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ABSTRACT: Arsenic (As) is abundant in the environment and can be
found in both organic (e.g., methylated) and inorganic (e.g., arsenate and
arsenite) forms. The source of As in the environment is attributed to both
natural reactions and anthropogenic activities. As can also be released
naturally to groundwater through As-bearing minerals including
arsenopyrites, realgar, and orpiment. Similarly, agricultural and industrial
activities have elevated As levels in groundwater. High levels of As in
groundwater pose serious health risks and have been regulated in many
developed and developing countries. In particular, the presence of
inorganic forms of As in drinking water sources gained widespread
attention due to their cellular and enzyme disruption activities. The
research community has primarily focused on reviewing the natural
occurrence and mobilization of As. Yet, As originating from anthropogenic
activities, its mobility, and potential treatment techniques have not been
covered. This review summarizes the origin, geochemistry, occurrence, mobilization, microbial interaction of natural and
anthropogenic-As, and common remediation technologies for As removal from groundwater. In addition, As remediation methods
are critically evaluated in terms of practical applicability at drinking water treatment plants, knowledge gaps, and future research
needs. Finally, perspectives on As removal technologies and associated implementation limitations in developing countries and small
communities are discussed.
KEYWORDS: Arsenic, Groundwater, Geochemistry, Occurrence, Mobilization, Remediation, Physiochemical Treatment,
Biological Treatment, Passive Treatment

1. INTRODUCTION
Arsenic (As) has been widely used in medicinal and industrial
applications. Yet, the health risks associated with arsenic
exposure have not been recognized until the 20th century.1 As
present in various environmental matrices (i.e., water, soil, and
air) and food can be attributed to both natural and
anthropogenic sources.2 More importantly, arsenic is the
most toxic naturally occurring groundwater contaminant.3,4 In
fact, arsenic, particularly in its inorganic form, has been
reported as a carcinogen and identified as highly problematic in
drinking water.5,6 It has been estimated that at least 150
million people globally drink water with elevated levels of
arsenic.7,8 Yet, according to the International Agency for
Research on Cancer (IARC), arsenic is a Group 1 human
carcinogen.9,10 The U.S. Environmental Protection Agency
(U.S. EPA), the U.S. National Toxicology Program, and the
American Conference of Industrial Hygienists have also
classified arsenic in their list of cancer-causing agents.11

Aside from lung and skin cancer,12,13 arsenic exposure also

leads to ailments of the stomach, intestine, skin, respiratory
system, kidney, and central nervous system.14

To protect human health, the World Health Organization
(WHO) and the U.S. EPA have set a maximum contaminant
level (MCL) of 10 μg/L for inorganic arsenic in drinking
water.15,16 To date, elevated arsenic levels in drinking water
sources have been reported in more than 50 countries,
affecting well over 200 million people.17,18 Many aquifers
worldwide have been identified with arsenic concentrations
greater than 10 μg/L,19−24 and these aquifer hotspots include
Argentina, Bangladesh, Cambodia, China, India, Mexico,
Nepal, and many parts of the U.S. (Figure 1).22,25−27 In
many of these countries, groundwater was promoted as safe for
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drinking given the reduced likelihood of microbial contami-
nation.28 Even though microbial contamination was not
present, groundwater sources in these countries were
contaminated with naturally occurring subsurface arsenic.
Further, arsenic is odorless, tasteless, and colorless, making
arsenic detection in contaminated water a challenge even when
present at high concentrations.29

Several techniques have been proposed to remove arsenic
from groundwater including precipitation, coagulation/filtra-
tion, adsorption, ion exchange, lime treatment, oxidation, and
membrane filtration.8 However, the broader implementation of
these technologies is challenged by cost and complex operation
and maintenance, making them less desirable for remote and
challenged communities. Yet, significant research efforts have
been spent on identifying appropriate aqueous arsenic removal
technologies that are cost-effective, easily operated, and require
minimal experience, while having high arsenic removal rates.
This paper reviews the geo-chemistry, occurrence, mobiliza-
tion, and microbial interaction of arsenic in the aquifer.
Various technologies potentially appropriate for small,
challenged, rural, and remote communities are discussed, and
the pros and cons of some of the technologies are highlighted.
Finally, research gaps and potential research and development
opportunities are discussed.
1.1. Occurrence of Arsenic
The source of As-contaminated groundwater is predominately
subsurface geologic formations containing arsenic. While As
may find its way to the environment because of anthropogenic
reasons, the significant contribution to water contamination
comes from arsenic-bearing minerals in the subsurface of the
earth.22,30−32 Even though the earth’s crust only contains
0.0001% As, As is also found in virtually all rocks and
sediments.22,33 However, most geogenic As in contaminated
groundwater comes from relatively recently deposited alluvial
sediments.27 The release of As depends on the redox and pH
conditions, where under anoxic conditions, As leaches due to
the dissolution of As-bearing iron minerals in the aquifer. As is
released from iron and aluminum hydroxides under oxidizing
and high-pH conditions.19,27,34,35 In addition, low hydraulic
gradient aquifers tend to have higher residence time leading to
high concentrations of dissolved arsenic in groundwater.27

Moreover, arsenic buildup in waters can be attributed to the

release of arsenic from arsenic-bearing sulfide minerals (via
oxidation)-enriched geothermal deposits.27

In nature, As is present in organic, inorganic, and gaseous
forms, but the inorganic form is relevant for immediate public
safety. Inorganic arsenic can be present in the environment in
four oxidation states (−3, 0, +3, +5) depending on the pH and
redox conditions (Figure 2).8,20 As(V) or arsenate (H3AsO4

0,

H2AsO4
−, HAsO4

2−, AsO4
3−) is the dominant species in

aqueous aerobic environments, while As(III) or arsenite
(H3AsO3

0, H2AsO3
−, HAsO3

2−) is prevalent in anoxic
environments.20,36−38

Above a pH of 9, As(III) exists as an uncharged neutral
molecule (H3AsO3), whereas As(V) occurs as an anionic
molecule (H2AsO4

−, HAsO4
2−) above pH 2 (Figure 3).22,39,40

The transition from As(III) to As(V) involves a thermody-
namically favorable process, but the transformation period can
range from days to years, depending on the specific

Figure 1. Distribution and occurrence of arsenic in major aquifers
with a specific focus on arsenic contamination due to mining and
geothermal sources. (Reprinted with permission from Smedley et al.22

Copyright 2002 Elsevier).

Figure 2. Effect of pH on the distribution of As (III), As(V),
monomethylarsonic acid (MMA), and dismethylarsinic acid (DMA)
at 25 °C. (Reprinted with permission from Sharma et al.43 Copyright
2009 Elsevier).

