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Congenital hypothyroidism (CH) is the most common neonatal metabolic disorder.

Although it has been understood to be a monogenic disease, some CH patients are

reported to carry two or more variants at different genes. Here, ten permanent congenital

hypothyroidism (PCH) patients were retrospectively reviewed, with elevated levels of

serum thyroid-stimulating hormone and levothyroxine dependence during follow-up

between 2015 and 2019. Each affected individual carried digenic variants, which were

heterozygous at two of pathogenic genes. In total, five pathogenic genes, TSHR, TG,

TPO, DUOX2 and DUOXA2, were simultaneously identified in subjects that were involved

in the same metabolic pathway: thyroid hormone biosynthesis. There were digenic

variants at TSHR and DUOX2 combined in three patients, DUOX2 and TG combined

in two patients, DUOX2 and DUOXA2 combined in two patients, TG and DUOXA2

combined in two patients, and TG and TPO combined in one patient. Additionally,

seven novel variants, TSHR c.679G>A, DUOX2 c.127A>T, c.608-619del, c.959T>C,

TG c.2307G>A, and c.6759_6765del, and DUOXA2 c.93T>G, were identified in these

PCH patients. Along with a literature review on digenic variants in patients with CH, our

findings illustrated the complexity of genetic etiology in CH.

Keywords: digenic variants, thyroid hormone synthesis, congenital hypothyroidism, genetic counseling, oligogenic

cases

BACKGROUND

Congenital hypothyroidism (CH) is the most common neonatal metabolic disorder. It has an
incidence ranging from 1:1,400 to 1:2,800 live births in many countries (Wassner and Brown,
2015), and it results in severe neurodevelopmental impairment if not treated early and effectively.
Primary CH is usually classified into two categories by pathogenesis: thyroid dysgenesis, a defect
in thyroid gland development in which a few cases were caused by FOXE1, NKX2-1, NKX2-5, and
PAX8, and thyroid dyshormonogenesis (DH), an intrinsic defect of thyroid hormone biosynthesis
caused byDUOX2, DUOXA2, IYD (DEHAL1), TG, TPO, SLC26A4 (PDS), SLC26A7, SLC5A5 (NIS),
and TSHR (Cangul et al., 2018; Kwak, 2018). Based on the newborn screening (NBS) program
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and clinical diagnosis, thyroid dyshormonogenes dominate
compared to thyroid dysgenesis in the Chinese population upon
increased molecular diagnosis (Long et al., 2018; Sun et al.,
2018). Whereas thyroid dysgenesis still accounts for more than
69% of primary CH worldwide (Wassner and Brown, 2015;
Peters et al., 2018). The inheritance of CH is controversial.
Although it has been understood to be autosomal recessive
(biallelic) in most cases as a monogenic disorder, a few CH cases
appear to be monoallelic in one gene (Nicholas et al., 2016,
Fugazzola et al., 2003), or 2 or more variants in different genes
(Sriphrapradang et al., 2011; Satoh et al., 2015; Makretskaya et al.,
2018; Yamaguchi et al., 2020). Here, we report 10 permanent
congenital hypothyroidism (PCH) cases carrying digenic variants
in which each affected individual is heterozygous at two of
pathogenic genes simultaneously as well as the identification of
seven novel genetic variants.

