
 International Journal of 

Molecular Sciences

Review

Balanced Xylan Acetylation is the Key Regulator of
Plant Growth and Development, and Cell Wall
Structure and for Industrial Utilization

Mirza Faisal Qaseem 1,2 and Ai-Min Wu 1,2,3,*
1 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China

Agricultural University, Guangzhou 510642, China; faisal.ali522@gmail.com
2 Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm,

College of Forestry and Landscape Architectures, South China Agricultural University,
Guangzhou 510642, China

3 Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
* Correspondence: wuaimin@scau.edu.cn

Received: 24 September 2020; Accepted: 21 October 2020; Published: 23 October 2020
����������
�������

Abstract: Xylan is the most abundant hemicellulose, constitutes about 25–35% of the dry biomass of
woody and lignified tissues, and occurs up to 50% in some cereal grains. The accurate degree and
position of xylan acetylation is necessary for xylan function and for plant growth and development.
The post synthetic acetylation of cell wall xylan, mainly regulated by Reduced Wall Acetylation
(RWA), Trichome Birefringence-Like (TBL), and Altered Xyloglucan 9 (AXY9) genes, is essential for
effective bonding of xylan with cellulose. Recent studies have proven that not only xylan acetylation
but also its deacetylation is vital for various plant functions. Thus, the present review focuses on the
latest advances in understanding xylan acetylation and deacetylation and explores their effects on
plant growth and development. Baseline knowledge about precise regulation of xylan acetylation
and deacetylation is pivotal to developing plant biomass better suited for second-generation liquid
biofuel production.
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1. Introduction

Xylan is the most abundant type of hemicellulose that occurs abundantly in cell walls of land
plants, where it accounts for more than 30% of the dry weight, while in primary walls, it accounts
for about 20% and its composition depends on the origin [1]. There is a lot of diversity in xylan
structures as it depends upon the source of its origin. Generally, xylan is a heteropolymer with a
backbone made of a β-(1→4)-D-xylospyranose backbone bearing 4-O-methyl-α-D-glucopyranosyl acid
and α-L-arabinosyl and other monosaccharide side chains [2]. Depending upon the side chain on the
xylan backbone, they can be divided into three major classes: glucuronoxylan, glucuronoarabinoxylan,
and arabinoxylan. Glucuronoxylans are abundant in secondary walls of dicots and some non-grass
monocots [2,3], glucuronoarabinoxylans are abundant in grasses and gymnosperms except members
from Gnetophyta [4,5], and arabinoxylans are abundant in cereal grains [6,7]. In dicots and some non-grass
monocots, glucuronoxylan made up to 25% of total weight of secondary walls. The glucuronoarabinoxylan
is present in gymnosperm softwood [1] and grass species [2].

In addition, backbone may also be substituted with O-linked methyl, acetyl, and feruloyl
groups which protect polysaccharides from specific glycosyl hydrolases and cross-link cell-wall
constituents controlling cell extensibility [8,9]. O-Acetylation is a common and prevalent method of
xylan modification and is a ubiquitous substitution within hemicellulose families [10–12]. Cell wall
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polysaccharides are either mono- or di- acetylated as revealed by a study on ten out of fourteen cell
walls constituting polysaccharides substituted with acetyl groups [10]. Furthermore, the positions of
acetylation of these cell polysaccharides also vary, for example, xylose in xylan is acetylated at the
O-2 and/or O-3 positions, galactose and/or mannose are acetylated at the O-6 position, and mannose
in mannan/glucomannan is acetylated at the O-2 and/or O-3 positions [13,14]; fucose at O-6 and
O-4 and galactose at the O-3 position in xyloglucan are also acetylated [15]. Acetylation of xylan
can be of four different types, i.e., xylospyranose residues may be acetylated at the 2-O position,
and thus, xylan will be called 2-O-monoacetylated; xylospyranose residues may be acetylated at the
O-3 position and thus 3-O-monoacetylated; and xylospyranose residues may be acetylated at both
the O-2 and O-3 positions and thus regarded as 2,3-di-O-acetylated. Finally, a xylospyranose residue
may contain an acetyl group at the 3-O position and MeGlcA substitution at position O-3 is called
3-O-acetylated-2-MeGlcA-glycosylated xylan. In grasses, arabinose is attached at position three while
the acetyl group is attached at position O-2 of xylopyronose residues [16] (Figure 1).
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Although the exact degree of acetylation of cell-wall polymers is not yet known, many studies
reveal that acetylation varies with plant type, tissue type, developmental stages, and cell wall [17–22].
For example, xylospyranose backbone of hardwood xylan is 70% acetylated at the C-2 and/or C-3
positions while softwood xylospyranose usually lack acetylation [11]. In poplar, as demonstrated by a
recent study, the acetate can reach about 6.7% (w/w) of wood biomass [23]. Similarly, different plants
or plant organs differ considerably in the types and content of xylan substitution, e.g., in the Populus
trichocarpa stem, 63% of the total xylan is acetylated, of which 23.6% xylan possesses acetyl substitution
at the O-2 position while 15.8% possesses acetyl substitution at the O-3 position, 14.8% xylan was
substituted at both the O-2 and 3 positions, and 9.1% xylan has 3Ac-2GlcA substitution [24].