Figure 3. Activity of electrons (Eh) as a function of pH for arsenic
species in the aqueous system As−O2-H2O at the following conditions
(25 °C and 1 bar). (Reprinted with permission from Smedley et al.22

Copyright 2002 Elsevier).
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environmental conditions. For example, environmental param-
eters including strong acidity and alkalinity as well as higher
temperatures can enhance the oxidation process.20 Low
groundwater redox potential favors the formation of As(III)
species. On the other hand, As(V) is the most thermodynami-
cally stable state of arsenic in oxidizing environments (redox
potential above 100 mV).41 Recently, Huq et al. reported that
the high levels of arsenic in the shallow Holocene alluvial
aquifers in Bangladesh are attributed to mobilized arsenic due
to strong reducing and moderate alkalinity conditions.42

1.2. Mobilization of Arsenic in Groundwater

A recent review paper reported that arsenic naturally leaches
from sources including: (i) volcanic rocks, where emissions can
reach miles from the source, (ii) metallic mineral deposits that
can contaminate drinking water or the food chain, and (iii)
deep geothermal reservoirs containing As-rich geothermal
fluids contaminating freshwater sources.44

Oremland and Stolz (2003) have proposed four possible
ways for the mobilization of subsurface arsenic:37 (i) arsenic
oxidation in pyrites that contain As, (ii) the release of As(V)
from iron oxide reduction by autochthonous organic matters
(e.g., peat leading to the release of As(V)), (iii) iron oxides
reduction by allochthonous organic matters present in, for
example, recharging waters, and (iv) displacement of As(V) by
chemical analogue phosphate (PO4

3−) present in fertilizers.
Kurz et al. also reported that the arsenic mobilization in
Vietnam’s groundwater is attributed to both oxidation and
adsorption reactions, where arsenic is immobilized onto freshly
formed iron hydroxides due to oxygen.45 As mobilization has
also been reported in the upper Jhelum basin, located in the
western Himalayas, and is attributed to the reduction of Fe and
Mn oxy/hydroxides.46

The overall mobility of As in the aquifer is primarily driven
by the adsorption and oxidation reactions of arsenic at the
mineral water interface.47 While As(V) is prevalent in the
aqueous aerobic environment, an anoxic environment favors
the presence of As(III). Adsorption, desorption, and biological
transformation influence arsenic mobility in an aquifer. As(V)
has affinity for some common elements and is easily bounded
(adsorbed) to ferrihydrite and alumina.37 In anoxic aquifer,
As(III) is stable and dissolves in water as iron and manganese
complexes.48 A recent study reported that manganese (Mn)
can impact iron and arsenic solubility in rice paddy soil.49

As(III) often exists as neutral (uncharged) H3AsO3 species at
environmentally relevant pHs (pKa for H3AsO3 is 9.2). For
typical groundwater pH (i.e., pH lower than 9.2), As(III) is
less likely to interact with mineral surfaces, making it more
mobile in the environment and of concern. Additionally, any
arsenic otherwise coprecipitated and sorbed onto metal oxides
(iron or manganese) may be reintroduced to the aqueous
phase when the metal oxides are dissolved. However, in anoxic
zones and in the presence of sulfide, As(III) is immobilized
due to the formation of orpiment, realgar, or arsenopyrite or is
coprecipitated with iron pyrite.50

Oremland and Stolz (2003, 2005) reported that certain
prokaryotes use oxyanions of arsenic for their energy
generation via As(III) oxidation or As(V) reduction.37,51

These phylogenetically diverse microorganisms can mobilize
aquifer arsenic from the solid to the aqueous phase (Figure 4).
These researchers advocated that the chemical and biological
arsenic mobilization and speciation processes may be
simultaneous. These microorganisms play important roles in

the oxidation and reduction of not only arsenic but also iron
mineral present in the aquifers. A conceptual model for the
arsenic problem in Bangladesh aquifers has also been
proposed.37,51 It is important to note that aquifers in
Bangladesh are considered highly contaminated with arsenic
and more than one-quarter (40 million+) of its total
population is exposed to arsenic-contaminated drinking
water. The conceptual model developed for Bangladesh
aquifers proposed that chemoautotrophic arsenite oxidizers
(CAOs) and heterotrophic arsenite oxidizers (HAOs) first
oxidized As(III)-containing minerals (e.g., arsenopyrite)
leading to deposition (adsorption) of As(V) on the oxidized
minerals (e.g., ferrihydrite). The overpumping of an aquifer to
meet drinking and irrigation needs resulted in lowering of the
groundwater tables and has led to the further oxidation of
As(III) by oxidants (e.g., molecular oxygen and (agricultural)
nitrate). Over time, the buildup of organic matter and biomass
causes the aquifers to become anoxic. Such organics and forms
of peats can lead to the dissimilatory reduction of earlier
converted As(V) and dissolution of arsenic adsorbents like
ferrihydrite, where dissimilatory arsenate-respiring prokaryotes
(DARPs) participate. Thus, arsenic is released to the aqueous
phase (Figure 4).

Das et al. (2004) also proposed oxidation of arsenic-rich
pyrite as one of the mechanisms that explain arsenic
mobilization in the aquifer.52 The reduction of iron oxy-
hydroxides and adsorption competition on the surface of iron
oxides are other reasons for arsenic mobilization.34,53,54 Liao et
al. examined the relevant microbial community in arsenic-
contaminated aquifers and indicated that a relatively diverse
community of microorganisms can biotransform arsenic in the
aquifer,55 via detoxification and energy conservation reac-
tions.56 Most studies have identified methylation, demethyla-
tion, oxidation, and reduction as the primary microbial
processes involved in arsenic transformation and mobiliza-
tion.37,57

Figure 4. Arsenic-metabolizing prokaryotes present in waters. The D’s
represent dissimilatory arsenate-respiring prokaryotes (DARPs), the
H’s represent heterotrophic arsenite oxidizers (HOAs), and the C’s
represent chemoautotrophic arsenite oxidizers (CAOs). (Adapted
with permission from Oremland et al.51 Copyright 2005 Elsevier).
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2. TECHNOLOGIES FOR ARSENIC REMOVAL FROM
DRINKING WATER

The conventional arsenic removal processes include chemical-
aided sedimentation, coagulation and flocculation, adsorption,
ion exchange, and membrane processes.57−59 The advantages
and limitations of these existing technologies have been
previously reported in detail.60 In fact, high arsenic removal
rates can be achieved with these process (80−100%). While
these processes work well for municipal water utilities and
resourceful communities, they may be cost-prohibitive when
implemented at a small scale for rural communities.
Furthermore, these practices are only efficient in removing
As(V), and sometimes a pretreatment step (i.e., peroxidation
unit process) is needed to oxidize As(III) to As(V) for effective
arsenic removal.58 As for the bench scale, the laboratory-based
arsenic removal techniques include arsenic precipitation with
Fe/Mn, lime softening, electrodialysis, ion exchange, adsorp-
tion on activated alumina/carbon, and others.61 In the next
section, the state-of-the-art methods for the removal of arsenic
from water are discussed based on their relevance for potential
use in small and remote communities as well as potential
sustainability aspects.
2.1. Oxidation
Arsenic may be mainly present in groundwater as As(III) and/
or As(V) depending on solution pH and redox conditions.22

As(III) is generally more mobile than As(V), so arsenic
immobilization can be facilitated by As(III) oxidation to
As(V).20,62 The selection of appropriate oxidant materials for
the oxidation of As is important and must consider the
potential residuals of the oxidant used, oxidation byproducts,
oxidation of other present water constituents, and the amount
of the oxidant required (i.e., economics, worker safety, and
storage requirement).

To date, the most feasible and common oxidants for As(III)
are chlorine, potassium permanganate, ozone, manganese
dioxide, hydrogen peroxide (in Fenton’s reagent and involving
Fenton-like reactions), and persulfate.63 UV oxidizes As(III) to
As(V) very quickly, generally within seconds, and UV
irradiation can be achieved using high-pressure mercury arc
discharge lamps with a 190−254 nm emission spectrum.
Similarly, ozone-based oxidation is very fast and often used in
surface water treatment for oxidation and disinfection.64 When
used for arsenic oxidation (Figure 5), ozone reportedly
achieved more than 96% oxidation of As(III) to As(V) within
10 min. Both UV and ozone require high-energy inputs, which
may not be cost-effective for small-scale water treatment plants.
Given their abundance, oxygen, chloride, and permanganate
deserve additional discussion (eqs 1−3).