CASE PRESENTATION

During January 2015 and December 2019, the mean incidence
of CH was 1:1,093 based on the NBS program in the Children’s
Hospital, Zhejiang University. CH screening strategies are
designed to detect elevated levels of TSH and/or decreased
concentrations of thyrocine (T4) (Group for Newborn
Screening Society of Child Health Chinese Preventive Medicine
Association, 2011). Total 2647 CH cases were diagnosed,
of which 148 cases were offered genetic tests, and 66 cases
(44.6%) had clear genetic confirmation, either carrying one
P/LP variant in a dominate gene or two P/LP variants in a
recessive gene. However, another 10 CH patients carrying
digenic variants were retrospectively reviewed. They were
clinically diagnosed to be PCH with a defect of thyroid hormone
biosynthesis based on careful evaluation of clinical features
and levothyroxine treatment during follow-up. As shown
in Table 1, all patients had initially elevated TSH levels (≥9
µIU/mL), ranging from 9.15 to 25.5 µIU/mL, and were proven
to be permanent by receiving a trail off levothyroxine (LT4)
at 2–3 years of age. Additionally, the influences of preterm,
low-birthweight, and autoimmune thyroid disease on these
cases were excluded. The detailed clinical information of the
patients was listed in Table 1. With LT4 treatment with a dose
of 12.5–33.3 µg per day, all patients had normal ASQ (Ages
& Stages Questionnaires) and maintained serum TSH levels
ranging from 1 to 10 (mIU/L) with a normal level of free
thyroxine (FT4) between 9.01 and 19.05 (pmol/L) cutoff during
follow-up. Cases #5 has a goiter by ultrasound during NBS with
dimensions 2.3 × 0.9 ×0.8 cm (Right) and 2.2 × 1.0 × 0.8 cm
(Left) as previously reported (Wang et al., 2014). There was no

Abbreviations: CH, congenital hypothyroidism; PCH, permanent congenital

hypothyroidism; TSH, thyroid-stimulating hormone; TSHR, thyroid-stimulating

hormone receptor; T3, triiodothyronine; T4, thyroxine; MIT, monoiodotyrosine;

DIT, diiodotyrosine; DUOX2, dual oxidase 2; DUOX1, dual oxidase 1; DUOXA2,

dual oxidase maturation factor 2; TG, thyroglobulin; TPO, thyroid peroxidase;

SLC26A4 (PDS), solute carrier family 26 member 4; SLC26A7, solute carrier

family 26 member 7; SLC5A5 (NIS), solute carrier family 5 member 5 (sodium

iodide symporter).

compensatory goiter recorded in Case #5 after 1 year with the
LT4 supplement.

Identification of Digenic and Novel Variants
Identification of causative gene via whole-exome sequencing
(WES) using peripheral blood was performed for 10 patients. The
DNA library was prepared by an Agilent SureSelect Inherited
Disease Capture Kit and sequenced using an Illumina HiSeq
2500 platform. All sequencing reads were mapped to the human
reference genome (GRCh37) by BWA (Li and Durbin, 2010) and
annotated by ANNOVAR (http://annovar.openbioinformatics.
org). A series of automatic tools (SIFT, Polyphen,MutationTaster,
etc.) were used to predict the functional significance of
variants (Table 2). DNA samples from family #1, #3, #4, #6,
#7, #8, and #10 were verified further by Sanger sequencing
(Supplementary Figure 1).

Themajority of dyshormonogenesis has an identifiable genetic
basis since there are more than 10 genes reported to be
involved in thyroid hormone biosynthesis (Kwak, 2018). All
identified genes and variants were summarized in Figure 1.
Five causative genes, TSHR, TG, TPO, DUOX2, and DUOXA2,
were identified among the 10 patients. DUOX2 was detected
in seven patients, followed by TG in five patients, DUOXA2 in
four patients, TSHR in three patients, and TPO in one patient.
There were digenic variants involving TSHR and DUOX2 in
Case #1 (TSHR c.679G>A and DUOX2 c.127A>T), #2 (TSHR
c.1574T>A andDUOX2 c.608-619del), and #3 (TSHR c.733G>A
and DUOX2 c.3516_3531del), DUOX2 and TG in Case #4
(DUOX2 c.2654G>T and TG c.6759_6765del) and #5 (DUOX2
c.3516_3531del and TG c.2307G>A), DUOX2 and DUOXA2
in Case #6 (DUOX2 c.4027C>T and DUOXA2 c.738C>G)
and #7 (DUOX2 c.959T>C and DUOXA2 c.738C>G), TG and
DUOXA2 in Case #8 (TG c.3040G>A and DUOXA2 c.93T>G)
and #9 (TG c.3808C>T and DUOXA2 c.413dupA), and TG
and TPO in Case #10 (TG c.5791A>G and TPO c.2647C>T).
In total, 18 variants were identified: 12 missense, 2 nonsense,
and 4 frameshifts. These resulted from three deletions and
one duplication. Five truncating proteins were observed in
7 cases, including DUOX2 p.K1174S fs∗12 (c.3516_3531del)
in Cases #3 and #5, TG p.S2254M fs∗88 (c.6759_6765del) in
Case #4, p.W769∗ (c.2307G>A) in Case #5, DUOXA2 p.Y246∗