2. Difference in Substitution Patterns of Xylan

Glucuronoxylan has xylospyranose residues in its backbone connected via 1,4-linkages and
contains acetyl and glucuronic acid or its derivatives as backbone substitutions and is common
in many dicots [25]. In methylglucuronoxylan, the xylospyranose backbone is substituted
with 4-O-methylgluconic acid at the O-2 position and has a common occurrence in birch and
eucalyptus [19,26]. The specific positions of acetyl and methylgluconic acid on the xylan backbone have
recently been demonstrated in study by [27]. Arabinoglucuronoxylan and glucuronoarabinoxylan are
common in the arabinosyl and methylgluconic acid groups at the O-3 and O-2 positions, respectively.
Both are different in the content of these two-sided chains along with the acetyl content. For example,
non-acetylated arabinoglucuronoxylan from spruce has a higher O-4 methylgluconic acid substitution
than arabinose [28,29]. The specific pattern of arabinose and methyl gluconic acid substitution in
arabinoglucuronoxylan has recently been established [30]. Glucuronoarabinoxylan from sugarcane
straw and bagasse xylans have either single or double substitution of arabinose with a lower
methylgluconic acid content, while it is highly acetylated in hardwood and softwood [31]. The difference
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in the degree of xylan acetylation affects the physical and chemical properties of xylan, e.g., acetylation
significantly affects the solubility as well as the water content of glucuronoxylans in aspen wood with
small effect on molecular weight [32]. Furthermore, xylan acetylation enhances the thermal tolerance,
mechanical strength, and hydrophobicity ideal for industrial utilization of xylan [32,33].

3. Substrate for Xylan Acetylation

Being the hub of all metabolic pathways, acetyl CoA regulates the metabolism of almost all essential
nutrients and molecules needed to sustain life, including sugars, fats, and proteins [34–38]. It can be
synthesized through multiple processes in the cell including glycolysis, the phosphoketolase pathway,
and the Wood–Ljungdahl pathway in multiple cell organelles including plastid, mitochondrion, cytosol,
and peroxisome [39–43]. Cytosolic acetyl CoA is a source of acetyl group for the acetylation of various
types of metabolites, such as alkaloids, anthocyanins, isoprenoids, and phenols with a variety of
commercial applications [44]. Although it was initially not clear which acetyl CoA pool is the exact
source of xylan acetylation, recent studies have confirmed that cytosolic acetyl CoA is the sole donor of
the xylan acetylation acetyl group [45]. A heteromeric enzyme ATP-citrate lyase (ACL) consisting of
ACLA and ACLB subunits is responsible for synthesis of cytosolic acetyl-CoA as downregulation of
antisense RNA of ACLA-1 in Arabidopsis leads to abnormal plant growth and reduced accumulation
of multiple acetyl-CoA derivatives, e.g., stem cuticular wax and flavonoids in seeds [46]. Many In vitro
studies have confirmed that polysaccharide esterases, i.e., XOATs, MOATs, and XGOATs associated
with cell walls, can use acetyl-CoA as a substrate to transfer acetyl groups onto their respective
oligosaccharide acceptors but that there was no evidence to support this argument in living plants
until 2018. There are two problems with acetyl CoA acting as a donor of acetyl groups for xylan or
other hemicellulose acetylation; firstly, there is no known acetyl-CoA-generating pathway in Golgi,
and secondly, the lipid membrane is impermeable to acetyl-CoA [44]. Due to the impermeability of the
Golgi membrane to acetyl CoA, there must be an intermediate that could facilitate the transport of
acetyl CoA across the membranes. Experimental evidence for this confusion was provided from a
study conducted by [45], that identified multi-transmembrane RWA proteins (RWA1, RWA2, RWA3,
and RWA4) as facilitators for the transfer of acetyl CoA to the Golgi. In plants, RWA proteins mainly
consist of two clades AB and CD, RWAs belonging to CD clade transport acetyl CoA to the Golgi
for xylan acetylation in Populus [47]. The presence of multi-transmembrane proteins or domains in
bacterial or plants polysaccharide O-acetylating systems involved in transmembrane transport of
acetyl CoA and self-acetylating across membranes is not known yet [48].

4. Mechanism of Xylan Acetylation

Recent studies have shown that three main groups of proteins, i.e., RWA (Reduced Wall Acetylation),
Trichome Birefringence-Like (TBL), and AXY9 (Altered Xyloglucan 9), are involved in cell-wall polymer
O-acetylation (Figure 2a,b). The polysaccharide O-acetyltransferases from the TBL family are well
known for their ability to acetyl cell-wall polymers [49–51]. The enzymes encoded by the TBL family
share the TBL and DUF231 domains with the Arabidopsis Trichome Birefringence protein and contain
the Gly-Asp-Ser and the Asp-x-x-His conserve motifs [10,52,53]. Till now, a number of members of the
TBL gene family being studied for their role in regiospecific acetylation of xylan backbone, e.g., from
Arabidopsis TBL35 (XOAT9), TBL34 (XOAT8), TBL31 (XOAT5), TBL32 (XOAT6), TBL33 (XOAT7), TBL30
(XOAT3), TBL28 (XOAT2), TBL3 (XOAT4), and recently TBL10 is identified [20,49–51,54]. The structure
and mechanistic details of XOAT1 is published recently; it not only catalyzes acetylation of xylosyl
residue at O–2 position but also facilitates nonenzymatic transfer of acetyl group to the O-3 position.
The mechanism of XOAT1 mediated acetylation involves a double displacement bi-bi mechanism
involving a Ser-His-Asp catalytic triad which results in formation of the acyl-enzyme intermediate and
uses an Arginine (Arg) residue for oxyanion hole formation. An important factor during transitional
state of mechanism catalyzed by the Ser-His-Asp triad is oxyanion hole formation that regulate extra
negative charge on acetyl group oxygen [55]. The Agr (Arg-219) residue in the conserved RNQxxS
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motif of TBL-block II is present in the active site and stabilizes negative charge during tetrahedral
reaction intermediate formation [55].