+ + +FAs(OH) 1/2O AsO (OH) H3 2 2 2 (1)

+ + + +FAs(OH) HClO AsO (OH) Cl 3H3 3
2

(2)

+

+ + + + ++ +F

3As(OH) 2KMnO

3AsO (OH) 2MnO 2K 4H H O
3 4

3
2

2 2
(3)

While As(III) can be oxidized into As(V) by atmospheric
oxygen (eq 1), the process is very slow and can take weeks.65

When pure oxygen was used, a maximum oxidation of 57%
occurred in 5 days.66 Chlorine is a widely deployed disinfectant
in most water systems across the globe and can oxidize arsenite

to arsenate. Hypochlorite is a popular source for chlorine that
oxidizes As(III) to negatively charged As(V) (eq 2). The use
of chloramine and chlorine dioxide has also been reported.67

Similarly, KMnO4 (α-MnO2) can oxidize As(III) to As(V) (eq
3). Manganese dioxide has also been used by some small
drinking water systems for As(III) oxidation.68

The Fenton’s reagent process has also been studied for
oxidation of arsenic. The ferric ions formed in the process lead
to precipitation of As(V). However, the residual hydrogen
peroxide should not exceed the maximum permissible limit of
hydrogen peroxide (i.e., 1 mg/L) to avoid potential toxicity for
the consumers. Krishna et al. reported that adding 100 μL of
H2O2 and 100 mg/L of Fe(II) (as ferrous ammonium sulfate)
followed by adsorption (medium: zerovalent iron (ZVI)), with
a contact time of 10 min, is capable of reducing As(III) from 2
mg/L to below 10 μg/L (Figure 6).69

Some researchers have demonstrated that reactive oxidizing
species (e.g., hydroxyl radical, ·OH) can be produced during
the photolysis of nitrite (NO2

−) or nitrate (NO3
−) and can

convert As(III) to arsenate As(V). UV photolysis of NO2
− and

NO3
− promotes the breakage of the O−N bonds producing

Figure 5. Concentration of arsenic in groundwater over time during
oxidation: As(III) (◆) and As(V) (▲). (a) Sectoral Information
System (SIS) (ozone), (b) S2S ozone, (c) S1S (oxygen), and (d) S1S
(air). (Reprinted with permission from Kim et al.64 Copyright 2000
Elsevier).

Figure 6. Residual arsenic after treating groundwater with Fenton’s
reagent. (Adapted with permission from Krishna et al.69 Copyright
2001 Elsevier).
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intermediate products that can serve a dual purpose:
photochemically transform contaminants in an aqueous
medium and oxidize chemical and microbial contaminants in
water. The main reactions involved in this UV/As(III)/
(NO2

−) or (NO3
−) system have been described in detail by

Kim et al.70 Briefly, the photolysis of NO2
− or NO3

− mainly
generates nitrogen oxide radical and oxide radical anion, which
in turn undergoes protonation to form ·OH. Even though
As(III) was not directly oxidized via UV photolysis, adding 20
or 200 μM nitrite promoted the oxidation of As(III) under UV
irradiation (λ > 295 nm), making NO2

− a photosensitizer for
As(III) oxidation.70 Another study reported the use of glow
discharge plasma (GDP) to simultaneously oxidize and
immobilize organoarsenic. The results showed that Roxarsone
(ROX) (an organoarsenic compound) can be effectively
oxidized to inorganic arsenic, but the process was energy-
intensive. The addition of Fe(II) significantly enhanced the
oxidation of ROX, mainly due to the additional ·OH generated
via Fenton reaction in GDP coupled with simultaneous arsenic
immobilization. The immobilization of arsenic was favorably
obtained at a pH range of 4−6 and a 500−1000 μM Fe(II)
concentration range.71

Future oxidation−reduction studies should focus on
providing additional information about the rates of arsenic
reactions and determining their specific rate constants.
2.2. Coagulation−Precipitation Process
2.2.1. Alum and Iron Precipitation. Coagulation is

commonly used in drinking water treatment to destabilize
dissolved and suspended solids allowing their aggregation to
form flocs, which are subsequently removed via sedimenta-
tion.72 The process can be described in three steps: (i)
coagulant addition and colloid destabilization (rapid mix), (ii)
interparticle collisions and colloid agglomeration (coagula-
tion), and (iii) colloid removal via floc sedimentation (last
phase of coagulation and then settling). To treat arsenic-laden
water, coagulants are added, which, in turn, form arsenic-
containing flocs of low solubility, which then settle and are
removed by sedimentation. While calcium salts73 and
lanthanum salts74 have been used in the water treatment
industry, alum (aluminum sulfate),75−77 ferric chloride, and
ferric sulfate are the most widely used coagulants for arsenic
removal (eqs 4−6).78−83 Alum is the preferred choice by many
water treatment units.

· + ++ +F

alum dissolution:
Al (SO ) 18H O 2Al 3SO 18H O2 4 3 2

3
4

2
2 (4)

+ ++ +F

aluminium precipitation (acidic):

2Al 6H O 2Al(OH) 6H3
2 3 (5)

+

+

Fco precipitation: H AsO Al(OH) Al As

(complex) other products
2 4 3

(6)

The possible reactions of arsenate with hydrous iron oxide
(≡FeOH0 represents the oxide surface site)84 are listed below
(eqs 7−9).

+ · +Fe(OH) (s) AsO(OH) FeAsO 2H O H O3 3 4 2 2
(7)

+ + ++FeOH AsO 3H FeH AsO H O0
4

3
2 4 2 (8)

+ + ++FeOH AsO 2H FeHAsO H O0
4

3
4 2 (9)

Immobilization of arsenic by hydrous iron oxide is another
process of interest (eqs 7−9) that is highly influenced by the
pH of the solution.72 In one study, using a high dosage of
FeCl3 (i.e., 300 mg/L), arsenic was highly reduced to less than
5 μg As/L in the coagulated water.85 Using the same coagulant,
only 50−60% As(III) removal was achieved.86,87 Under pH 5−
6, As(V) adsorption onto hydrous iron oxide and goethite was
higher than that of As(III), whereas, above pH 7−8, As(III)
adsorption was more favorable to these adsorbents.88 In fact, in
mineral processing effluents, lime neutralization and copreci-
pitation of arsenate with iron has been implemented for the
removal and immobilization of arsenic.89 Arsenic coagulation
with iron, aluminum, and zirconium salts has also been
reported.90

A recent study reported an efficient and fast arsenic removal
technology known as air cathode assisted iron electro-
coagulation (ACAIE) enabled with in situ generation of
hydrogen peroxide. During ACAIE operation, Fe(II) is readily
oxidized and As(III) was completely removed. These authors
demonstrated that within a short time frame (30 s), and at a
charge dosage rate of 1200 Coulomb/L/min, ACAIE
consistently outperformed iron electrocoagulation (FeEC) by
reducing arsenic levels to below the 10 μg/L WHO level
(Figure 7).91

A recent study investigated a mixture salt composed of
cactus mucilage and ferric (Fe(III)) salt to remove arsenic
from water. Mucilage treatment improved As removal
compared to only Fe(III) treatment, where the system
achieved an As removal efficiency of 75−96% within 30 min.92

2.3. Lime Softening
Arsenic can also be removed during lime softening processes
using calcium hydroxide (Ca(OH)2) and soda (Na2CO3).
Similar to other processes, the arsenic removal efficiencies are
enhanced if arsenic in the water is oxidized from As(III) to
As(V). A recent survey on 516 full-scale water treatment
plants93 reported that hard water tends to have a higher
concentration of arsenic compared to soft water. However, up
to 90% of the soluble As(V) could be potentially removed if a
high softening pH was used to precipitate magnesium. McNeill

