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The past decade has become an important strategy in precision medicine for

the targeted therapy of many diseases, expecially various types of cancer. As a

promising targeted element, nucleic acid aptamers are single-stranded

functional oligonucleotides which have specific abilities to bind with various

target molecules ranging from small molecules to entire organisms. They are

often named ‘chemical antibody’ and have aroused extensive interest in diverse

clinical studies on account of their advantages, such as considerable biostability,

versatile chemical modification, low immunogenicity and quick tissue

penetration. Thus, aptamer-embedded drug delivery systems offer an

unprecedented opportunity in bioanalysis and biomedicine. In this short

review, we endeavor to discuss the recent advances in aptamer-based

targeted drug delivery platforms for cancer therapy. Some perspectives on

the advantages, challenges and opportunities are also presented.
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1 Introduction

Aptamers are a special class of DNA or RNA oligonucleotides that fold up into unique

three-dimensional (3D) conformations for specifically recognizing cognate molecular

targets (Miao et al., 2021). Aptamers are usually screened via an in vitro iterative method

named Systematic Evolution of Ligands by EXponential Enrichment (SELEX) (Tan et al.,

2013), which was independently discovered by two American groups in early 1990s (Ni

et al., 2011). In recent years, various aptamers have been isolated for diverse types of target

molecules (Table 1), including organic and inorganic molecules, peptides, proteins,

nucleic acids, bacterium and even live cells, such as EpCAM aptamer binds to

epithelial cell adhesion molecules (EpCAM) and aptamer sgc8 against protein

tyrosine kinase-7 (PTK-7) (Ni et al., 2021). Compared with other targeted ligands,

aptamers possess many excellent properties, including high chemical stability and binding

affinity, versatile chemical modification, low or even non immunogenicity, small size and
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TABLE 1 Examples of therapeutic aptamers in clinical stages for cancer therapy.

Molecular targets Names of aptamer
examples (Blank
means
no self-explanation)

Disease indication References

HER2 Herceptamers Cancer (Chi-hong et al., 2003; Thiel et al., 2012; Varmira et al., 2013; Varmira et al., 2014; Zhu
et al., 2017)

EGFR E07 Cancer (Esposito et al., 2011; Li et al., 2011; Wang et al., 2014a)

EpCAM SYL3C, Ep1 Cancer (Song et al., 2013; Xiang et al., 2015)

VEGF Pegaptanib (PEGylated),
VEap121

AMD, Cancer Gragoudas et al. (2004)

Nucleolin AS1411 Cancer (Ireson and Kelland, 2006; Bates et al., 2009; Li et al., 2017; Liang et al., 2017; Weng
et al., 2018; Fu and Xiang, 2020; Vandghanooni et al., 2020; He et al., 2021)

PTK7 sgc8 Cancer (Shangguan et al., 2008; Huang et al., 2009; Wang et al., 2014b; Yang et al., 2015b; Cao
et al., 2017; Gong et al., 2020)

IGHM Td05 Cancer (Mallikaratchy et al., 2007; Yang et al., 2015b)

αvβ3 integrin Apt-αvβ3 Cancer Mi et al. (2005)

NF-κB Y1, Y3 Cancer Lebruska and Maher, (1999)

E2F3 transcription
factor

aptamer 8–2 Cancer (Ishizaki et al., 1996; Martell et al., 2002)

HER3 A30 Cancer Chen et al. (2003)

CD30 C2, NGS6.0 Cancer Zhang et al. (2009)

CTLA-4 CTLA4apt, aptCTLA-4 Cancer (Herrmann et al., 2014; Huang et al., 2017)

OX40 9C7, 11F11, 9D9 Immune diseases,
including Cancer

(Pratico et al., 2013; Soldevilla et al., 2015)

PD-1 MP7 Immune diseases,
including Cancer

Prodeus et al. (2015)

PD-L1 aptPD-L1 Immune diseases,
including Cancer

Lai et al. (2016)

Tim-3 TIM3Apt Immune diseases,
including Cancer

Gefen et al. (2017)

LAG3 Apt1, Apt2, Apt4, Apt5 Immune diseases,
including Cancer

Soldevilla et al. (2017)

CD28 AptCD28 Immune diseases,
including Cancer

Lozano et al. (2016)