RWA family proteins are considered an important component of wall polysaccharide acetylation
as they are involved in the transfer of acetyl CoA from the cytoplasm to Golgi. RWAs contain
multiple transmembrane helices similar to the transmembrane regions of the CAS1 fungal protein
glucuronoxylomannan acetylation [18]. Four members of the RWA family, i.e., RWA1, RWA2, RWA3,
and RWA4 have been reported in Arabidopsis, and any mutation in these causes a significant decrease
in wall acetylation [56,57]. The Role of AXY9 intermediate acetyl donor substrate has recently been
proposed, with GDS and DxxH patterns homologous to the TBL family [58] and weak acetyl esterase
activity [24]. AXY9 may therefore act as an acetyl donor for xylan acetylation from other sources, i.e.,
pseudo-substrates, 4-methylumbelliferyl acetate, and p-nitrophenyl acetate [24], other than acetyl CoA
and may form an acyl-AXY9 intermediate, which may either act as a protein-activated acetyl donor or
as an intermediate step in the formation of an unknown acetyl donor, but further research needs to
confirm this [56].

As shown in Figure 2, initially, RWA proteins facilitate transport of cytosolic or acetyl CoA
synthesized in other subcellular organelles to the Golgi [57,59]. Recent evidence suggests that RWA
protein acetylates the proposed intermediate, i.e., AXY9 [58], and subsequently, TBL29 transfers
the acetyl group to the xylan backbone [60,61]. The degree of xylan acetylation is regulated by
a Golgi-localized BS1 (BRITTLE LEAF SHEATH1) protein as the BS1 mutant lacks specific xylan
acetylation patterns [62]. The search for BS1 orthologues in plants is on its way to understand
occurrence and mechanisms of xylan deacetylation in the Golgi [63].
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Figure 2. Mechanism of xylan biosynthesis and acetylation: (a) sucrose synthesized from photosynthesis
is major source for UDP-glucose (UDP-G), which serves as a substrate for synthesis of various
intermediates involved in xylan side chain or backbone synthesis. The Golgi is the actual site for xylan
synthesis, so all substrates are transported to the Golgi via different membrane transporters. Acetyl
CoA, a donor of acetyl group for xylan acetylation, is synthesized in different cell compartments i.e.,
microbodies, mitochondria, and plastids as well as in the cytosol from where it is transported to Golgi
via Reduced Wall Acetylation (RWA) proteins and later incorporated to xylan. (b) Molecular mechanism
of xylan acetylation adapted from [64,65]: attachment of acetyl to xylan involves nucleophilic attack
of xylan OH group lone pair electrons on carbon atoms of the acetyl group to yield acetylated xylan.
Abbreviations of all enzymes and intermediates are mentioned in Abbreviation section of manuscript.

5. Deacetylation

The acetyl group is associated with the number of cell-wall polymers as the side chain and
mechanism of polysaccharide acetylation is conserved across different organisms and kingdoms [10].
Acetylation has many important functions and is involved in many biologically important processes,
although recent research has shown that not only acetylation but also deacetylation of cell-wall
polysaccharides is vital to normal plant functioning [62]. Acetylation in plants is highly regulated,
moderate deacetylation of xylan in aspen enhances saccharification without affecting the plant,
while excess acetylation also increases saccharification efficiency but compromises plant growth and
disruption of secondary wall structures [47,62]. In rice mutants, deacetylation disrupted interactions
between cellulose and xylan, altered cellulose microfibril orientation, and resulted in thinner cell walls
with less cellulose [66].