Figure 7. Dissolved arsenic (A) and iron (B) effluent concentrations
after electrolysis as a function of carbon dioxide removal (CDR) in
the FeEC (■) and ACAIE (□) systems. Total charge dosage of 600
C/L and initial As(III) concentration of 1464 ± 83 μg/L). (Reprinted
with permission from Bandaru et al.91 Copyright 2020 American
Chemical Society).
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and Edwards (1997) reported that 90% arsenic removal can be
achieved via precipitation softening with iron.94 pH and the
presence of chlorine govern the removal of arsenic in the lime
softening process. For example, only 15% arsenic removal was
possible in nonchlorinated water containing 400 μg/L arsenic
at a pH less than 10.5. However, when the pH was adjusted to
11, arsenic removal reached 80%.95 Sorg and Logsdon (1978)
also demonstrated that pH impacts the removal of arsenic
during lime softening. Low As(III) and As(V) removal
efficiencies were achieved at pH values less than 10, but
As(V) and As(III) removal approached 100% and 75%,
respectively, at pH values greater than 10.5.96

2.4. Adsorption

Activated carbon, activated alumina, zerovalent iron, iron
oxides, and clay are among the adsorbents that have been
deployed to remove arsenic from water. Rapid small-scale
column testing (RSSCT) procedures for arsenic were
developed similar to those used for adsorption of organic
constituents by granular activated carbon (GAC). However, it
is important to note that there are significant differences
between adsorption of organics by GAC and adsorption of
arsenic by metal oxides. The most prominent differences are
the nature of the bonds and the internal pore structure of the
adsorbents. Hydrophobic bonds are dominant between organic
solutes and GAC, whereas arsenic adsorption onto metal oxide
surfaces is initially attributed to electrostatic attraction. RSSCT
allows full-scale results to be obtained in a short time with a
fragment of the processed water and samples collected and
analyzed.97 Thomson et al. used RSSCT to investigate arsenic
adsorption using activated alumina, ferric oxyhydroxides, and a
proprietary medium developed by Sandia National Laborato-
ries.98

Activated alumina (AA) or granular ferric oxides and
hydroxides are the optimal adsorbents due to their abundance,
high arsenic removal efficiency, and ease of operation.99

Research studies have also evaluated industrial byproducts,
montmorillonite clay, and other activated carbon-based
adsorbents to remove arsenic from aqueous solutions, which
exhibited low adsorption capacities. Low-cost natural adsorb-
ents such as Moringa oleifera were investigated with favorable
arsenic removal results (>60% removal of As(III) and >80% of
As(V)) and regeneration potential.100 Magnetic biochars
prepared by chemical co-precipitation of Fe2+/Fe3+ on a
biomass (i.e., water hyacinth) followed by pyrolysis showed
that it is a highly efficient adsorbent for aqueous As(V)
removal.101

Prasai et al. studied the interactions of organoarsenic
compounds with ferric and manganese binary oxide (FMBO)
to elucidate the mechanism that governs adsorption, and the
adsorption performance was compared to that of ferric oxide
(FeOOH) and manganese oxide (MnO2).

102 The maximum
adsorption capacities (Qmax) of FMBO toward aromatic
organoarsenic compounds including p-arsanilic acid (p-ASA)
and roxarsone (ROX) were 0.52 and 0.25 mmol/g,
respectively, at pH = 7.5, which were higher compared to
those of FeOOH and MnO2. The corresponding Qmax values of
p-ASA were 0.40 and 0.33 mmol/g, and those for ROX were
0.08 and 0.07 mmol/g, respectively.102

2.4.1. Activated Alumina. Activated alumina (AA) is
considered to be an adsorbent material even though ion
exchange takes place.103 A series of cerium oxide composites of
AA have been prepared and employed as adsorbents for arsenic

removal from water. The adsorption capacity of these
composites (Al2O3−CeO2) depended on the preparation
conditions. The highest. adsorption capacity of arsenic was
achieved when CeO2 was deposited on powdered AA (6 g) at a
0.5 mol ratio of H2O2/Ce. More specifically, arsenic adsorption
was optimal when the nanosize CeO2 was deposited on the
Al2O3 support, where a Langmuir adsorption isotherm model
was followed with Qmax of 13.6 and 10.5 mg/g for arsenate and
arsenite, respectively (Figure 8).104

Regeneration of saturated alumina can be achieved by
exposing the medium to a strong base (e.g., NaOH). Using
pilot filters, Frank and Clifford (1986) demonstrated that
As(III) is not removed by activated alumina but As(V) is
adsorbed, and breakthrough may occur at 10 000−20 000 bed
volumes (As initial concentration of 100 ppb and pH = 6).105

Figure 8 shows the removal kinetics on alumina at a pH of 6.
Giles et al. reported the use of iron and aluminum-based
adsorbents for As removal and further discussed the oxidation
of As(III) to As(V) using various oxidizing agents to facilitate
As adsorption (see Section 2.1).106

2.4.2. Zero-Valent Iron and Iron Oxide. The adsorption
of arsenic by iron oxides is a very important process because it
occurs naturally in the environment and is highly favorable
under oxidizing and slightly acidic conditions. It can also be
engineered and configured as a removal mechanism during
water treatment. Granular ferric oxide Bayoxide E33 and
granular ferric hydroxide GFH are iron-based media frequently
used as adsorptive media in small drinking water systems in the
U.S.107 Unlike activated alumina, iron-based media are not
typically regenerated and require periodic media replacement.
A recent high-resolution imaging analysis demonstrated that
arsenic atoms diffuse preferably along the grain boundary of
iron oxides explaining the surface sorption or surface complex
formation of arsenate on ferric hydroxide (FeOOH).108

Understanding the effectiveness of this removal technology
across a wide range of environmental conditions can improve
As removal in water treatment plants and provide an accurate
prediction of As transport through soils and aquifers.

In situ chemical immobilization has been used to reduce
arsenic contamination in soils by applying iron amendments to
contaminated soils and, thus, reducing As mobility and
bioavailability in the soil.109 While there have been many
studies focused on arsenic adsorption using iron oxides, the
specific mechanisms that govern how adsorption changes with
pH and redox conditions remain unclear.

Figure 8. Impact of H2O2/Ce mole ratio on As adsorption capacity.
Data obtained from Nakamoto et al.104

ACS Environmental Au pubs.acs.org/environau Review

https://doi.org/10.1021/acsenvironau.2c00053
ACS Environ. Au 2023, 3, 135−152

140

https://pubs.acs.org/doi/10.1021/acsenvironau.2c00053?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenvironau.2c00053?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenvironau.2c00053?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenvironau.2c00053?fig=fig8&ref=pdf
pubs.acs.org/environau?ref=pdf
https://doi.org/10.1021/acsenvironau.2c00053?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Surface complexation and electrostatic models can predict
the effectiveness of As removal using iron oxides. The accurate
prediction of adsorption performance is difficult because of
assumptions incorporated into various models. Different
approaches can be taken to model the adsorption phenomena
occurring at the sorbent surface including the diffuse double-
layer model of Dzombak and Morel that predicts arsenic
adsorption by iron oxides.110 However, this model was derived
for synthetic solutions and does not account for the
competitive interactions found in real complex systems.
More importantly, the database contains a limited amount of
experimental data.110 On the other hand, the CD-MUSIC
model of Hiemstra and van Riemsdijk111 is more promising
but more complex. Additional work with model verification
and validation is required to improve the output of these
products.

