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Memory decline during aging or accompanying neurodegenerative diseases, represents
a major health problem. Neurotrophins have long been considered relevant to the
mechanisms of aging-associated cognitive decline and neurodegeneration. Mature
Brain-Derived Neurotrophic Factor (BDNF) and its precursor (proBDNF) can both be
secreted in response to neuronal activity and exert opposing effects on neuronal
physiology and plasticity. In this study, biochemical analyses revealed that increased
levels of proBDNF are present in the aged mouse hippocampus relative to young
and that the level of hippocampal proBDNF inversely correlates with the ability to
perform in a spatial memory task, the water radial arm maze (WRAM). To ascertain
the role of increased proBDNF levels on hippocampal function and memory we
performed infusions of proBDNF into the CA1 region of the dorsal hippocampus
in male mice trained in the WRAM paradigm: In well-performing aged mice, intra-
hippocampal proBDNF infusions resulted in a progressive and significant impairment of
memory performance. This impairment was associated with increased p-cofilin levels,
an important regulator of dendritic spines and synapse physiology. On the other hand, in
poor performers, intra-hippocampal infusions of TAT-Pep5, a peptide which blocks the
interaction between the p75 Neurotrophin Receptor (p75NTR) and RhoGDI, significantly
improved learning and memory, while saline infusions had no effect. Our results support
a role for proBDNF and its receptor p75NTR in aging-related memory impairments.
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INTRODUCTION

Deficits in learning and memory are frequent in aged individuals (20%–27% among individuals
aged 60 and over; Hanninen et al., 1996; Ritchie et al., 2001; Busse et al., 2003; Schönknecht
et al., 2005), and a cardinal symptom of dementia. Deficits in memory tasks are related to
dysfunctions of the hippocampus (Kadar et al., 1994; West et al., 1994; Rosenzweig and Barnes,
2003), cortex and cholinergic neurons projecting to these areas (Terry and Buccafusco, 2003;
McKinney and Jacksonville, 2005; Schliebs and Arendt, 2006). Lesions (Scoville and Milner,
1957; Zola-Morgan et al., 1986; Clark et al., 2000, 2001; Martin et al., 2005), pharmacological
or genetic inactivation (Morris et al., 1986; Tsien et al., 1996; Nakazawa et al., 2002, 2003;
McHugh et al., 2007), electrophysiological recording (Berger et al., 1983; Pastalkova et al., 2006),
molecular imaging (Guzowski et al., 2001; Jones et al., 2001) or MRI imaging studies (Gabrieli
et al., 1997; Henke et al., 1997) suggest essential roles for the hippocampus formation in memory.
The CA1 region of the hippocampus, the entorhinal cortex and the direct entorhinal-CA1 input
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are involved in spatial learning and recollection-based spatial
memory (Brun et al., 2002, 2008; Moser et al., 2008; Henriksen
et al., 2010; Danielson et al., 2016; Igarashi, 2016). CA3 neurons
and the CA3-CA1 connection are involved in episodic memory
(Nakazawa et al., 2003; Li and Chao, 2008), associative memory
recall (Nakazawa et al., 2002) and pattern completion (Gold and
Kesner, 2005; Neunuebel and Knierim, 2014). The dentate gyrus
is involved in pattern separation (McNaughton andMorris, 1987;
Gilbert et al., 2001; Berron et al., 2016; Kesner et al., 2016).
Other brain regions thought to be important for memory tasks,
particularly for spatial learning andmemory, include the anterior
thalamus (Warburton et al., 2000; Jankowski et al., 2013), the
parietal cortex (Save and Poucet, 2009; Ackerman and Courtney,
2012; Bonnì et al., 2014) and the prefrontal cortex (Rossato et al.,
2015; Sapiurka et al., 2016).

