) < 0.001***
Triglycerides (mg/dL) 94 (70–125) 91 (71–116) 0.747
Total Cholesterol (mg/dL) 200 (179–228) 226 (204–250) < 0.001***
Cholesterol HDL (mg/dl) 57 (48–69) 72 (61–81) < 0.001***
Cholesterol LDL (mg/dl) 122 (100–143) 136 (113–156) < 0.001***
hsCRP (mg/L) 0.11 (0.06–0.21) 0.10 (0.06–0.26) 0.792
IL-18 (pg/ml) 400.9 (319.6—503.5) 320.9 (263.0—405.8) < 0.001***

N (%) N (%) p-value2

Hypertension 72 (36.9%) 63 (26.4%) 0.022*
Hypertension therapy 69 (35.4%) 62 (26.4%) 0.036*
Hypolipidemic treatment 43 (22.1%) 35 (14.6%) 0.059
Metformin therapy 13 (6.7%) 3 (1.3%) 0.004**
Smoke 16 (8.3%) 25 (10.6%) 0.267
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AGE intake as a predictor of HOMA‑IR

Given the relationship between AGE intake and HOMA-IR 
in female study participants, it was next investigated whether 
dietary AGEs could predict insulin resistance and how 
their predictive power compared with known risk factors 

for insulin resistance [34]. It was first confirmed that in 
this study cohort existed a relationship between BMI, fat 
mass, VAI and HOMA-IR. As expected, all these variables 
correlated positively with HOMA-IR in the whole cohort 
(Table  S4) as well as in males (Table  3) and females 
(Table 3) separately (all p < 0.001).

Considering BMI, FM and VAI all correlated positively 
with HOMA-IR when considering the whole study cohort, 
it was next assessed whether AGE intake could increase 
the predictive power of these variables towards insulin 
resistance. In the whole study cohort, the BMI was the 
primary predictor of HOMA-IR (p < 0.001), with its 
predictive power being increased by VAI (p < 0.001) in 
model 2, AGE intake (p < 0.005) in model 3 and FM (p 
= 0.007) in model 4 (Table S5). However, when considering 
only male study participants AGE intake failed to increase 
the predictive power of fat mass and VAI towards insulin 
resistance (Table 4A). On the contrary, in females, dietary 
AGEs were able to increase the capacity of BMI and VAI 
to predict variations in HOMA-IR (p = 0.001) (Table 4B).

Discussion

The data reported herein describe a sex-dependent effect of 
dietary AGEs on insulin resistance. In particular, dietary 
AGEs are positively associated with and are able to predict 
HOMA-IR in female but not male study participants. 
Remarkably, the intake of AGEs was able to increase the 
predictive power of anthropometric variables known to 
negatively impact upon insulin sensitivity only in females.

The present data is in agreement with previous studies 
which reported that a diet low in dietary AGEs is able to 
improve insulin sensitivity in overweight women [25]. Other 
studies have also shown an inverse relationship between 

Table 2  Pearson’s correlation between AGEs, anthropometric and 
metabolic parameters of interest

*0.050 > p-value ≤ 0.010; **0.010 > p-value < 0.001
r, Pearson Correlation Coefficient; BMI, body mass index; FFM, fat 
free mass; FM, fat mass; VAI, visceral adiposity index; SBP, systolic 
blood pressure; DBP, diastolic blood pressure; AGEs, advanced 
glycation end products; HOMA-IR, homeostatic model assessment 
for insulin resistance; HDL, high density lipoprotein; LDL, low 
density lipoprotein; hsCRP, high-sensitivity C-reactive protein; 
IL-18, interleukin-18

log AGEs (kU/day)

Male (n = 195) Female (n = 239)

r p-value r p-value

log BMI (kg/m2) −0.062 0.390 −0.050 0.445
log Waist circumference (cm) −0.020 0.781 −0.045 0.485
log FM (Kg) −0.133 0.065 −0.023 0.724
log FFM (Kg) −0.002 0.976 0.034 0.597
log VAI −0.099 0.173 −0.070 0.299
log Triglycerides (mg/dL) −0.153 0.034* −0.064 0.339
log Total Cholesterol (mg/dL) −0.013 0.860 −0.185 0.005**
log Cholesterol HDL (mg/dl) 0.002 0.973 0.056 0.403
log Cholesterol LDL (mg/dl) 0.036 0.616 −0.207 0.002**
log Glucose (mg/dL) −0.082 0.261 0.123 0.065
log Insulin (U/L) −0.026 0.726 0.142 0.034*
log HOMA-IR index −0.047 0.518 0.153 0.022*
log IL-18 (pg/ml) 0.081 0.261 −0.043 0.521
log hsCRP (mg/L) −0.006 0.931 −0.057 0.394