(c.738C>G) in Cases #6 and #7, and p.Y138∗ (c.413dupA)
in Case #9. Usually, truncating variants were pathogenic
based on American College of Medical Genetics (ACMG)
guidelines. Variants were mostly transmitted from both parents,
although two heterozygous variants of Case #2 and #9 were
solely from the mother (Figure 1). Moreover, a de novo
variant resulting in a truncated protein, TG c.2307G>A (p.
W769∗), was detected in Case #5 (Supplementary Figure 1).
Among these 18 variants, 7 were novel, identified as TSHR
c.679G>A (p.G227R); DUOX2 c.127A>T (p.N43Y), c.608-
619del (p.L203-P207delinsP) and c.959T>C (p.L320P); TG
c.2307G>A (p.W769∗) and c.6759_6765del (p.S2254Mfs∗88);
and DUOXA2 c.93T>G (p.F31L). All the novel variants
were localized in highly conserved regions of each protein
(Figure 1) and predicted to be potential pathogenic variants by
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TABLE 1 | The clinical data of 10 primary congenital hypothyroidism cases.

Cases# Initial TSH Latest record of serum assay Treatments

Ages† (>9 µIU/ml) TSH (mIU/L) T3 (nmol/L) T4 (nmol/L) FT3 (nmol/L) FT4 (pmol/L) Levothyroxine

(µg/day)0.35–4.94 0.88–2.44 62.68–150.8 2.63–5.70 9.01–19.05

1. 6 years 9.15 8.61 1.99 87.47 5.62 15.36 25

2. 4 years 13.2 3.652 1.88 126.81 5.95 15.62 12.5

3. 5 years 11.8 2.9 2.23 107.08 6.46 17.01 16.7

4. 6 years 14.3 3.891 1.71 76.08 4.78 13.51 12.5

5. 4 years 25.5 3.787 1.85 144.23 5.98 16.73 33.3

6. 2 years 15.1 2.662 2.51 136.62 6.8 14.5 12.5

7. 3 years 12.2 8.532 2.28 150.34 6.55 16.16 12.5

8. 3 years 10.8 2.962 2.08 129.48 6.27 15.14 16.7

9. 6 years 13.7 7.827 2.76 96.44 7.32 12.17 12.5

10. 4 years 14.1 3.313 2.29 120.27 8.19 16.38 16.7

TSH, thyroid-stimulating hormone; T3, Triiodothyronine; T4, Thyroxine; F T3, free Triiodothyronine; FT4, free Thyroxine;
†
y, years.

functional consequences annotation through multiple software
(Table 2).