Neurotrophins are a family of secreted trophic factors
that regulate critically important processes in developing
and adult brains, including synaptogenesis, synaptic plasticity
and neuronal survival (Chao, 2003; Reichardt, 2006). Brain-
Derived Neurotrophic Factor (BDNF) has emerged as one of
the most important molecules for learning and memory (Lu
et al., 2014; Hempstead, 2015). Neurotrophins are produced
as precursors, which are transferred to secretory vesicles and
subjected to either intracellular (Mowla et al., 1999, 2001), or
extracellular processing (Smith et al., 1995; Pang et al., 2004)
to generate the mature form (Reichardt, 2006; Greenberg et al.,
2009). Importantly, precursor brain-derived neurotrophic factor
(proBDNF), plasminogen and the Tissue Plasminogen Activator
(tPA), an enzyme that cleaves plasminogen to generate plasmin,
are co-packaged in dense core vesicles present in dendritic
spines (Lochner et al., 2008), and can undergo activity-dependent
release to mediate changes in synaptic efficacy (Edelmann et al.,
2014). Moreover, by regulating the secretion of tPA (Nagappan
et al., 2009), neuronal activity controls the ratio of extracellular
proBDNF to mature BDNF, which may be crucial for synapse
physiology and function, and for neuronal survival.

Mature BDNF and its precursor, proBDNF, have opposing
effects on cellular physiology, in line with the ‘‘yin-yang’’
hypothesis (Lu et al., 2005), and similar to its family member
NGF (Iulita et al., 2014). Mature BDNF, upon binding to trkB
receptors on neuronal membranes, activates ERK signaling and
stimulates synaptogenesis, synapse strengthening and neuronal
survival (Reichardt, 2006; Hennigan et al., 2007). BDNF and trkB
are critical for structural plasticity (increases in spine density
and size) and functional plasticity (LTP) in the hippocampus
(Korte et al., 1995; Figurov et al., 1996; Patterson et al., 1996)
and have important roles in learning and memory (Thoenen,
1995; McAllister et al., 1999; Lu, 2004; Bramham andMessaoudi,
2005). BDNF expression is increased following hippocampus-
dependent cognitive tasks (Kesslak et al., 1998; Hall et al., 2000;
Mizuno et al., 2000; Bekinschtein et al., 2014). Reduced BDNF or
trkB availability in the hippocampus or amygdala, respectively,
impairs learning in spatial, aversive or appetitive conditioning
paradigms (Linnarsson et al., 1997; Liu et al., 2004; Heldt et al.,
2007). Studies aimed at differentiating the role of BDNF in recall
vs. acquisition (Mizuno et al., 2000; Lee et al., 2004) showed that
BDNF infusion or trkB activation facilitates, while antibodies

or antisense oligonucleotides impair fear memory recall (Lee
et al., 2004). BDNF also gates the induction of fear extinction
(Barnes and Thomas, 2008; Dincheva et al., 2014; Heldt et
al., 2014). Extinction memory reactivation increases BDNF and
trkB phosphorylation in dorsal CA1, while BDNF infusion after
extinction memory reactivation impedes the recovery of the fear
response (Radiske et al., 2015).

Instead, proBDNF binds to the pan-neurotrophin receptor
p75 Neurotrophin Receptor (p75NTR; Lee et al., 2001), to
promote cell death (Frade et al., 1996; Kuan et al., 1999, 2003), to
inhibit neurite outgrowth (Yamashita et al., 1999) by modulating
RhoA GTPase activity (Yamashita and Tohyama, 2003), and
to determine presynaptic terminal retraction (Nakayama et al.,
2000; Yang et al., 2009). ProBDNF and p75NTR negatively
regulate synaptic transmission and plasticity (Yang et al.,
2014; Kailainathan et al., 2015) and are linked to NMDAR-
dependent LTD (Nakayama et al., 2000; Rösch et al., 2005;
Woo et al., 2005; Yang et al., 2009; Michaelsen et al.,
2010). A recently generated cleavage-resistant proBDNF knockin
mouse (Yang et al., 2014) revealed that proBDNF negatively
regulates hippocampal dendritic complexity and spine density
through p75NTR. Conversely, p75-deficient mice have enlarged
cholinergic neurons, enhanced LTP and improved spatial
learning (Gallagher et al., 1993; Barrett et al., 2010; Endres and
Lessmann, 2012) along with other behavioral deficits (Peterson
et al., 1999; Wright et al., 2004; Barnes and Thomas, 2008).