DEC205 Immune diseases,
including Cancer

Wengerter et al. (2014)

IL-4Ra cl.42 Immune diseases,
including Cancer

Liu et al. (2017)

IL-6R AIR-3 Immune diseases,
including Cancer

Kruspe et al. (2014)

PLK1, BLC2 Cancer McNamara et al. (2006)

Mucin-1, BCL2 Cancer Jeong et al. (2017)

polynucleotide Cancer Nooranian et al. (2021)

Mucin1 AptA, AptB, S2.2 Cancer (Elghanian et al., 1997; Ferreira et al., 2006; Zhang et al., 2014b; Hu et al., 2014)

OS cell LC09 Cancer Zhao et al. (2019)

Adenosine Cancer Li et al. (2018a)

ALPL protein Apt19S Cancer Xuan et al. (2020)

PSMA A9, A10 Cancer Lupold et al. (2002)

HER: human epidermal growth factor receptor. EGFR: epidermal growth factor receptor. AMD: age-related macular degeneration. EpCAM: epithelial cell adhesion molecule. VEGF:

vascular endothelial growth factor. PSMA: prostate-specific membrane antigen. PTK7: protein tyrosine kinase 7. IGHM: immunoglobulin μ heavy chains. CTLA-4: cytotoxic T-lymphocyte

associated protein 4. PD-1: programmed death receptor I. PD-L1: programmed death ligand I. Tim-3: T cell immunoglobulin-3. LAG3: lymphocyte-activation gene 3. IL-6R: interleukin

6 receptor. PLK1: polo-like kinase 1. BLC2: B-cell lymphoma.
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quick tissue penetration (Yang et al., 2022). These remarkable

advantages make aptamers widely used in the field of cancer

targeted therapy (Sun et al., 2022) and diagnosis (Zhang et al.,

2020). This review will predominantly provide a brief overview of

recent researches on aptamer-based targeted systems for cancer

therapy. The future possibilities and challenges of aptamer

guided drug delivery system will also be discussed.

2 Aptamers as therapeutic agents

Aptamers, as therapeutic agents, can effectively recognize

various proteins on the cell membrane or in the blood circulation

to modulate their interaction with receptors and affect the

corresponding biological pathways for the treatment of

various diseases (Zhou and Rossi, 2017). The ongoing

progresses in biomedical technology are encouraging the

development of aptamers as therapeutic agents for improving

human health. Over the past few decades, the number of

therapeutic aptamers in clinical stages has been increasing

(Nimjee1 et al., 2017). In 2004, Pegaptanib (Macugen), as the

first aptamer in clinical use, was approved by the FDA to treat

Age-related macular degeneration (AMD), which was known to

the leading reason of blindness in many aging people (Ng et al.,

2006). Vascular endothelial growth factor (VEGF) can increase

vascular permeability and induce angiogenesis, leading to AMD

(Ucuzian et al., 2010). Pegaptanib as an anti-VEGF antagonist

aptamer can specifically block VEGF and interfere with the

interaction of VEGF and its receptors to treat AMD. For

increasing its in vivo biostability, 40 kDa

monomethoxypolyethylene glycol (PEG) was then conjugated

with pegatanib to decrease nuclease degradation. However, the

antibody fragment ranibizumab (Lucentis; Genentech) has

recently occupied significant market due to blocking all types

of human VEGF even and the smallest VEGF121 (Martin et al.,

2011).

Another famous therapeutic aptamer AS1411 has been in

clinical phase II trial for the treatment of metastatic renal cell

carcinoma. AS1411 composed of thymine and guanines can form

special guanine-mediated quadraplex structures in solution

(Ireson and Kelland, 2006). Due to this unique three-

dimensional (3D) structures, AS1411 can target to nucleolin

protein with high specificity, which was normally found

overexpressing on the surface of cancer cells. Unlike other

aptamers, AS1411 was discovered by screening antisense

oligonucleotides for antiproliferation effect (Bates et al., 1999).

Although the underlying mechanisms of AS1411-based

antiproliferation effect have not been fully comprehended, it

has showed growth-antitumor abilities against a widely range of

tumor cells throughmultiple signaling pathways involving BCL-2

mRNA destabilization and NF-κB inhibition (Soundararajan

et al., 2008). Some studies have proved that guanine

deaminase is an important pathway in affecting the cell-type

selectivity to the anti-proliferation function of guanine-based

biomolecules (Wang et al., 2019). So this rich guanine aptamer, as

one of the most promising aptamers, has great hope to be used in

clinical cancer therapy owing to its outstanding safety profile and

anticancer ability in some intractable tumors (Zhang et al., 2015).