6. Mechanism of Deacetylation

Acetyl xylan esterases are the main enzymes involved in xylan deacetylation and are classified as
carbohydrate esterases (CEs) and member of members of CE 1 to 7, and 16 have the ability to cleave
the acetyl group from the xylan backbone (Figure 3) [11,67–70]. In addition, because of their sequence
homology with acetyl xylan esterase, members of the CE12 protein family are also considered xylan
acetyl esterases with some unknown functions. [71]. An acetyl xylan esterase belonging to the CE5
family isolated from Hypocrea jecorina when expressed in hybrid aspen under the control of the wood
specific PtGT43B promoter caused 13% and 4% reduction in xylan acetylation and xylose, respectively,
while glucose fraction was increased by 18% [72]. Carbohydrate esterase FjoAcXE isolated from
Flavobacterium johnsoniae not only cleaves single or double acetylated xylopyranosyl residues but also
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efficiently cleaves internal 3-O-acetyl- xylopyranosyl linkages in (2-O-methylglucopyranosyluronic acid)
3-O-acetyl- xylopyranosyl residues. It also cleaves densely substituted and branched xylooligomers
and significantly increases the activity of GH67 and GH115 α-glucuronidases [16]. Acetyl xylan
esterases have been isolated from different sources including fungi, e.g., Aspergillus, Myceliophthora,
Neocallimastix, Penicillium, Trichoderma, and Volvariella, and bacteria and plants, e.g., Populus, Arabidopsis,
etc. have the ability to deacetylate many wall associated polysaccharides [73,74]. Acetyl xylan esterases
(AXEs, EC 3.1.1.72) catalyze the hydrolysis of ester linkages between acetyl groups and xylan [75].
The GDSL lipase/esterase family consists of hydrolytic enzymes belonging to the SGNH hydrolase
superfamily. More than 1100 members of the GDSL family are reported so far from twelve different
fully sequenced plant genomes [76]. The specific role of GDSL lipases/esterases in xylan deacetylation
was reported by [63,77]. A study of the rice (Oryza sativa) brittle leaf sheath1 (bs1) mutant revealed
that it has a defect in Golgi localization of the GDSL esterase and thus confirms the role of GDSL
esterase in xylan acetylation. They also concluded that proper functioning of the BS1 gene is necessary
for proper xylan acetylation and secondary wall formation and patterning [63,78]. A rice brittle leaf
sheath1 mutant defective in GDSL esterase was found to have the ability to deacetylate xylan backbone.
Recently, DEACETYLASE ON THE ARABINOSYL SIDECHAIN OF XYLAN1 (DARX1) esterase
was characterized and was involved in deacetylation of arabinose associated with arabinoxylan in
grasses [62,77].
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hardwood xylan. Blue colored genes indicate different endo-xylanases, while purple color indicates
different xylan deacetylating enzymes.
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Furthermore, the association between xylan and cellulose is stabilized by many factors including
the xylan backbone itself, the distance between substations on the backbone, and stabilizing effects of
the adjacent GlcA [79–81]. The acetyl xylan esterases differ in their mode of action, and no member of
acetyl esterases families with the ability to remove the acetyl group from the xylaopronosyl backbone
acetylated at position three along with MeGlcA substation at position two of the same residue is
known yet [67]. Thus, to overcome steric hinderance caused by MeGlcA and to break the complex
association between wall polymers, a search for new xylan esterases with improved catalytic activity is
the need of the hour [9]. This will serve as a reservoir of xylan deacetylases and will facilitate a better
understanding of the xylan hydrolysis processes and conditions [71,82].

7. Importance of Xylan Acetylation and Deacetylation

7.1. Xylan and Cell-Wall Polymer Interaction

Xylan acetylation is a key player in the regulation of xylan interactions with cellulose and other
wall polymers and also determines the hydrophobic nature of acetylated xylans, resulting in rigid wall
conformation vital to normal plant functioning [23,83]. For example, xylan adsorption on the surface of
cellulose decreases in the presence of high acetyl on the xylan backbone, thereby modulating the degree
of alteration and pattern of xylan acetylation, lignin–xylan, or cellulose–xylan interactions [84,85].

Lignin–xylan association is important for biomass conversion, and recent studies on Populus
have shown that this interaction is modulated by the degree of xylan acetylation. The optimization of
xylan acetylation patterns is vital for optimizing pretreatments and enhancing biomass conversion [23].
Likewise, there are many reports that indicate inhibition of the hydrolytic activity of enzymes by
excess acetate that further reduces the enzyme fermentation process and their accessibility to target
polysaccharide molecules [67,86]. For example, acetyl groups completely and partially inhibit the
activity of endoxylanase enzymes and also reduce acid hydrolysis [87–89]. The mono- or di-acetylation
of xylopyranosyl residues in woody biomass alters hydrophobicity and causes steric hindrance, thus
inhibiting or reducing the effective binding of hydrolytic enzymes to target polysaccharide [80,83,90,91].
Thus, the degree of xylan acetylation and patterning is vital for the determination of wall architecture
and mechanical strength. Experimental evidences have shown that the degree of xylan hydrophobicity
is affected by xylan acetylation, for example, deacetylated xylan absorbs more water due to extensive
hydrogen bonding with water [32]. Weakly acetylated xylan is completely soluble in water, while
highly acetylated xylan is only soluble in nonpolar solvents [92–94]. In conclusion, xylan acetylation
inhibits xylan degrading enzymes and affects xylan cellulose and/or xylan lignin interaction and
xylan hydrophobicity. Reducing xylan acetylation would therefore reduce the acetyl content that
could improve the catalytic activity of xylanases and open the cellulose surface to give more access
to xylanases.

7.2. Cellulose–Xylan Complex

Understanding of cellulose and hemicellulose interactions is important as it may affect tensile
properties, e.g., flexibility, and is important for the different mechanical properties of wood-based
materials.Developing a deeper understanding of how cellulose and hemicellulose interaction and
how modification in one could have an impact on their association is important for the design of
tailored composites with optimum properties and other industrial applications [95,96]. Evidences
have shown that xylan backbones can adopt two confirmations, i.e., minor domains with threefold
screw and major domains with twofold screw similar to two screw fold structure of cellulose [79].
The major domain xylan, rather than clumping with each other, enters into grooves present on the
hydrophilic face of microfibrils, attaches them through hydrogen bonding, and forms a layer on the
outer face of cellulose [79,81]. Alternative residues of major domain modifications are equally replaced
by a conformation in which these groups are exposed to cellulose [97]. It has now been demonstrated
that O-2 substitution of the xylan backbone facilitates formation of the twofold screw structure while
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O-3 substitution stabilizes the xylan cellulose complex [81]. The pattern of substitution on the minor
domain is uneven and is closely located, forming a threefold screw conformation; the precise function
of substitutions on minor domain is not known yet, but it is proposed that they are involved in
establishment of hydrophobic pockets in the spaces between microfibrils [23,83,97,98].