The use of mineral oxides in small-scale water treatment
systems may be feasible for arsenic removal, but additional
studies are needed to evaluate their performance in treating
highly concentrated arsenic-laden industrial effluents. Over the
years, zerovalent iron (Fe0) has been used as a permeable
reactive barrier medium for the removal of various ground-
water contaminants,112 including various chlorinated hydro-
carbon compounds through reductive dehalogenation.113,114

Su et al. also reported that Fe0 has been used to remove arsenic
from groundwater and performance was impacted by reaction
time, pH, and oxidation reduction potential.112 In another
study, Pierce et al. reported that using 4.45 mg/L of Fe(OH)3
resulted in arsenite removal efficiency of at least 50%.65 A
ferric-based layered double hydroxide intercalated with alpha-
alanine was synthesized by a coprecipitation method to remove
As(III) from water.115 Nanoscale iron−manganese binary
oxides have also been tested in column experiments for the
removal of both As(III) and As(V) from aqueous media.116

Zerovalent iron (ZVI) is one of the widely used adsorbents
for the rapid removal of As(III) and As(V) in the subsurface
environment.117−120 The large size, lower surface area, and lack
of mobility of ZVIs have limited their applications shallow
groundwaters. To overcome these limitations, nanoscale

zerovalent iron (nZVI) has been studied due to its high
surface area and reactive properties.121 nZVIs have shown
great potential for As removal from groundwater sour-
ces.122,118,123 Both As(III) and As(V) were removed from
real water matrices containing dissolved natural organic
matter.118,123 As(III) may be adsorbed either onto nZVI or
can be oxidized to As(V) and adsorbed on nZVI sur-
face.124−126 Ezzatahmadi et al. reviewed the adsorption
performance of clay minerals, zerovalent iron materials, and
clay-supported nZVI composites in removing various heavy
metals including arsenic from aqueous solutions. Clay-
supported nZVI composites achieved the highest removal
efficiency for various contaminants including arsenic.124

Recently an iron-anode enhanced sand filter was employed
to remove arsenic with initial concentration of 196−472 μg/L
to below 10 μg/L from tube well water in the Jianghan Plain,
central China. A current of 0.6 A and a flow rate of about 12
L/h were used, and the residual As was about 110 μg/L
without electricity.127

2.4.3. Industrial Byproducts. Metal oxides and hydrox-
ides of iron or alumina128 have been widely studied for the
removal of As from water and wastewater. However, there is an
urgent need to develop cost-effective, efficient, and sustainable
adsorbents that can be implemented in developing coun-
tries.129 Several industrial byproducts including red mud,129

neutralized red mud, fly ash, ferruginous manganese ore,130

Fe(III)/Cr(III) hydroxide waste,131 and steel slag117 have been
evaluated for the removal of arsenic from water. Steel slag
(basic oxygen furnace slag (BOFS) and blast furnace slag
(BFS)) are steel industrial byproducts, having FeO and CaO as
their main components, and are considered one of the
cheapest widely available materials.132 More importantly, iron
oxide and calcium oxide are important components, due to the
strong bonding capacity and ability to stabilize sludge
produced after As adsorption, making BOFS and BFS good
candidates for As adsorption. From an environmental
perspective, BOFS recovered from high temperature is safe
since metals are well-stabilized and do not leach easily.133

Figure 9 shows a scanning electron microscopy (SEM) image

Figure 9. SEM image of blast furnace slag (left) and As adsorption change over time for a specific initial As(III) concentration; initial As(III):
0.01−100 mg/L, slag dose: 10 g/L, pH: 12 (right). (Reprinted with permission from Kanel et al.118 Copyright 2006 American Chemical Society).
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of the steel slag and the As adsorption kinetics to steel slag,
showing that total As can be effectively removed.117

2.4.4. Clay. In addition to As adsorption being influenced
by the concentration of the arsenic, the chemical and physical
properties of aquifer materials affect As adsorption. The clay
fraction has been identified as a major sink for arsenic
contamination. The composition of the clay is also one of the
fundamental factors affecting the biological toxicity of As.134

The pH and cation exchange capacity (CEC) of the subsurface
material affect adsorption. The form of arsenic species impacts
adsorption onto clay minerals as a function of pH. The
maximum adsorption capacity of As(V) onto kaolinite and
montmorillonite was found to be at pH 5, whereas the As(III)
adsorption increased beyond this pH. For example, at pH = 8,
more As(III) was adsorbed compared to As(V).47,135,136 The
effect of pH can also be observed with other adsorbents, where
the As(III) adsorption onto alumina, bauxite, and carbon
decreases at pH greater than 7.137

As(V) adsorption onto clay minerals has been studied using
batch experiments as a function of pH and NaCl. Four clay
minerals (i.e., illite, kaolinite, montmorillonite, and chlorite)
were selected due to their abundance in sediments and their
different crystalline structure. Increasing NaCl concentration
enhanced As(V) adsorption, indicating that surface complexes
were formed, in which Na+ ions served as bridges between the
clay surface and the As(V) anions.138 In a different study, the
effects of dissolved calcium (Ca2+) and pH on As(V) reactivity
and surface speciation were investigated using adsorption
performance experiments and extended X-ray absorption fine-
structure spectroscopy (EXAFS) analyses. EXAFS analysis
revealed that As(V) tetrahedral molecules were coordinated on
aluminum octahedral via bidentate binuclear bonding at pH
4.5−6.75.139

Sund et al. also studied the adsorption of arsenites with four
different Indian soils with different CECs and pH values.140

The adsorption of arsenic was impacted by the fraction of
sesquioxide, clay, and the concentration of exchangeable Ca2+

and Mg2+ in the soils. The amount of arsenic sorbed to soils,
including clayey brown, degraded chernozem, slightly gray,
sod-alluvial carbonate, and carbonate meadow was influenced
by the soil solution pH. Galba et al. indicated that, in strongly
acidic soils, arsenic sorption was localized mainly on the
surface of clay minerals, while in weakly acidic soils, colloidal
sesquioxides participated in the arsenic sorption. In extremely
alkaline environments (pH > 11), calcium arsenate complexes
were found.141 The quantity of arsenic adsorbed by soil
increased with increasing initial concentration.141

Coexisting ions can impact arsenic sorption in the
environment, as ions tend to compete for sorption sites or
can form complexes with arsenic. Similar to arsenate,
phosphate strongly competes for sorption sites on iron oxides,
soils, and sediments, whereas anions including Cl− and SO4

2−

have no or slight impact. On the other hand, organics can form
complexes with arsenic, increasing its mobility and decreasing
its sorption. Manning et al. reported the fractionation of added
As(III) to three soils: Fallbrook, Panoche, and Indio.142

Fallbrook and Panoche soils displayed greater adsorption and
oxidation compared to Indio soil. Yet, for all three soils, the
total recoverable As(III) consistently decreased for 48 h, due
to the slow intraparticle diffusion of both As(III) and As(V).
Following adsorption, oxidation of As(III) to As(V) occurred,
which then partitioned between the solid and solution phases.