In addition, there were some studies about AS1411 derivatives

which were obtained by chemical modification with alternative

nucleobases or backbones for improving chemical and biological

properties. In 2016, Fan et al. reported the first AS1411 derivative

that showed excellent ability in the inhibition of DNA replication

and tumor cell growth, and induced S-phase cell cycle arrest via

chemical modification of 2′-deoxyinosine in AS1411 aptamer

(Cai et al., 2014). Subsequently, they also developed another

strategy to modify AS1411 aptamer through the use of 2′-
deoxyinosine (2′-dI) and D-/L-isothymidine (D-/L-isoT) for

improving the bioactivity of AS1411 aptamer (Fan, Sun, Wu,

Zhang, Yang). In addition to exploring aptamers for directly

inhibiting cancer cells growth, aptamers can also indirectly

display anticancer abilities through modulating the immune

system. In recent years, some agonistic aptamers with

immunomodulatory properties have been found. It is worth

noting that these aptamers recognizing 4-1BB or OX40 almost

show similar or even superior immunomodulatory ability to the

corresponding antibodies, followed with similar anticancer

effects. Examples of this type of aptamers include multimeric

aptamers that can target 4-1BB (CD137) on activated T cells and

improve T cell proliferation, IL-2 secretion, survival and cytolytic

activity of T cells (McNamara et al., 2008).

3 Aptamer-drug conjugates for
targeted drug delivery

In addition to being therapeutic agents, aptamers have been

more widely explored as targeting carriers for the therapeutic

agents delivery, such as chemotherapeutics, small interfering

RNAs (siRNAs), microRNAs (miRNAs), toxins and so on

(Xuan et al., 2018). Traditional ApDCs are mostly comprised

of aptamers attached to various potent drugs through all kinds of

cleavable or non-cleavable linkers. Compared with antibody-

drug conjugates (ADCs), a few of which have been applied to

clinical treatment of cancer, ApDCs show many significant

advantages, including relatively small size, synthesis procedure

economy, chemical modification simplicity and tissue

penetration speedy (Chen et al., 2017). Based on diseased-

related biomarkers, ApDCs have been developed for a wide

range of therapeutic modalities, such as chemotherapy,

immunotherapy and so on.

Chemotherapy is one of the most fashional therapeutic

modalities for cancer, but this conventional strategy suffers

from serious drug toxicity in healthy tissues and various side

effects. For improving therapeutic efficacy and diminishing side

effects, ApDC-mediated targeted drug delivery has been studied.

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Gao et al. 10.3389/fbioe.2022.972933

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.972933


As an example, Tan et al. designed and synthesized a sgc8-Dox

conjugate for targeted delivery of doxorubicin (Dox) (Huang

et al., 2009). In this ApDCs, antitumor agent Dox was conjugated

with aptamer sgc8 at a 1:1 ratio via an acid-labile hydrazone

linker, such that Dox can be selectively delivered in acidic tumor

environment. Zhang et al. reported a water-soluble nucleolin

aptamer-paclitaxel conjugate that can specifically release PTX to

the tumor site via a cathepsin B-labile valine-citrulline dipeptide

linker (Li et al., 2017). Recently, a nucleolin aptamer (AS1411)

loaded with BET-targeting PROTAC against breast cancer stem

cells was reported by Sheng et al (He et al., 2021). Notably, the

aptamer/drug ratio is essential in achieving excellent therapeutic

efficacy. For maximizing drug delivery efficiency, a

phosphoramidite prodrug of 5-fluorouracil (5-FU) was

developed and the resulting ApDCs with multiple drug copies

can be synthesized via automated nucleic acid synthesis using

standard solid-phase DNA synthesis chemistry (Wang et al.,

2014b). In order to control drug release, a photocleavable linker

was added to the bone of phosphoramidite prodrug. As a result,

the ApDCs not only were efficiently internalized into cancer cells,

but also showed specific drug release in a photocontrollable

manner.