DISCUSSION

Most cases of CH are common endocrine disorders caused by
biallelic or monoallelic variants in one gene. With the widespread
use of newborn screening programs and the application of
genetic testing, some cases were found to carry two or more
variants at different genes (Satoh et al., 2015; Nicholas et al.,
2016; Sun et al., 2018; Yamaguchi et al., 2020), indicating
the complexity of genetic etiology in CH. Cases with two
or more variants in different genes were usually understood
to be oligogenic cases, compared to those in biallelic and
monoallelic cases (Yamaguchi et al., 2020). Here, we present
10 PCH cases carrying digenic variants in genes involved in
thyroid hormone biosynthesis. Similar to our findings, another
58 cases harboring digenic variants were reported elsewhere
(Supplementary Table 1). A total of 24 cases had digenic variants
in TSHR and DUOX2, including 5 cases out of 220 Chinese CH
(Fang et al., 2019) and 6 cases in Japanese patients (Abe et al.,
2018; Yamaguchi et al., 2020). The coexistence of heterozygous
variants in TSHR and DUOX2 was also revealed in Caucasian
cases (Makretskaya et al., 2018; Sasivari et al., 2019). More digenic
variants were heterozygous in two causative genes, including
combined DUOX2 and TG in 13 patients (Löf et al., 2016; Fan
et al., 2017; Long et al., 2018; Sun et al., 2018; Yamaguchi et al.,
2020), DUOX2 and DUOXA2 in 4 patients (Zheng et al., 2016;
Yamaguchi et al., 2020), DUOX2 and TPO in 3 patients (Matsuo
et al., 2016; Long et al., 2018; Makretskaya et al., 2018), TG and
TPO in 6 patients (Nicholas et al., 2016; Makretskaya et al., 2018;
Yamaguchi et al., 2020), and TG and SLC26A4 in 2 patients (Löf
et al., 2016; Sun et al., 2018). Moreover, it was also demonstrated
that 23% of Italian CH patients harbored pathogenic variants
in more than one gene (Filippis et al., 2017), indicating that
there was no ethnicity limiting the digenic form but rather a
frequency of dyshormonogenesis-associated variants. As shown

in Supplementary Table 1, eight genes (TSHR, TG, DUOX2,
DUOX1, DUOXA2, TPO, IYD, and SLC26A4) were present in
those oligogenic cases. The higher frequency genes were DUOX2
(35.3%), TSHR (22.8%), and TG (22.8%). This was consistent
with prior studies showing that DUOX2 and TSHR variants
were more prevalent in Chinese, Japanese, and Korean patients
(Jin et al., 2014; Fu et al., 2016; Fang et al., 2019; Yamaguchi
et al., 2020). Higher frequent TG variants were detected in the
Sudanese population (Bruellman et al., 2020). However, only two
cases harbored variants of IYD that one individual combined
with TG (Makretskaya et al., 2018) and the other one with
DUOX1(Sun et al., 2018). The digenic variants thereby seemed to
be common in CH, but it is somewhat challenged in the variant
interpretation by the dominant effect of some of these variants.
For example, there were monoallelic variants reported inDUOX2
(Moreno et al., 2002), and later this turned out to be associated
with transient hypothyroidism (Wang et al., 2014; Matsuo et al.,
2016).

To date, all reported genes with digenic variants are involved
in the same metabolic pathway: thyroid hormone biosynthesis.
As shown in Figure 2, the thyroid hormone is synthesized at
the apical surface of polarized thyroid follicular cells, where the
initial step is the binding of TSH to its receptors (TSHR) in
the basolateral membrane, activating TG expression. To date,
only 5 oligogenic cases carried heterozygous TSHR and TG
variants in the Chinese and Japanese population (Fu et al., 2016;
Yamaguchi et al., 2020). However, most cases of heterozygous
TSHR (77.4%, 24/31) were combined with heterozygous DUOX2
as shown in Supplementary Table 1 (involved in steps 1 and 2).
Subsequently, TG, TPO, and the DUOXs (DUOX2 and DUOX1)
and their accessory protein DUOXA2 are involved in iodide
oxidation to formT4 and T3 (Kwak, 2018). Here, 7 out of 10 cases
were caused by two of the five genes in this step. Additionally,
overall 32 oligogenic cases (47%, 32/68) carried the combination
of two heterozygous variants in two genes in this step, indicating
that iodide organification defects may be more common in CH
patients. Genes, IYD/DEHAL1, NIS/SLC5A5 and PDS/SLC26A4
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TABLE 2 | Genetic variants and their prediction on protein function.