Despite the wealth of data gathered through in vitro or ex-
vivo studies, little is known about proBDNF production across
the lifespan, its downstream signaling, and consequences of
over- or under-expression of proBDNF on learning and memory
processes. We hypothesized that aging is associated with a
decrease in proBDNF processing to the mature form, which
induces alterations in structural and functional plasticity, with
detrimental effects upon learning and memory: Thus, increasing
proBDNF levels in well-performing mice by local infusions
into the CA1 region of the hippocampus would impair spatial
memory recall, while blocking the p75NTR effects on RhoA
activity in poorly performing aged mice would rescue spatial
memory by improving consolidation and recall.

MATERIALS AND METHODS

Subjects
Aged (22–24 months old, n = 15) and young (4 months old,
n = 21) C57BL/6 male mice served as subjects in Experiment 1.
Aged (18 months old, n = 36) C57BL/6 male mice served as
subjects in Experiment 2; 18 months old mice were chosen in
Experiment 2 so that they would be closer to gene expression
patterns in the aged subjects from Experiment 1 (reduced
enzymes for processing, receptor levels, etc.), yet they would
be more resilient when subjected to surgical procedures. Mice
were housed in a temperature-controlled room under a 12-h
light-dark cycle. This study was carried out in accordance with
the recommendations of National Institutes of Health, and the
Guide for the Care and Use of Laboratory Animals. The protocol
was approved by the Utah State University IACUC committee.
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Outline of Studies
In Experiment 1, aged 22–24 old mice and young 4 months old
mice were trained for 12 days (four blocks of three daily sessions)
in a water radial arm maze (WRAM), which provides a reliable,
sensitive test of learning and memory (reference memory (RM)
and working memory (WM) and WM load), combining the
advantages of the Morris water maze and radial arm maze
(Morgan et al., 2000; Shukitt-Hale et al., 2004; Alamed et al.,
2006). Unlike the land version of the RAM, the WRAM does
not require food restriction as motivation, which is critical given
reports linking food restriction to improved cognitive function
and changes of neurotrophin levels (Komatsu et al., 2008;
Kumar et al., 2009; Witte et al., 2009). Afterwards, fresh whole
hippocampus was collected, and levels of BDNF, proBDNF,
p-trk140, trkB140, p75, carboxypeptidase E (CPE) and tPA in
hippocampal lysates were quantified in aged and young mice.
The timeline of the study is shown in Figure 1.

In Experiment 2 we aimed at further evaluating the role
of hippocampal proBDNF in learning and memory in the
WRAM task, and the possible role of p75 signaling downstream
proneurotrophin in improving performance in aged mice. We
have chosen not to infuse these drugs in young mice since results
fromExperiment 1 indicate youngmice have different expression
of enzymes and receptors, andmay process proBDNF into BDNF
using different enzymes. On the other hand, the aged rodent
population—in as much as the human aged population—is

known to be highly heterogeneous in regard to memory
performance (Gallagher et al., 1993): Some aged individuals
are memory impaired while others are not, so effects of drug
manipulations are generally evaluated in a mixed population of
poor and good performers. Moreover, in regard to experimental
design, one has to take into account a possible ‘‘floor effect’’
in memory errors (when starting with a good performance,
learning can hardly be improved further) and a ‘‘ceiling effect’’
(an animal with poor learning and memory, making numerous
errors, can hardly perform much worse). Therefore, rather
than injecting all drugs in both poor and good performers, in
Experiment 2 good performers (unimpaired aged mice) received
proBDNF infusions in the hippocampus, in order to assess its role
in decreasing performance, while poor performers (memory-
impaired aged mice) were infused with TAT-Pep5 to evaluate the
role of p75 signaling downstream proneurotrophin in possibly
improving their performance.