Besides conjugating with chemotherapeutic drugs, aptamer

can also link with therapeutic RNA or DNA. In recent years,

gene therapy as a hot therapeutic modality has made great

breakthrough in the treatment of cancer (Song et al., 2021).

However, just like many other therapeutic drugs, most of gene

therapy agents lack specific recognition ability for the disease

tissues, which make it vital to specifically deliver gene therapy

agents to cancer cells. As target ligands, aptamers can be utilized

to improve the gene therapy safety and therapeutic efficacy (Li

et al., 2013). In an early research, an ApDCs was constructed

using a PSMA-targeting aptamer and a small interfering RNA

(siRNA), which can silence polo-like kinase 1 (PLK1) and B-cell

lymphoma 2 (BLC2) overexpressed in most human tumor cells

(McNamara et al., 2006). In this study, the resulting ApDCs can

not only specifically release siRNA into PSMA-positive LNCaP

cells and lead to cell apoptosis, but also remarkably inhibit

tumor growth in LNCaP tumor-bearing mices. Subsequently,

Aptamer-siRNA conjugates have been systematically studied by

PEGlation to optimize circulation half-life in the blood, by

chemical modification to increase biostability, and by exploring

the two-dimensional structure to improve the intracellular

processing of RNA-induced genes silencing. In another

research, a multiple mucin-1 aptamer was conjugated with

BCL2-specific siRNA, and doxorubicin (Dox) was loaded

into these conjugates through intercalation with nucleic acids

(Jeong et al., 2017). These Dox-incorporated multivalent Apt-

siRNA conjugates can overcome multidrug resistance into

MDR cancer cells through aptamer-mediated codelivery of

Dox and siRNA. Note that the 3D structure of multivalent

Dox-Apt-siRNA were well defined, which is beneficial for their

clinical application. Furthermore, aptamers were also

successfully conjugated with other nucleic acid gene

therapeutics, such as small hairpin RNA (shRNA) and

microRNA (miRNA) (Soldevilla et al., 2018).

4 Aptamer-based nanomaterial
system for targeted drug delivery

Nanomaterials play a crucial role in the application of

bioanalysis and biomedicine (Li et al., 2021). Due to their

unique physicochemical properties, including an ultra-small

size, a large surface area and loading ability, nanomaterials

have overcome many limitations of conventional therapeutic

and diagnostic strategies (Dong et al., 2020). The key of

nanomedicine development is to improve the specific

recognition ability for disease tissues (Liu et al., 2021). The

combination of aptamers and nanomaterials is a promising

progress for targeted drug delivery (Figure 1)

(Mahmoudpoura et al., 2021). In this section, several

representative aptamer-based inorganic and organic

nanomaterials on cancer therapy would be discussed.

4.1 Aptamer-based inorganic
nanomaterial systems

As an important inorganic nanomaterial, gold nanoparticles

have gained considerable attentions in biomedicine as result of

their high surface-to-volume ratio, low-toxicity, excellent

stability and biological compatibility (Yang et al., 2015a).

Aptamer-conjugated gold nanomaterials (Apt-AuNPs), which

synergically possess special advantageous properties of aptamers

and gold nanoparticles, have been widely utilized in the field of

cancer diagnosis and therapy (Nooranian et al., 2021). A classical

research from the Mirkin group employed target DNAmolecules

to form a polymeric network of nanoparticles for specifically

detecting polynucleotide (Elghanian et al., 1997). Subsequently,

there are emerging many corresponding studies, such as enzyme

responsive Apt-AuNPs for mucin 1 protein (MUC1) detection

(Hu et al., 2014), Apt-AuNPs combined with graphene oxide for

the photothermal therapy of breast cancer (Yang et al., 2015b)

and aptamer-functionalized AuNPs-Fe3O4-GS capture probe for

monitoring circulating tumor cell in whole blood (Dou et al.,

2019).