Case# Gene cDNA and

amino acid

change

ExonicFunc.refGene Resourse ACMG

interpretation

ACMG

classification

Allele

Frequency

(ExAC ALL)

Prediction

SIFT Polyphen2

_HDIV

LRT Mutation

Taster

FATHMM

1 TSHR c.679G>A

(p.G227R)

Nonsynonymous SNV Maternal PM1+PM2+PP3 VUS – D D D D D

DUOX2 c.127A>T (p.N43Y) Nonsynonymous SNV Paternal PM2+PP3 VUS 0.09225‰ D D D D D

2 TSHR c.1574T>C

(p.F525S)

Nonsynonymous SNV Maternal PM1+PM2+PP3+PP5LP 0.1‰ T D D D T

DUOX2 c.608_619del

(p.L203_P207delinsP)

Nonframeshift deletion Maternal PVS1+PM2+PM4 P – . . . . .

3 TSHR c.733G>A

(p.G245S)

Nonsynonymous SNV Maternal PM2+PP3+PP5 VUS 0.1‰ D D D D D

DUOX2 c.3516_3531del

(p.K1174Sfs*12)

Frameshift deletion Paternal PVS1+PM2+PP5 P 0.008266‰ . . . . .

4 DUOX2 c.2654G>T

(p.R885L)

Nonsynonymous SNV Maternal PM2+PP3+PP5 VUS 0.3‰ D D D D T

TG c.6759_6765del

(p.S2254Mfs*88)

Frameshift deletion Paternal PVS1+PM2 LP – . . . . .

5 DUOX2 c.3516_3531del

(p.K1174Sfs*12)

Frameshift deletion Paternal PVS1+PM2+PP5 P 0.008266‰ . . . . .

TG c.2307G>A

(p.W769*)

Stopgain de novo PVS1+PS2+PM2 P – . . D A .

6 DUOX2 c.4027C>T

(p.L1343F)

Nonsynonymous SNV Maternal PM1+PM2+PP3+PP5LP 0.5‰ T P D D T

DUOXA2 c.738C>G (p.Y246*) Stopgain Paternal PVS1+PM2+PP5 P 0.2‰ . . N D .

7 DUOX2 c.959T>C

(p.L320P)

Nonsynonymous SNV Maternal PM2+PP3 VUS 0.03304‰ D P N D T

DUOXA2 c.738C>G (p.Y246*) Stopgain Paternal PVS1+PM2+PP5 P 0.2‰ . . N D .

8 TG c.3040G>A

(p.D1014N)

Nonsynonymous SNV Paternal PM1+PM2+PP5 VUS 0.02472‰ T B N N T

DUOXA2 c.93T>G (p.F31L) Nonsynonymous SNV Maternal PM2+PP3 VUS 0.2‰ D D D D T

9 TG c.3808C>T

(p.R1270C)

Nonsynonymous SNV Maternal PM2+PP5 VUS 0.2‰ D D N N T

DUOXA2 c.413dupA

(p.Y138*)

Stopgain Maternal PVS1+PM2+PP5 P 0.2‰ . . D A .

10 TG c.5791A>G

(p.I1931V)

Nonsynonymous SNV Maternal PM2+PP5 VUS 0.2‰ T B N N T

TPO c.2647C>T

(p.P883S)

Nonsynonymous SNV Paternal PM2+PP5 VUS 0.5‰ T B . N T

The reference gene version is GRCh37/hg19. DUOX2(NM_014080.4), dual oxidase 2; DUOXA2 (NM_207581.4), dual oxidase maturation factor 2; TSHR(NM_000369.2),TSH receptor; TG (NM_003235.4), thyroglobulin; TPO

(NM_000547.5), thyroid peroxidase.