The importance of xylan acetylation and deacetylation in the regulation of cellulose and xylan
interaction is established recently, as it is believed to regulate the hydration pattern of the xylan–cellulose
complex vital for strength and rheological properties of cell wall [80,99]. Less branched xylan was best
adsorbed on the surface of cellulose than highly substituted xylans [99,100]. Furthermore, the arabinosyl
and O-acetyl substituted xylan have considerably low adsorption on bacterial cellulose surface [100].
Effective bonding of xylan with both hydrophilic and hydrophobic faces of cellulose microfibril is
crucial for twofold helical screw conformation of xylan backbone. Alternative substitution of xylan back
and twofold helical screw conformation are two important requirements for effective docking of xylan
on hydrophilic faces of cellulose microfibril [83]. The role of acetylation on xylan cellulose complex
formation is discussed in the next section of this review. The acetylated and deacetylated xylans differ
in their adsorption on cellulose surface and thus have different surface morphologies on cellulose
microfibrils [101]. A recent study revealed that acetylated xylan makes a rigid, less hydrated layer on
surface of cellulose with two xylan residues per helical turn while deacylated xylan forms more viscous
and swollen layers on the surface of cellulose with three residues per turn [102]. An investigation of
xylan adsorption on bacterial cellulosic surface revealed that its adsorption is affected by size and
substitution. Linear and unsubstituted conformation of xylan has higher adsorption compared to
xylan with acetyl or arabinose substitution [100]. Generally, less substituted xylan make xylan–xylan
aggregates with low solubility and thus adsorb efficiently on cellulosic surface [100,103]. High acetyl
content in Eucalyptus xylan prevented xylan self-association and reduced absorption on bacterial
cellulose surface [100]. Thus, precise xylan acetylation is necessary for its binding with cellulose and
other wall polymers, and any change in acetylation pattern will not only affect its interaction with
these polymers but will also cause misfolding of the xylan backbone [80,104]. The proposed model
for regulation of xylan acetylation and deacetylation and for an effect on xylan cellulose complex and
adsorption of xylan on cellulose surface are shown in Figure 4A,B.

7.3. Plant Structures and Development

Multiple plant cell-wall polymers have a range of functions, from regulation of plant growth
and development, and transduction of water and nutrients to tolerance for environmental stresses.
These diverse functions are controlled by incorporating acetyl to the cell-wall polymer network [10].
In comparison to other modifications, the biological function of O-acetyl substituents is not understood
yet, although some evidence indicates that the degree and pattern of acetylation is modified during
different plant growth and development stages [104,105]. Studies of various acetyl mutants suggest
that strong reduction in xylan acetylation results in dwarfism, reduced mechanical strength of the
stem, collapsed vessels, and stunted plant growth [53,58,61,106]. In aspen, a moderate decrease
in xylan acetylation did not affect plant growth and improved biomass saccharification [73], while
excess acetylation resulted in many structural abnormalities and increased saccharification in rice [62].
Plant development and secondary wall patterning in rice are affected by excess acetylation [78].
In rice, OsTBL1 and OsTBL2 are involved in monoacetylation of xylan, and the tbl1/tbl2 double
mutant shows a 55% reduction in xylan acetylation and reduced growth with varying degrees of
dwarfism [78]. Arabidopsis tbl3, tbl31, tbl32, tbl33, tbl34, and tbl35 single mutants show a small
reduction in acetylation and no visible phenotype, but several double mutants of these genes like
tbl3/tbl31, tbl32/tbl33, and tbl34/tbl35 show 7–20% reduction in xylan acetylation (Table 1) [20].
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Figure 4. (A) Hypothesis of xylan acetylation and deacetylation and its binding with cellulose: the action
of various Trichome Birefringence-Like genes (TBLs) in other acetylation catalyzing genes followed by
GUX/GXM add acetyl and glucuronosyl (U) or 4-O-methylglucuronosyl (UMe) residues respectively to
generate even-patterned xylan that is compatible with binding to the cellulose hydrophilic surface.
In some cases, TBLs place an overloaded acetyl group on the same xylosyl residue, which is already
substituted by a UMe, thus generating doubly acetylated xylosyl. Access of acetylation is removed by
xylan esterase belonging to different classes and a member of GDSL esterases. The other half of the
figure explains the effect of acetylation on a xylan cellulose complex. The xylan with excess acetylation
or that is highly deacetylated forms a viscous and highly hydrated layer on the cellulose surface, while
xylan with optimum acetylation forms a dense layer with tight bonding between xylan and cellulose.
(B) The proposed mechanism of xylan adsorption extracted from Eucalyptus wood on bacterial cellulose
surface modified from [100].
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Table 1. Change in acetyl content and alteration in plant phenotypes in various plant mutants and
transgenic lines.

Mutants Percent Reduction in
Acetyl Content Change in Phenotype References

tbl29/esk1 40 Reduction in rosette size, plant
height and dark-green leaves [78,107]

esk1 60 Dwarf plants with irregular xylem [56,58]

tbl32, tbl33 and esk1 15 Severely collapsed vessels and
stunted plant growth [20]

tbl1/tbl2 55 Reduced growth [78]

axy9 70 Change in xylan and xyloglucan
structure [58]

axy9 80 Dark-green leaf color and an
extreme collapsed xylem [58]

rwa1/rwa3/rwa4 or
rwa1/rwa2/rwa3 20–30 Alteration in plant morphology [58]

rwa1/rwa 2/rwa 3/rwa 4 42 Reduced acetyl coenzyme A
transport [58,106]

rwa1/2/3/4 60 Dwarf plants with irregular xylem [56,58]