Fig. 1  Correlation between daily AGE intake and insulin resistance 
in both sexes. On one side, the dot plot chart shows the absence of 
correlation between daily AGE intake and HOMA-IR index in the 
male population (A), while, on the other side, it reports a positive 

correlation between the same parameters in the female population 
(B). HOMA-IR homeostatic model assessment of insulin resistance, 
AGEs advanced glycation end product
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AGE intake and insulin sensitivity, albeit this relationship 
was described in mixed cohorts consisting of both males 
and females [20, 21], which does not allow to discriminate 
the contribution of each sex. At the same time, in other 
studies AGE intake did not affect insulin sensitivity [22, 
23]. However, none of these studies evaluated whether 
these glycotoxins elicited a sex-dependent effect on insulin 

resistance. Thus, to our knowledge, this is the first study 
dissecting the role of sex on the relationship between AGE 
intake and insulin resistance. Indeed, despite in the first 
instance the present result confirming the ability of AGE 
intake to predict HOMA-IR, this effect disappeared when 
only males were included in the analysis. This suggests that 
the impact of habitual AGE intake on insulin resistance in 
this cohort is driven by females who, compared to males, 
appear more susceptible to the metabolic effects of dietary 
AGEs. This sex-dependent response to AGEs was also con-
firmed in another study, which despite not directly investi-
gating insulin resistance, still reported that circulating AGEs 
were able to predict all-cause, cardiovascular disease, and 
coronary heart disease mortality in women but not in men 
[35]. Additionally, while in study cohorts only made of men 
serum AGEs were not linked with insulin resistance [24], in 
women dietary AGE restriction resulted in an improvement 
in insulin sensitivity [25]. Importantly, the intake of AGEs 
as part of this study is in line with previously published 
reports [36, 37] and above (≥ 10,000 kU/day) the value set 
for a low AGE diet in AGE-restricted dietary intervention 

Table 3  Pearson’s correlation between HOMA-IR index and classical 
predictors for insulin resistance in male and female study participants

*** p–value ≤ 0.001
r, Pearson Correlation Coefficient; BMI, body mass index; FM, fat 
mass; VAI, visceral adiposity index

log HOMA-IR index

Male (n = 195) Female (n = 239)

r p-value r p-value

log BMI (kg/m2) 0.518 < 0.001*** 0.461 < 0.001***
log VAI 0.387 < 0.001*** 0.417 < 0.001***
log FM (Kg) 0.564 < 0.001*** 0.439 < 0.001***

Table 4  Stepwise linear regression model indicating predictors of HOMA-IR index in male (A) and female (B) study participants

***p-value ≤ 0.001
BMI, body mass index; FM, fat mass; VAI, visceral adiposity index; AGEs, advanced glycation end products

(A) Male (n = 195)

Model Predictor R2 Unstandardized B coefficient Standard error p-value

1 log FM (Kg) 0.318 −1.641 0.211 < 0.001***
1.426 0.152 < 0.001***

2 log FM (Kg)
log VAI

0.358 −1.373 0.220 < 0.001***
1.238 0.157 < 0.001***
0.229 0.067 0.001**

Dependent variable: log HOMA-IR
Model 1 excluded variables: log AGEs (kU/day), log BMI (Kg/mq), log VAI
Model 2 excluded variables: log AGEs (kU/day), log BMI (Kg/mq)

(B) Female (n = 239)

Model Predictor R2 Unstandardized B coefficient Standard Error p-value

1 0.213 −2.263 0.326 < 0.001***
log BMI 1.780 0.230 < 0.001***

2 0.307 −1.825 0.317 < 0.001***
log BMI 1.459 0.224 < 0.001***
log VAI 0.327 0.060 < 0.001***

3 0.343 −2.735 0.407 < 0.001***
log BMI 1.468 0.219 < 0.001***
log VAI 0.340 0.058 < 0.001***
log AGEs 0.223 0.065 0.001***

Dependent variable: log HOMA-IR
Model 1 excluded variables: log AGEs (kU/day), log FM (Kg), log VAI
Model 2 excluded variables: log AGEs (kU/day), log FM (Kg)
Model 3 excluded variables: log FM (Kg)
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studies [21, 38]. As such, the amount of AGEs consumed 
by both groups should be sufficient to identify a relationship 
with insulin resistance, further underlining that the effect of 
AGEs may be sex-specific.