Soil can oxidize As(III) to As(V), which is very important in
the cycling of arsenic species.143

2.4.5. Activated Carbon. Activated carbon has been
widely deployed as a point-of-use treatment for waters
containing metals.144 Arsenic removal by chemically treated
activated carbon at ambient pH145 is more effective for As(V)
removal than As(III) removal. A relatively large quantity of
carbon is required to effectively remove As(V) from solution.
Recently, arsenic removal from water by δ-MnO2 modified
activated carbon has been reported. Within the first 9 h,
approximately 90.1% and 76.8% removal efficiencies of As(III)
and As(V), respectively, were achieved, and adsorption
equilibrium was achieved within 48 h.146 The Qmax value of
As(V) and As(III) at pH 4.0 was determined as 13.30 and
12.56 mg/g, respectively, using Langmuir adsorption iso-
therms.146

In a different study, Huang et al. studied arsenate adsorption
by 15 different activated carbons147 and found that arsenate
adsorption depended on carbon type, pH, and arsenic
concentration. Contaminant removal has been investigated
using virgin activated carbon, chemically treated activated
carbon, and activated carbon impregnated with ferric
hydroxide.148,149 High As adsorption capacity to chemically
treated activated carbon has been recently reported.150

Activated carbon prepared from coconut and rice husks has
been investigated for the removal of arsenic from water. Lee et
al. reported the effect of dosages on uptake using carbon from
quaternized rice husks with an optimal As removal efficiency of
86% and solid phase concentration of 3 mg As/g quaternized
carbon at pH = 7.5.151 Manju et al. evaluated the performance
of coconut husk carbon (CHC) and copper impregnated
coconut husk carbon (CICHC) for the removal of As(III)
from water and demonstrated significant removal with a 4 h
reaction time.152 The As(V) adsorption kinetic process was
similar to that of As(III), consistent with the results generated
with the adsorption isotherm profiles of As(V) and As(III) by
the δ-MnO2-modified activated carbon (Figure 10).
2.5. Ion Exchange

During the ion exchange process, a reversible interchange of
ions occurs between the solid and the liquid phase. The arsenic

Figure 10. As(V) and As(III) adsorption profile on δ-MnO2-modified
activated carbon. Experimental conditions: adsorbent dose = 1.0 g/L,
initial arsenic concentrations C0 = 6.0 mg/L, and equilibration time of
48 h (Reprinted with permission from Wang et al.146 Copyright 2020
Elsevier).

ACS Environmental Au pubs.acs.org/environau Review

https://doi.org/10.1021/acsenvironau.2c00053
ACS Environ. Au 2023, 3, 135−152

142

https://pubs.acs.org/doi/10.1021/acsenvironau.2c00053?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenvironau.2c00053?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenvironau.2c00053?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenvironau.2c00053?fig=fig10&ref=pdf
pubs.acs.org/environau?ref=pdf
https://doi.org/10.1021/acsenvironau.2c00053?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


exchange and regeneration with common salt can be
represented by the following equations

Arsenic exchange:

+ = +2R Cl AsO (OH) R AsO (OH) 2Cl3
2

2 3
2

(10)

Regeneration:.

+ +

= + +

+

+

R AsO (OH) 2Na 2Cl

2R Cl AsO (OH) 2Na
2 3

2

3
2

(11)

where R = ion-exchange resin.
Recently, a tetrahedron ion-exchange resin filter assessed in

Bangladesh has shown promise in removing arsenic from
water. As expected, the bed volumes to arsenic breakthrough
decreased as sulfate concentration increased from 0 to 150
mg/L . An additional increase in sulfate concentration (>150
mg/L ) exhibited a slight increase in bed volumes to arsenic
breakthrough.

The applicability of ion exchange (IX) has been well-studied
along with competing water constituents (e.g., SO4

2− for IX)
and regeneration requirements.1153 Magnetically impregnated
ion-exchange (MIEX) has also been used as a medium for
arsenic removal via ion exchange. Incorporating iron into the
matrix combines favorable iron−arsenic interactions with the
ionic exchange mechanisms. As(V) was removed using an iron-
impregnated ion exchange bed.154 A new class of environ-
mentally friendly starch-bridged magnetite nanoparticles was
developed and evaluated for removal of arsenate from spent IX
brine. 0.049% (w/w) of the low-cost, “green” starch was used
as a stabilizer to prevent the agglomeration of nanoparticles
while preserving their high arsenic adsorption capacity (Figure
11). When this adsorbent was used to treat a synthetic spent

IX brine, complete arsenic removal was achieved within 1 h,
compared to only 20% removal when bare magnetite particles
were used. The Langmuir adsorption capacity was determined
as 248 mg/g at pH 5. Increasing NaCl concentration from 0 to
10% (w/w) in the brine slightly impacted the adsorption
capacity of arsenic.155

Recently, arsenic removal from geothermal water has been
studied using a hybrid system consisting of novel 1JW, 2JW,
and 2PTN resins along with Dowex XUS 43594.00 resin
(Figure 12).

2.6. Membrane Techniques
Several membrane technologies have been used for the
removal of arsenic from water (e.g., nanofiltration (NF),
reverse osmosis (RO), and electrodialysis). Membrane
separation offers several advantages including ease of
operation, no addition of chemicals, and high performance,
as many contaminants including bacteria, salts, and other heavy
metals could be potentially removed. Clifford et al. found that
reverse osmosis could effectively remove 98−99% of As(V),
while As(III) was partially removed (46−75%) due to the
neutral form of As(III) as H3AsO3.

157 Yet, the low water
recovery rates, the high transmembrane pressure requirements,
the relatively high capital and operating costs, and membrane
fouling hamper the wide spread of membrane technologies.

Nanomaterials have been increasingly used in membrane
technologies for arsenic treatment. Recently, a TiO2-coated
carbon nanotube (CNT) network membrane, prepared via a
simple filtration−steam hydrolysis method, was evaluated for
arsenic removal. The TiO2 coating uniformly covered the CNT
network surface with an ∼2-fold greater specific surface area
than that of the bare CNT network. The TiO2−CNT As
sorption kinetics increased with increasing cell potential, as
shown in Figure 13.158

Figure 11. Starch-stabilized magnetite particle (left) and arsenate
adsorption profile for starch-bridged magnetite particles at pH 5.0 and
pH 6.9 (final pH) using a spent brine solution (Fitted using Langmuir
model). Brine compositions: initial As (V): 17 mg/L, SO4

2−: 600 mg/
L, HCO3: 305 mg/L, NaCl: 6 wt % (w/w). (Reprinted with
permission from An et al.156 Copyright 2011 Elsevier).

Figure 12. Arsenic concentration in permeate over time profiles for
commercial and novel chelating resins. (Reprinted with permission
from An et al.156 Copyright 2011 Elsevier).

Figure 13. (a) SEM image of TiO2 CNT, (b) TEM image of TiO2
CNT, adsorption isotherms of (c) As(V) and (d) As(III) on TiO2−
CNT (Reprinted with permission from Liu et al.158 Copyright 2014
American Chemical Society).
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2.7. Stabilization of Arsenic-Bearing Waste Solids
In this procedure, arsenic waste (e.g., As-loaded or spent
adsorbent) is stabilized by adding chemicals (e.g., cement,
lime) to avoid costly disposal of hazardous waste. The
stabilization of arsenic adsorbed by this process has been
investigated by various researchers.159−161 In one study,
Comba et al. investigated arsenic removal from solution by
forming mimetite, a lead arsenate chloride mineral (Pb5
(AsO4)3 Cl).162 Aqueous arsenic concentrations were reduced
from several mg/L to 0.2 μg/L, and a phosphate/arsenate solid
solution (phosphomimetite) was formed. Cement or cement
lime has also been used to stabilize various arsenic-bearing
materials,163,164 calcium and iron arsenate contaminated soil,
and ferric hydroxide precipitated soils in the presence of
chloride and phosphate. In a different study, Diamadopoulos et
al. studied As(V) removal from aqueous solution by fly ash and
found that arsenic adsorption was almost irreversible with
arsenic removal of more than 80% at a pH of 4.165