Recombinant AXY9 proteins showed weak acetyl esterase activity toward several
pseudo-substrates [108]. The Arabidopsis axy9 mutant showed a 70% reduction in acetylation, affecting
the structure of various cell-wall polymers including xylan and xyloglucan (Table 1). Later, it was
confirmed that dwarfed organs, a dark-green leaf color, and an extremely collapsed xylem in the axy9
mutant were due to 80% reduction in xylan O-acetylation in stem tissues [58]. A 40% reduction in xylan
acetylation, leading to reduction in plant growth and collapse in xylem vessel phenotype, has been
reported in single loss-of-function alleles of the TBL29/ESK1 xylan acetyltransferase [61,107,109,110].
A reduction in rosette size, plant height, and dark-green leaves is seen in tbl29 mutants, but phenotypes
can be reversed by inducing expression of the AtGUX1 glycosyltransferase in vascular tissue.
The probable reason for phenotypic rescue is replacement of missing acetyl-substituents in the
tbl29 mutant with functionally equivalent glucuronic acid moieties [111,112]. A subsequent study
proved that reduced acetylation due to a defect in tbl29 is not directly responsible for the collapsed
xylem vessel phenotype, and other developmental changes as a suppressor mutation (kaktus) were able
to complement all tbl29 induced changes [108]. A similar tbl29/esk1 suppressor mutation called kaktus
was able to revert dwarfism and collapsed xylem phenotype induced by the change in tbl29 [113].
A recent study found that expression of the MAX4 gene involved in the synthesis of Methylcarlactonoate
(MeCLA) was reduced by tbl29/esk1 suppressor mutation. Blocking Methylcarlactonoate biosynthesis
can reverse all developmental and stress-related abnormalities caused by TBL29/ESK1 loss of function
without affecting its direct effect, i.e., reduced wall o-acetylation. As a result, we can infer that
the reduced O-acetyl substituent is directly responsible for observed changes in morphology and
development of tbl29/esk1 mutants. Alternatively, by triggering a strigolactone hormonal pathway as
a countervailing mechanism, plants may perceive defects in the structure of wall polymers and/or
wall architecture [114]. A recent study aimed at accessing the effects of altered acetylation either by
changing the expression of RWA genes or by post synthesis removal of acetyl xylan esterases on field
productivity of 18 hybrid aspen lines suggests a 10–20% reduction in wall acetylation. This reduction
resulted in growth, and genome and epigenetic changes in plants; one most prominent change was high
frequency of dwarfism in which 17% resulted from the proposed link between acetyl metabolism and
chromatin function [115]. Furthermore, many growth and plant developmental processes are regulated
by polysaccharide-degrading enzymes that remove side chains from the cell-wall polysaccharide
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backbone and therefore affect solubility and binding with other cell-wall polymers. Furthermore,
they may also act as proof-readers, correcting incorrect or extra substitutions on the polysaccharide
backbone. For instance, BS1 in Golgi removes excess acetate and regulates proper acetylation of the
xylan backbone [77].

7.4. Stress Tolerance

The widespread occurrence of acetylation of cell-wall xylan has functional importance, as
acetylation promotes interaction among cell-wall polymers, thereby contributing to the rigidity of
the cell wall and facilitating different physiological functions [104]. The stiffness and rigidity of the
cell wall conferred by xylan acetylation is necessary for protection of the plant against environmental
and biotic stresses [10,116]. Another potential function of polymer O-acetylation is to protect plants
against invading microorganism and environmental stresses. There are several mutants which show
tolerance to stress for example; high freezing resistance was seen in esk1 (tbl29) mutants [109], while the
pmr5 (tbl44) mutant showed resistance to powdery mildew [117]. Sensitivity to aluminum stress was
increased in the mutant axy4 (tbl27) mutant [118], and the Arabidopsis rwa2 mutant showed increased
resistance to the necrotrophic fungus B. cinerea and H. arabidopsidis [57,73]. The role of xylan acetylation
in plant tolerance to stress is further confirmed by enhanced tolerance to necrotrophic fungi in reduced
xylan acetylation transgenic plants due to overexpression of a fungal xylan acetyl esterase [119]. Rice
ostbl1 and tbl1tbl2 mutants displayed susceptibility to rice blight disease, indicating that this xylan
modification is required for pathogen resistance [78]. Engineered Arabidopsis plants with reduced
acetylation when exposed to severe drought stress have high survival rate due to low water loss
and upregulation of drought-responsive genes in the ABA-independent pathway, resulting in more
drought-tolerant than wild types [120]. Cell-wall acetylation has a complex association with plant biotic
stress tolerance, with reduced acetylation favoring tolerance to certain pathogens (fungi and bacteria),
while in other cases, increased xylan acetylation favors tolerance to pathogens. In Arabidopsis, low
levels of deacetylation enhance tolerance to Botrytis cinerea, a fungal pathogen, but not to the bacterial
pathogen Pseudomonas syringae [57,119]. A study on role acetylation in abiotic stress tolerance revealed
that reduced xylan acetylation counterbalances the deficiencies in immune response caused by an
impairedβ subunit of the G protein. In wild Arabidopsis plants, pathogen-induced stress was perceived
by pattern recognition receptors that activate the G protein complex which scavenge reactive oxygen
species produced as a result of oxidative damage. Finally, phosphorylation of MAPK and activation
of other stress-related genes result in activation of pathogen-associated immunity. In G protein,
Arabidopsis mutants with decreased xylan acetylation due to mutation in esk1 result in activation of
cell-wall-mediated damage-associated molecular pattern-triggered immunity that balances agb1-2
defective pathogen-associated immune responses. These evidences suggest that alteration in xylan
acetylation patterns is essential for counterbalancing drought and pathogen stress-induced impairment
of plant metabolism [121]. Furthermore, a recent study reported the effects of wall-based ester release
on heat stress tolerance in plants. The authors believed that cell-wall-derived acetate could provide an
alternative carbon source and could thus reduce decarboxylation of many important cell polymers.
In addition, these significantly enhance CO2 content in chloroplast, produce multiple C2 intermediates
such as acetyl-CoA, and regulate functions of various biopolymers during heat stress [122].