D, Damaging/Deleterious/disease causing; P, possibly damaging; N, Neutral; A, disease causing automatic; T, Tolerated.

Truncating protein as a result of stopgain or deletion is considered pathogenic according to ACMG guidelines. Novel variants are in bold. *, stopgain or truncated protein.
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FIGURE 1 | Variants in CH patients and their conservative analysis. (A) Genotypes of CH pedigrees; (B) Conservative analysis of seven novel variants in species. The

reference sequences for TSHR, DUOX2, TG, and DUOXA2 in species are followed as: TSHR: Homo sapiens, NP_000360.2; Pan troglodytes, XP_009426511.1;

(Continued)
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FIGURE 1 | Rattus norvegicus, NP_037020.2; Mus musculus, NP_035778.3; Bos taurus, NP_776631.1; Danio rerio, NP_001139235.1. DUOX2: Homo sapiens,

NP_054799.4; Pan troglodytes, XP_009427327.1; Rattus norvegicus, NP_077055.2; Mus musculus, NP_001349684.1; Bos taurus, XP_005211958.1; Danio rerio,

XP_002666953.2. TG: Homo sapiens, NP_003226.4; Pan troglodytes, XP_016815373.2; Rattus norvegicus, NP_112250.2; Mus musculus, NP_033401.2; Bos

taurus, NP_776308.1; Danio rerio, NP_001316794.1. DUOXA2: Homo sapiens, NP_997464.2; Pan troglodytes, XP_001146826.2; Rattus norvegicus,

NP_001178894.1; Mus musculus, NP_080053.1; Bos taurus, XP_002690989.1; Danio rerio, XP_017209762.1.

FIGURE 2 | Schematic depiction of the causative genes involving in thyroid hormone synthesis. (A) TSH binds to TSHR and then activates TG expression. (B) The

iodide organification, with substrates TG and H2O2, which is completed by enzymes TPO, DUOX2 and DUOXA2. (C) Iodide recycled by IYD and transported by NIS

and PDS. TSH, thyroid-stimulating hormone; T3, Triiodothyronine; T4, Thyroxine; MIT, monoiodotyrosine; DIT, diiodotyrosine; DUOX2, dual oxidase 2; DUOXA2, dual

oxidase maturation factor 2; TSHR, TSH receptor; TG, thyroglobulin; TPO, thyroid peroxidase; AA, amino acid.

involved in recycling of T4, T3, iodide and tyrosine (Spitzweg
et al., 2000). Limited by the number of cases, there was no variant
detected in NIS as elsewhere (Long et al., 2018). Only a few
variants have been reported to date in IYD and PDS. As shown
in Supplementary Table 1, there were only three cases carrying
heterozygous PDS and two cases carrying heterozygous IYD.
Theoretically, any defects of these eight proteins in substrates,
enzymes, and transport molecules in the samemetabolic pathway
led to thyroid dyshormonogenesis. In fact, our data and recent
evidence revealed that the combinations of two pathogenic genes
predominantly happened in iodide organification and then in
TG expression.

The limitation here is the lack of a parental phenotype, and
all our cases are simplex cases. Especially in Case#2 and #9, the
parental phenotype is critical in understanding the functional

effects of digenic variants. Unfortunately, the mothers carrying
the same two variants refused to test their TSH levels. Moreover,
the digenic variants in Case#1, #8, and #10 were classified
to be VUS according to the ACMG guidelines, which need
more cases or further functional experiments to evaluate their
damage prediction.

Summarily, we reported here 10 PCH cases with digenic
variants involved in the same metabolic pathway: thyroid
hormone biosynthesis. To date, 68 CH patients have been
reported harboring digenic variants in this metabolic
pathway, including genes TSHR, TG, DUOX2, DUOX1,
DUOXA2, TPO, IYD, and SLC26A4 with a high frequency
of DUOX2, TSHR, and TG. The data present here will
extend our awareness of the complexity of genetic etiology
in CH.
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