Among the set of inorganic nanomedicine, silica

nanoparticles have become suitable carriers in drug delivery

systems (Zou et al., 2020). These particles successfully provided

controllable drug release in vivo and in vitro through the

change in PH and temperature, photochemical reactions and

certain redox reactions (Fu and Xiang, 2020). After combined

with targeted elements such as aptamers, they can enhance

cancer therapeutic effects with a lower dose of drug

(Vandghanooni et al., 2020). As an early example, Cai’s
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group reported a novel Mesoporous Silica Nanoparticles

(MSN)-based redox-responsive nanocontainer for triplex

cancer targeted therapy. In their study, AS1411 aptamer was

tailored onto the CytC-sealed MSNs (Zhang et al., 2014a). And

this system can lead to the special release of Dox into the tumor

cells via the breakage of S-S bonds. In 2021, Tan et al. first

developed FRET-based two-photon MSNs for multiplexed

intracellular imaging and targeted drug delivery (Wu et al.,

2021). The MSNs can display different two-photon multicolor

fluoresence by varying the doping ratio of the three dyes.

Furthermore, the Dox-loaded and aptamer-capped

nanosystem can be efficiently internalized into the cancer

cells and release the anticancer drug Dox. In addition,

aptamer-targeted MSNs have also been widely used for gene

targeted delivery, which can protect gene therapy agents from

degradation by nuclease (Zhang et al., 2014b).

Conventional carbon nanomaterials, including fullerene,

graphene, carbon dots/nanobots/nanotubes and hybrids,

exhibit unique advantages in biomedical application (Weng

et al., 2018). Aptamer-functionalized carbon nanomaterials

make their ideal nanoplatforms for cancer diagnostics and

therapeutics (Yang et al., 2018). Recently, Wang et al.

developed the multifunctional, which showed heat-stimulative

and sustained release properties (Wang et al., 2015). With the

introduction of MUC1 aptamers, this nanoparticle can detect

targeted MCF-7 breast cells with excellent recognition ability. In

addition, aptamer-based graphene nanomaterials have gained

many fascinating developments in cancer gene therapy. In 2017,

aptamer-based graphene quantum dots loaded with porphyrin

derivatives photosensitizer were reported for fluorescence-

guided photothermal/photodynamic synergetic therapy (Cao

et al., 2017). This multifunctional theranostic nanomaterials

displayed good feasibility for detecting intracellular cancer-

related miRNA, whereas the intrinsic fluorescence could be

used to distinguish cancer cells from somatic cells.

4.2 Aptamer-based organic nanomaterial
systems

As the first explored drug delivery system, liposomes havemany

promising properties such as good biocompatibility, low toxicity,

low immunogencity and excellent drug loading efficiency

(Moosaviana and Sahebkar, 2019). PEGylated liposomal

doxorubicin, Doxil®, is the first FDA-approved liposomal drug

for the treatment of solid tumors. With the rapid development of

FIGURE 1
Some common examples of aptamer-based drug delivery systems for cancer therapy (By figdraw).
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biotechnology, liposomal systems with specific targeting ability have

been synthesized successfully by the introduction of various

molecular recognition elements, such as folate, peptides,

antibodies, and aptamers. Among them, aptamer-based lipsomes

have attracted widely attention (Zhao et al., 2019). In the early

research, Tan et al. reported a therapeutic aptamer-modified

liposome nanoparticle with dual-fluorophore labeling for targeted

drug delivery (Kang et al., 2010). This system was conjugated with a

sgc8 aptamer that showed high binding and internalization ability

for targeted CEM cells. The flow cytometry and confocal imaging

experiments showed sgc8-modified liposomes could deliver loaded

drug to targeted cancer cells with high specificity and excellent

efficiency. In recent attempts, the CRISPR/Cas9 complex were

packaged into aptamer-functionalized liposomes for specific

cancer gene therapy (Gong et al., 2020). For example, Liang et al.

developed an aptamer-based lipopolymer for tumor-specific

delivery of CRISPR/Cas9 to regulate VEGFA in osteosarcoma

(Liang et al., 2017). In this system, LC09 aptamer could facilitate

the selective distribution of CRISPR/Cas9 plasmids to decrease

VEGFA expression, leading to inhibite orthotopic osteosarcoma

malignancy and lung metastasis.

Another promising type of aptamer-based organic nanomaterial

is the micelle structure. This drug delivery system displays excellent

binding ability of aptamers to target due to the multivalent effect.