7.5. Cell Wall Esters and Environmental Services

Evidence from recent studies indicates that plant esters, i.e., methanol and acetic acid in addition
to their role in the regulation of plant growth and development, are also involved in the sensing
and signaling of pathways involved in cell-wall modification in response to various environmental
stresses [122]. Being the first line of defense, the cell wall modification is a common phenomenon
during plant response to stress. Many studies indicated that wall polysaccharides are highly modified
during stress and common modification include methylation and acetylation [106,123]. Release of
acetate from the cell wall and their subsequent transport into the environment via transpiration
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pull results in their release as volatile organic compounds or feed into central carbon and energy
metabolism. Stress-induced signaling initiated via cell-wall modification results in damage-associated
molecular patterns, which in turn activate plant immune response, suggesting a role of cell-wall-derived
acetate in signaling and immune responses [116]. Although there is no empirical evidence for this
argument, interdisciplinary research including biochemistry and metabolism of cell walls combined
with plant physiology and biosphere can help to explain the underlying complex mechanisms [122].
High-latitude forests are of particular interest in responding to rapid global warming by the expansion
of broad-leaf deciduous trees and the corresponding decline in evergreen conifer trees [124]. Due
to the difference in the phenological cycles of the leaf and the composition of the wall, the timing,
distribution, and magnitude of biosphere fluxes of volatile organic compounds, CO2, and H2O in these
evolving forests may vary considerably in the future [122].

7.6. Importance for Wall Integrity and Bioconversion of Biomass

The role of acetylation in maintaining cell-wall structure is confirmed by many studies, concluding
that acetyl groups act as barrier against enzymatic degradation of pectin and xylan [74,89,93,119,125].
Xylan acetylation generates some steric forces which prevent accumulation of xylan substrates during
their synthesis and transport to the cell wall [126]. Acetylation also affects the xylan chain stiffness
and the flexural properties of wood [127,128]. Similarly, excessive acetylation affects wood processing,
pulping, and bioconversion; decreases fiber swelling; and inhibits the growth of microorganisms
required for fermentation [23,129,130]. Xylan acetylation affects the lignocellulosic biomass that can be
used for biofuel production [12]. Release of acetyl groups from xylan or another cell-wall polymer
changes the pH of the reaction mixture and thus decreases glucose fermentation to ethanol [87,131].
From an industrial perspective, acetyl groups in the plant cell wall and other polymers play a vital role in
their viscosity and gelation properties and thus their use in the food industry [132,133]. Understanding
polysaccharide deacetylation is important as polysaccharides with low acetylation levels are required
for downstream processing in biorefineries due to improved extraction of cell-wall material and excess
release of toxic acetate that may affect many microbes such as yeast [10,56,57]. Deacetylated xylans or
xylans with a low level of acetylation make tighter associations with cellulose, thus making isolation
of entire wall materials difficult, meaning less material will be released after enzymatic hydrolysis.
Mutants with higher levels of xylan deacetylation had thinner walls and less cellulose than the wild
type [61,107].

A recent study reported that various degrees of acetylation can improve thermal stability of xylan
from different plant sources and opens new avenues for the utilization of acetylated xylan from different
biomass resources for use as thermoplastics and packaging [134]. Another study reported that chemical
acetylation significantly improves the thermal stability of wheat bran feruloylated arabinoxylan-based
biofilms without improving the mechanical or barrier properties [135]. Furthermore, in situ valorization
of industrial xylans mainly extracted form poplar resulted in modified xylan with high solubility in
water shear-thinning behavior and lower viscosity compared with those of the referenced hemicelluloses.
All these properties of acetylated xylan alterations broaden their application in multiple industries [136].

8. Hypo- vs. Hyper-Acetylation

Figure 5 demonstrates the importance of balance in xylan acetylation and deacetylation for plants
and other factors. Xylan acetylation is of vital importance for plant growth, developmental processes,
and stress tolerance and resistance [33,62,76,121,137]. An alteration in xylan backbone acetylation
results in misfolding of the xylan backbone and thus affects cellulose–xylan complex formation [80,83].
Many studies suggest that the acetylation pattern promotes different organizations and hydrations of
xylan cellulose complexes that can modulate the interaction strength and rheological properties of the
cell-wall xylan–cellulose supramolecular complexes [30,100]. A very recent study showed that the
layering pattern of xylan on cellulose is mainly affected by altered patterns of xylan acetylation and
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deacetylation. Thus, the presence of acetyl esters affects the supramolecular organization of xylan and
its interaction with the surface of cellulose [102].
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Both hypo- and hyper-acetylation of xylan has specific effects on plant growth and development
as hyper-xylan acetylation in rice resulted in altered secondary cell wall patterning and abnormal
development [62]. Early research on xylan acetylation also revealed that moderate (by approximately
20%) deacetylation either by inducing mutation [57,106] or by post synthetic deacetylation by an
acetyl xylan esterase [138] is tolerated by herbaceous plants; however, strong deacetylation results
in compromised growth as well as cell wall structure [127], as seen in case of rwa1/2/3/4 and tbl-29
mutants [61,106]. Moderating hypo-acetylation of xylan in hybrid aspen in addition to supporting
plant survival and development also improved saccharification efficiency [139]. It is believed that
xylan deacetylation after its synthesis (post synthetic) is a more effective approach than synthetic xylan
deacetylation in the Golgi, which may result in excess glucuronidation [140] caused by the promiscuous
activity of glucuronyl transferases GUX1 and GUX2 [80]. Thus, generally speaking, plant performance
is proportional to the degree of deacetylation and the type of wall polymer modified may need to
be optimized