However, the reason underlying the sex-dependent effect 
of AGEs on insulin resistance in the present and other 
studies remains to be fully elucidated, even though it may 
rely on the modulation of RAGE expression by estrogens. 
Indeed, 17-β-estradiol is able to upregulate mRAGE 
expression in human vascular endothelial cells [39]. At 
the same time, menopausal hormone replacement therapy 
with estradiol and norethisterone acetate led to a decrease 
in sRAGE [40]. Thus, estrogens, on one hand upregulate 
mRAGE leading to an increase in AGE-mediated 
intracellular signal transduction while, on the other hand, 
also increase AGE bioavailability by downregulating 
sRAGE [12, 41]. These effects of estrogens, in turn, would 
amplify the activation of the c-Jun N-terminal kinase and 
the transcription factor nuclear-factor-kappa B (NF-κB) 
pro-inflammatory pathways, the induction of oxidative 
stress and the downregulation of sirtuin1 [16–19, 42] 
which have all been implicated in the pathogenesis of 
insulin resistance [5, 43–45]. Nevertheless, the women 
included in this study were in the post-menopausal state 
and did not receive any hormone-replacing therapy which 
may have prevented an oestrogen-dependent modulation of 
both mRAGE and sRAGE. Despite this, the sex-dependent 
response to dietary AGEs, described herein, may still 
be driven by residual endogenous estrogenic milieu, as 
demonstrated by its effect on bone mass in postmenopausal 
women [46]. This possibility is supported by data from 
animal models in which RAGE knock-out in animals fed 
a high-fat diet was sufficient to improve insulin tolerance 
in females but not in males [26]. However, it must not be 
overlooked the fact that RAGE can also recognize ligands 
other than AGEs. Thus despite the improvement in glucose 
homeostasis and insulin tolerance upon RAGE knockout 
in females but not in male mice, it cannot be inferred that 
this effect is strictly dependent on AGEs, considering 
RAGE can also bind other ligands [47]. However, these 
findings still suggest that females, relative to males, are 
more susceptible to the metabolically detrimental effects 
of RAGE ligands, including AGEs [26]. Another putative 
explanation for these sex-dependent effects is that the 
specific contribution of anthropometric parameters 
towards insulin resistance may differ between males and 
females. In keeping with this, not only the anthropometric 
variables able to predict HOMA-IR are different between 
males and females but in females the predictive power 
of these variables is lower compared to males and, most 
importantly, is increased by dietary AGEs. This suggests 
that insulin resistance in males, at least in this study 
cohort, is primarily dependent on anthropometric measures 

and particularly on fat mass and VAI. On the contrary 
in females, where the contribution of anthropometric 
variables is lower, dietary AGEs may further fuel insulin 
resistance promoted by the BMI and VAI.

From a mechanistic perspective, the relationship between 
AGE intake and insulin resistance does not appear to be 
related to NLRP3 inflammasome activation which, in turn, 
is pivotal for IL-18 production [48]. Indeed, despite this 
cytokine being associated with insulin resistance [49–51], its 
circulating levels are not related to dietary AGEs. However, 
this disagrees with the fact that AGEs have been reported to 
activate the NLRP3 inflammasome [52]. Nevertheless, there 
is also evidence that AGEs are able to attenuate NLRP3 
inflammasome activation [53], a notion that reflects the lack 
of relationship between dietary AGEs and IL-18 circulating 
levels reported herein. Thus, the relationship between 
AGE intake and insulin resistance may be mediated by the 
activation of other pathways known to be triggered by AGEs 
[16–19, 42] even though this was not assessed as part of 
this study.

AGE intake correlated negatively with total and LDL-
cholesterol only in females, whereas no relationship was 
found between these parameters in males. The negative 
relationship between dietary AGEs, total and LDL-
cholesterol is surprising, particularly considering the tight 
relationship identified between the intake of AGEs and 
insulin resistance and the fact that a low intake of AGEs 
resulted in a decrease in total as well as LDL-cholesterol 
[54]. In light of this, the relationship between dietary AGEs 
and the circulating lipid profile in females warrants further 
studies.

This study has some limitations. In the first instance, 
circulating AGE levels were not assessed in order to confirm 
an overlapping between AGE intake and their plasma 
levels. Additionally, this study, to the same extent as other 
reports [22], did not discern between low and protein-
bound AGE which are absorbed at different rates [55, 56]. 
Furthermore, this is an observational study which did not 
directly investigate whether modulating the intake of dietary 
AGEs via a nutritional intervention would differently impact 
upon insulin sensitivity in males and females. Always in 
line with this, the use of food frequency questionnaire may 
be prone to information bias [57], to reduce this bias, the 
questionnaire was administered by trained medical doctors 
with expertise in nutrition. Nevertheless, this study has 
also some strength in that it is the first study reporting a 
sex-dependent effect of dietary AGEs on insulin resistance. 
Additionally, the assessment of AGE intake was conducted 
using food frequency questionnaires as previously reported 
[22] which, in combination with published AGE databases 
[13, 28], have been proposed as the best method to estimate 
AGE intake in large cohorts [22]. An additional strength of 
the study is the assessment of habitual dietary habits in a 
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large study cohort which allowed a reduction of information 
bias associated with food frequency questionnaires.

Conclusion

To conclude dietary AGEs exert a sex-dependent effect 
on insulin resistance as their intake is associated and 
able to predict HOMA-IR in females but not males. This 
suggests that females may be more susceptible to the 
deleterious impact of these glycotoxins on insulin sensitivity. 
Nevertheless, considering this study not involving a 
nutritional intervention in order to directly elucidate whether 
the effect of AGEs on insulin resistance is sex-dependent, 
further studies are warranted in order to confirm the present 
findings.
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