Cornwall et al. provided guidelines for disposing waste
resulting from arsenic removal processes, which serve as a good
reference for water utilities on how to dispose residuals
containing elevated concentrations of arsenic.166 Sullivan et al.
also reviewed the disposal of water treatment As wastes, with a
particular emphasis on solidification/stabilization (S/S)
technologies.167 As can be treated by Portland cement/lime
mixes, oxidation of As(III) to As(V), and the formation of
calcium−arsenic compounds using binders such as geo-
polymers and activated alumina.167 Arsenites can chemically
bond with hydrated lime to form precipitates as follows.168

+ = +2AsO(OH) 3Ca(OH) (aq) Ca (AsO ) (s) 6H O3 2 2 4 2 2
(12)

+ = +As(OH) Ca(OH) (aq) CaAsO OH(s) 2H O3 2 2 2
(13)

Dutre et al. also investigated S/S of arsenic-containing waste
and the behavior of arsenic in leachate.168 The mechanism that
governs the S/S of As-contaminated soils including Portland
cement (PC) and cement kiln dust (CKD) was explained using
various analytical tools including X-ray powder diffraction
(XRPD), X-ray absorption near edge structure (XANES), and
extended X-ray absorption fine structure (EXAFS) spectros-
copy. As immobilization after stabilization was evaluated using
a 1 N HCl extraction according to the Korean Standard Test
(KST). After 1 day and 7 days of treatment with 30 wt % PC
and 50 wt % CKD, respectively, the level of As leaching from
the amended soils was less than 3 mg L−1 (i.e., the Korean
countermeasure standard).169

In situ S/S offers three main advantages including being a
well-established, efficient, and cost-effective approach; requires
no secondary treatment; and more importantly, poses no risk
to site workers through As exposure.170 Influence of the
addition of fly ash on S/S performance is reported in Figure
14. It was found that addition of cement-stabilized arsenic
waste stabilized the arsenic.171

2.8. Natural Attenuation
Natural attenuation of As can occur when the dissolved phase
is trapped by precipitation of secondary As minerals,
coprecipitation/sorption reaction with Fe, Mn, and Al
oxyhydroxides, carbonates, clay minerals, or complexed by
organic matter.172 Redox reactions mediated by microorgan-
isms play an important role in the fate of As, as the microbial
oxidation of As (As(III) to As(V)) favors the stabilization of

As in the solid phase.173 Arsenic sorption onto aquifer
sediments has been investigated in anaerobic bench- and
pilot-scale experiments and analyzed by X-ray absorption
spectroscopy (XAS).174 Margarita et al. reported that arsenic in
semiarid soils contaminated by wastes containing oxidized
arsenic species is naturally stabilized.175 For areas with high
acetate loadings and under sulfate-reducing conditions, arsenic
release was higher. Lab-scale experiments revealed that, in the
presence of the reduced precursors arsenite and sulfide,
multiple thioarsenic formed.176 Iron hydroxide can bind better
to arsenic, followed by clay minerals and then feldpars.177 The
methylation of arsenic occurs via alternating reduction of
pentavalent As to trivalent As and addition of a methyl group
(Figure 15).178,179

2.9. Low-Cost As Remediation Technologies
Natural attenuation can be a viable treatment technology for
developing communities that lack resources to implement
some of the previously discussed processes (e.g., metal-
impregnated adsorbents, IEX, and fly ash incineration). Solar
oxidation of As-laden waters is another low-cost remediation
technology. A technology called SORAS�solar oxidation and
removal of arsenic�has been shown to remove 75−90% of
As180 from waters containing both arsenic and iron, which have
been photochemically pretreated with the addition of lemon
juice. The citric acid induces the precipitation of ferric iron,
where arsenic then adsorbs to the solid iron compounds and
clean water is decanted off of the top.180 Optimizing the
process with the addition of steel wool to the source water,
Cornejo et al. was able to reach a removal efficiency of at least
99.5% with final arsenic concentrations below 10 μg/L.181 The
optimal molar ratios for arsenic, citrate, and iron were

Figure 14. Impact of fly ash on S/S performance. The data is based
on cement/sample weight ratio of 1 (Reprinted with permission from
Shih et al.171 Copyright 2003 Elsevier).

Figure 15. Challenger mechanism for arsenic methylation path-
way.178,179
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determined by Lara et al. to be 1:4.5:18.7, respectively, to
achieve over 90% As removal efficiency after 4 h of
irradiation.182 SORAS was not significantly affected by pH,
as increasing the pH from 5 to 9 had no negligible impact on
aresenic removal.183 Geroni et al. attributed that pH
independency to at least 30 individual reactions and equilibria
occurring simultaneously (many of which are competing),
where at the end state, arsenic removal was mostly
unaffected.183 With this positive performance over a wide pH
range, SORAS could be applied to arsenic contamination due
to mining activities (mining waters usually have a wide pH
range). SORAS requires behavior modification by the
community in order to be effective. For example, treated
water bottles need to be left overnight in the vertical position
to allow arsenic−iron compounds to settle out.184

Unlike other treatment technologies, subsurface arsenic
removal (SAR) does not generate waste (e.g., As-containing
sludge, waste from the regenerated resin or the spent
adsorbent, or brine with high As concentrations) that needs
to be handled and disposed in a safe manner. In addition, SAR
requires no electricity or chemical additives. SAR is not a new
technology but is a modified form of subsurface iron removal
(SIR). With SIR, the oxidation of iron species is prompted,
which leads to iron precipitation, and the solid iron
compounds stay in the ground as iron-free water is extracted.
Fortuitously, if arsenic is present it will react and combine with
iron and become trapped in a precipitated iron−arsenic
complex. Similar to technologies described earlier, oxidizing
As(III) to As(V) is preferrable for optimal arsenic removal in
situ. With SAR, water with dissolved oxygen concentrations of
∼8 mg/L is introduced into the anaerobic subsurface to
accomplish the oxidation.6 With such an oxygen concentration,
the reaction is slow�on the order of hours to days�but the
residence times in the subsurface are of the same order of
magnitude, and therefore the viability of technology remains.
The benefits to using the aerated water as the oxidant are cost
and convenience; no additional chemicals are needed to
convert arsenite to arsenate.

SAR requires a source of aerated water to introduce into the
subsurface, which is typically accomplished with aboveground
storage tanks that incorporate paddles, plates, bubbling, or a
similar methodology to achieve aeration. The aerated water is
then introduced into the subsurface aquifer by a handpump,
which is widely available in developing countries including
Bangladesh and Bengal Delta areas. A simple diagram of the
one pump SAR design is included in Figure 16.