Likewise, industrial use of xylan is also impacted by hypo- or hyper-acetylation. For example,
moderate decrease in xylan acetylation by about 13–20% by RWA mutation or by acetyl esterases
introduction can reduce biomass recalcitrance without compromising plant growth [47,139].
Interestingly, hyper-acetylation of Populus xylan also resulted in increased plant growth and stem
volume coupled with reduced biomass recalcitrance [141]. Thus, alteration in the balance between
xylan acetylation and deacetylation could impact secondary cell wall traits, biomass production,
and recalcitrance [27,142]. Increased acetyl content is necessary for solid wood products, although
the exact mechanism of increasing acetylation is not known yet. Overexpression of TBL29 protein
involved in xylan acetylation did not result in increase in acetyl content as demonstrated by study on
Arabidopsis [61].
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Thus, there are many open questions as far as xylan acetylation is required, for example, how to
maintain the balance between xylan acetylation and deacetylation? Normally, deacetylation is believed
to improve saccharification efficiency, but there is little evidence to suggest that increased acetylation
may also improve saccharification efficiency. In order to understand the industrial applications of
hemicellulose, a deeper insight into the detailed mechanisms of acetylation and deacetylation and its
regulation is needed. It is also important to better understand the factors determining the degree and
content of xylan acetylation in order to improve its bioconversion.

9. Conclusions

Xylan is an abundant hemicellulose and is a major component of grain, wood, and forage and
therefore has a wide-ranging impact on human life. Although it is an abundant part of plant biomass,
xylan is underutilized due to its enzyme resistance and structural complexity. Xylan acetylation plays
a vital role in mediating noncovalent interactions between cell-wall polymers and in determining the
nature and structure of the cell wall. Thus, the degree and pattern of xylan acetylation can affect the
configuration and physiochemical properties of the cell wall and can provide the plant with mechanical
strength and flexibility. Excessive xylan deacetylation promotes tight binding of xylan with cellulose,
promotes self-association, and promotes plant defense against some pathogens. A reduced degree
of acetylation is necessary for glycoside hydrolase-mediated hydrolysis of xylan, making it more
accessible to degradation. The degree of acetylation is regulated by some acetyl esterases and deacetyl
esterases. Understanding the control and accuracy of xylan acetylation and deacetylation is important
for future improvements in plant biomass bioconversion. Although much research has been done on
xylan acetylation and the enzymes responsible for xylan acetylation, the roles and functions of xylan
esterases catalyzing deacetylation in higher plants is still lacking. Furthermore, additional research
is required to uncover the exact mechanism of synthesis of the acetylation substrate (acetyl CoA),
when and how enzymes are responsible for regulating O-acetylation and deacetylation of xylans,
the mechanism and effects of the degree of acetylation and deacetylation of xylan on interaction with
other polymers, and the mechanisms of sensing and response to environmental stresses.

Author Contributions: M.F.Q., wrote first draft of manuscript; A.-M.W., reviewed and help in preparation of the
final draft; conceptualization, A.-M.W. and M.F.Q.; methodology, M.F.Q.; writing—original draft preparation,
M.F.Q.; writing—review and editing, A.-M.W. All authors have read and agreed to the published version of
the manuscript.

Funding: Financial support for this work was obtained by the Key Project of Guangzhou Science and Technology
Plan (grant number 201904020014) and by the National Natural Science Foundation of China (grant numbers
31870653, 31670670, and 31811530009).

Acknowledgments: The authors are thankful to Alan Marchent and Yihua Zhou from the University of
Southampton and from the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences,
respectively, for critical reading and comments and to Chen Chen from South China Agricultural University for
technical support.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ACS Acetyl-CoA synthetase
ACL ATP-citrate lyase
ADP-Araf UDP-L-arabinose Furanose form
AXY9 Altered Xyloglucan 9
FK Fructokinase
FRA8 Fragile Fiber 8
Fru6P Fructose 6-phosphate
GAE UDP-GlcA 4-epimerase
GUX Glucuronic Acid Substitution of Xylan
HXK Hexokinase
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INV Invertase
IRX Irregular Xylem
PDC Pyruvate decarboxylase
PDH Pyruvate dehydrogenase
PGI Phosphoglucose isomerase
PGM Phosphoglucomutase
RWA Reduced Wall Acetylation
SC Citrate synthetase
SUS Sucrose synthase
TBL Trichome Birefringence-Like
TCA Tricarboxylic acid cycle
UAE UDP-Ara 4-epimerase
UAM UDP-Ara mutases
UDP-Api UDP-D-apiose
UDP-Ara UDP-L-arabinose
UDP-Arap. UDP-L-arabinose Pyranose form
UDP-G UDP-D-glucose
UDP-GalA UDP-galacturonate
UDP-GlcA UDP-D-glucuronate
UDP-Xyl UDP-D-xylose
UGD UDP-Glc dehydrogenase
UGE UDP-glucose 4-epimerase
UXS and AXS UDP-glucuronate decarboxylases
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