Thus, it can be developed for numerous bioapplications (Wu et al.,

2010). In 2018, Li et al. developed a cross-linked aptamer-lipid

micelle system for excellent stability and specificity in target-cell

recognition (Li et al., 2018a). In this facile approach, aptamer and

lipid segments were linked to a methacrylamide branch via an

efficient photoinduced polymerization process. In contrast to

traditional aptamer-lipid micelles, this reported system provided

better biostability in a cellular environment, further improving the

targeting ability for imaging applications. In another fashion study, a

novel aptamer-prodrug conjugate micelle was prepared by

combining hydrophobic prodrug bases and bioorthogonal

chemistry for hydrogen peroxide and pH-independent cancer

chemodynamic therapy (Xuan et al., 2020). In depth mechanistic

work reveal that, this system could be activated by intracellular Fe2+

to generate toxic C-centered free radicals self-circularly via cascading

bioorthogonal reactions.

Among aptamer-based organic nanomaterial systems, target-

responsive DNA hydrogels exhibited superior mechanical

properties and programmable features and were widely used in

biomedical and pharmaceutical applications (Li et al., 2016). In

2008, the first adenosine-responsive hydrogel was developed for

potential drug release. In this work, two oligonucleotide-

incorporated polyacrylamide and rationally designed cross-linking

oligonucleotides were used to form the DNA nanohydrogels. The

DNA linker contained the aptamer sequence for adenosine. When

existing adenosine molecules, the aptamer will bind to target

molecules, resulting in the breakdown of the cross-links and the

dissolution of the hydrogel. Thus, this system could be explored for

target-responsive drug release (Yang et al., 2008). In other elegant

example, Yao et al. reported a physically cross-linkedDNAnetwork to

fish bone marrow mesenchymal stem cells (BMSCs) from numerous

nontarget cells (Yao et al., 2020). This nanomaterial containing a

Apt19S aptamer sequence provided a 3D microenvironment to

maintain excellent activity of captured stem cells.

In addition, due to the principle of complementary base pairing,

aptamers can be easily integrated to prepare various DNA

nanostructures for specific cancer cell recognition and subsequent

applications (Seeman and Sleiman, 2018). As an important DNA-

based nanostructures, DNA origami have been modified with

various small molecule drugs, functional NA sequences, and

nanomaterials (Bolaños Quiñones et al., 2018). In 2018, a smart

DNA nanorobot was reported by Li’s group for intelligent drug

delivery in cancer therapy. Because of functionalizing on the outside

with aptamer AS1411, this DNA nanorobot can specifaically deliver

thrombin to tumor-associated blood vessels for inhibiting the tumor

growth (Li et al., 2018b). Subsquently, the aptamer-functionalized

DNA Origami, named Apt-Dox-orgami-ASO, was developed by

Pan’s group to co-deliver Dox and antisense oligonucleotides

(ASOs) in cancer cells. This multifunctional DNA origami-based

nanocarrier was precisely synthesized to adsorb Dox and load

Bcl2 and P-gp ASOs for the efficient therapy of drug-resistant

cancer (Pan et al., 2020). As cargo carriers, all kinds of aptamer-

based DNA nanostructures have been explored By molecular

engineering for targeted drug delivery in cancer therapy (Hu

et al., 2018).

5 Conclusion

In the past decades, the achieved developments proved that

aptamers had broad potential in the research field of cancer therapy.

Multiple unique properties of aptamers attracted considerable

attention in the development of aptamers as nucleic acids-

functionalized alternatives to folic acid, peptides and antibodies

for targeted drug delivery. This short review summarizes some

recent advances of aptamer-based systems in cancer therapy. In fact,

the exploration of aptamers and aptamer-drug conjugates is still in a

relatively early stage. Considerable efforts should be made to

overcome their bottlenecks in the clinical application. In

addition, the most remarkable achievements of aptamers

involved their combination with nanomaterials, enhancing the

specificity of the diagnostic signal and leading to excellent target

cancer cell recognition and delivery. In summary, the above

description showed the versatility and therapeutic applicability of

aptamers. However, multiple challenges, including poor biostability,

short half-lives in vivo and unclear mechanism of endosomal escape

and drug release, need to be overcome before moving forward to

clinical application. Furthermore, more systematic research on

organ toxicity, the safety on genomics and proteomics, the large-

scale production technology and costs need to be

further investigated. Despite these limitations, the rapid

development of chemistry and materials encourages us to
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explore aptamer-based drug delivery systems with high therapeutic

effects.
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