The following section describes the chemical reactions
during SAR. After the aerated water is introduced into the
aquifer, arsenite is oxidized into arsenate as shown below.
Arsenite oxidixzing to arsenate:

+ + ++As(OH) O H AsO (OH) H O3 2 2 2 2 (14)

+ +As(OH) O AsO (OH) H O3 2 3
2

2 (15)

For SAR to be effective, iron is a requirement where
oxidation of ferrous iron to ferric iron takes place at the same
time as arsenic oxidation. Ferric iron exists in different
complexes (e.g., ferric hydroxide or hydrous ferric oxide
(also referred to as ferrihydrite and HFO) or goethite
(FeOOH), etc.), but the majority of these complexes are in
solid form. eqs 16 and 17 demonstrate these processes.
Ferrous oxidizing to Ferric:

+ + ++ + +4Fe 4H O 4Fe 2H O2 2 3
2 (16)

Ferric to Ferric Hydroxide (or to HFO (FeH2O4), or Fe2O3,
FeOH2

+, Fe(OH)2
+, FeOOH, etc.):

+ ++ +Fe 3H O Fe(OH) 3H3
2 3 (17)

These solid forms of iron have relatively high surface areas
and will sorb arsenate compounds out of solution. HFO has a
surface area of 141 m2/g, and goethite has reported surface
areas of 39 and 103 m2/g.99 HFO and goethite, in particular,
have demonstrated significant arsenic removal.6 eqs 18 and 19
below show the arsenic adsorption to the solid iron oxides.
The various iron oxides are represented with the “S−” notation
to reflect the “solid” form of the compound.
Arsenite adsorbs to iron oxides:

+ +S OH As(OH) S As(OH) O H O3 2 2 (18)

Arsenate adsorbs to iron oxides:

+ +S OH AsO (OH) S AsO (OH) H O2 2 3
2

2
(19)

Arsenate to iron oxides:

+ +S OH AsO (OH) S AsO H O3
2

4
3

2 (20)

Additionally, when (aerobic) water is extracted from the
aquifer, ferrous iron in solution becomes adsorbed onto soil
particles (eq 21). The adsorbed ferrous iron then undergoes
oxidation to ferric iron by a pathway similar to eq 16 and
thereby creates more sites that are available for arsenic
adsorption during follow-on cycles of SAR aeration and
extraction.

Adsorbing Ferrous

+ + ++ +S OH Fe S OFe(II) H2 (21)

The oxidation zone formation and activation time is
between 8 and 12 h, and, similar to SORAS, behavioral
change is needed to allow for this time to completed before
water is extracted from the well. Care and caution must also be
exercised to avoid contamination of the injected aerated water
from above-ground. Additional areas needing further research
for optimization of SAR include determining the impact of the
natural organic matter concentrations on the As removal
efficiencies and further researching the remobilization of
arsenic once fixed to the subsurface.6

Figure 16. Single well design for subsurface arsenic removal (left:
injection; right: extraction). (Reprinted with permission from Halem
et al.185 Copyright 2009 Elsevier).
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3. COST ANALYSIS
According to an arsenic demonstration program,186 capital
costs are the main drivers of the cost of arsenic treatment
technology. However, the cost of site improvements
(buildings) and residual disposal (sewers, ponds) were not
included in the cost analysis.

Based on arsenic demonstration studies ranging from 1 to 5
years in length, operation and maintenance (O&M) costs were
very dependent on treatment technology with adsorptive
media systems being higher than iron removal, coagulation/
filtration, and ion exchange treatment technologies. The cost
to replace adsorptive media accounted for around 80% of the
operation and maintenance costs. As new media alternatives
become commercially available, adsorptive media systems have
reduced O&M costs by switching to lower-cost and higher-
performance media products.186 Chen et al. studied the
feasibility of regenerating iron media products to reduce the
operating cost.107 A 4% caustic (NaOH) solution was able to
achieve more than 80% removal of arsenic from iron-based
exhausted media (e.g., E33 and ARM200) and restored some
of its arsenic removal capability.107

4. DRINKING WATER TREATMENT
DEMONSTRATIONS

The U.S. EPA completed demonstrations of arsenic removal
technologies at 50 locations throughout the U.S.186 The focus
of the demonstrations was on commercially available
technologies or engineering approaches for removal of arsenic
from drinking water supplies. Major considerations included
(1) arsenic treatment technology performance, (2) cost of
media and media replacement, and (3) residuals management
(typically disposal of backwash water). Examples of arsenic
treatment effectiveness under the demonstration program are
highlighted below.

Spring Brook Mobile Home Park, in Wales, Maine, tested
three different media in their full-scale treatment plant with
influent arsenic concentrations of 38 μg/L at pH 8.5 and found
a 1.5-to-2-fold difference in the volume of water treated before
exceeding the 10 μg/L arsenic maximum contaminant level
(MCL).187

Chlorination can effectively oxidize As(III) and iron(II) as
demonstrated by the Chateau Estates project in Springfield,
OH, where arsenic-laden particles were formed that were
filterable by AD-26 media. The AD-26 system decreased the
total arsenic levels to less than 2.5 μg/L.187

The U.S. EPA also published information on demonstration
projects on coagulation/filtration for arsenic removal from a
park water supply in Conneaut Lake, PA; on adsorptive media
for arsenic removal at Seely-Brown Village in Pomfret, CT;188

and at Geneseo Hills Subdivision in Geneseo, IL.189

4.1. Residuals Management
Many arsenic removal technologies generate waste and require
safe disposal of residuals that can significantly drive cost.
Adsorptive technology generates exhausted media that can be
regenerated on or off site or sent to a landfill. Backwash water
with solids can be generated during treatment of arsenic using
iron removal, coagulation/filtration, and adsorptive technolo-
gies. Backwash water with solids can be recycled or disposed
into sewers, septic systems, and evaporating ponds. Ion
exchange treatment residuals (i.e., regenerated brine) while
reverse osmosis and nanofiltration residuals (i.e., reject water
from the membrane treatment processes) can be sent to the

sewer, septic system, or evaporated in holding ponds.186 Local
and state regulations should be consulted when developing
such residual management practices.

5. CONCLUSIONS AND FUTURE RESEARCH NEEDS
Groundwater is the main drinking water source for more than
1.5 billion people. Therefore, it is essential to ensure the
production of safe, potable water from this source is
paramount. Arsenic concentrations greater than published
maximum concentration levels have been identified globally,
with high arsenic levels detected in Bangladesh, West Bengal-
India, and the Western parts of the United States. Under-
standing this contaminant’s source, fate, transport, and
treatment options is a pressing environmental problem that
poses human health risks.

Characterizing the subsurface geology is essential to
understand the primary source of As. Nearby industrial
activities and pesticide applications should be considered but,
generally, to a lesser extent than the underlying geologic
formation. In addition to the subsurface composition, environ-
mental conditions (e.g., pH, ionic strength, competing ions)
are important to consider when assessing the oxidation state of
As and its fate. Several methods have been employed for
arsenic treatment, including oxidation, coagulation-precipita-
tion, lime softening, adsorption, ion exchange, membrane
technologies, As-waste stabilization, and natural attenuation.
The ultimate disposal of As waste generated by these treatment
methodologies need to be considered. The optimal treatment
technology depends on the specific field conditions (e.g., type
of water or soil, pH, ionic strength), treatment objective, cost,
and environmental regulations (i.e., discharge limits and
hazardous waste disposal permits). Despite extensive efforts
in the development of arsenic treatment technologies,
environmentally friendly, cost-effective, scalable, and adaptable
technologies that require minimal maintenance are needed.

Future research ought to focus on the stabilization of
arsenic-loaded sorbents (i.e., spent sorbents). In developing
countries, spent, arsenic-adsorbed materials are often disposed
into the environment in an uncontrolled manner, resulting in
As contamination in the backyard of the household and its
release back into the groundwater supply. In developed
countries, there is a greater need to develop in situ treatment
technologies, rather than ex situ, so that As can be treated
without excavation. Injection of nanomaterials may be one of
the several new options for treatment of As-contaminated
groundwater supplies. However, before their application, the
health risks associated with the nanomaterials need to be
determined. For instance, nZVI can be injected into As-
contaminated groundwater because it transforms to iron oxides
and hydroxides, which are nontoxic forms of iron.123,190
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