More specifically, in Experiment 2, 18-month old aged mice
were trained for 12 days in the WRAM task. Based on their
average performance on the last block of three daily sessions
before surgery (d10–12, see Figure 1 for a time line of the
study), mice showing less than four memory errors were assigned
to a well-performing (unimpaired) group, to be infused in
d20–22 with proBDNF (unimpaired + proBDNF; average WM
errors ± SEM = 2.0 ± 0.3, range 0–3; RM errors = 1.6 ± 0.3,
range 0–3). The remaining (impaired) mice showed at least

FIGURE 1 | Timeline of Experiments 1 and 2. In Experiment 2, mice were split into three groups based on their performance (unimpaired/impaired) and henceforth
infused with different drugs (saline, proBDNF, TAT-Pep5). d, day of study; WRAM, behavioral training/testing in the water radial arm maze task; SAL, saline.
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four memory errors (WM errors = 7.2 ± 1.8, range 4–17; RM
errors = 6.3 ± 1.3, range 4–12) and were further randomly
assigned to either a group to be infused in d20–22with TAT-Pep5
(impaired + TAT-Pep5) or saline control (impaired + SAL).
The impaired + SAL group was deemed to be a direct control
for the ‘‘impaired + TAT-Pep5’’ group, to control for possible
improvement of performance due to repeated testing, to control
for possible degradation in performance as a result of potential
lesions due to repeated infusion procedure, and to also provide
a landmark on performance of aged mice in the WRAM, to be
contrasted both against the effect of TAT-Pep5 on performance
of impaired mice, and against the effect of proBDNF on
performance of unimpaired mice. All mice received surgery for
cannula implantation directed at the CA1 region of the dorsal
hippocampus, and were allowed to recover for 1 week before
being tested in the WRAM task for four more days (days 19–22).
On d19 all mice were infused with saline (SAL) to evaluate
stable performance pre- and post-surgery. On d20–22 mice were
infused as described above. The timeline of the study is shown in
Figure 1. Details of procedures are provided below.

Behavioral Procedures
We used an 8-arm WRAM with four hidden platforms, placed
in a room with salient extra-maze cues that remained constant
during testing. Each subject was trained/tested in one session per
day (four trials to locate the four platforms), for 12 consecutive
days (for local infusion studies, subjects received 4 extra testing
sessions under drug infusion). The subject was released from the
center of the maze and had 3 min to locate a platform. Once
a platform was found, the animal remained on it for 15 s and
was returned to a heated cage for 30 s; the found platform was
removed, and the procedure was repeated until all four platforms
were identified. With every trial it becomes increasingly difficult
to recall previous entries and locate remaining platforms: 4/8 in
trial 1, 3/8 in trial 2, 2/8 in trial 3, 1/8 in trial 4, thus increasing the
memory load as trials within each day progressed. All arm entries
were recorded. Errors were quantified for each daily session as
WM errors (entries in previously visited arms) and RM errors
(entries in arms that never contained platforms; Jarrard et al.,
1984). The platform set-up was chosen randomly for each mouse
at the beginning of testing, then maintained constant throughout
the experiment.

Surgical Procedures
After 12 days of WRAM training, mice were implanted with
stainless steel double cannula guides (28GA, PlasticsOne),
bilaterally aimed at the dorsal hippocampus, using a stereotactic
apparatus under aseptic conditions and anesthesia. Guides were
fixed with dental cement and covered with caps. Mice were
allowed to recover for 1 week before being retested and locally
infused as described below.

Drug Delivery Regimen
Infusions were performed using a gear-driven infusion pump
(Harvard Apparatus, Hollistone, MA, USA) with Hamilton
syringes connected to the internal cannulae via polyethylene
tubing. Internal double cannulae (33GA) extended 0.5 mm

beyond the cannula guides and tips were directed at the
CA1 subfield of the dorsal hippocampus (AP−2.1, ML±1.5, DV
−1.5) and (AP −2.7, ML ±2.1, DV −1.5; Franklin and Paxinos,
2008). After recovery from surgery, on d19 all mice received
intra-hippocampal infusions of saline, to test stable performance
before and after surgery. On d20–22 unimpaired mice in group
‘‘unimpaired + proBDNF’’ were injected with ‘‘uncleavable’’
mouse proBDNF (proBDNF mut-mouse, Alomone, Jerusalem,
Israel) 40 pg/0.4 µL/side. ‘‘Uncleavable’’ proBDNF differs from
wildtype proBDNF at the site of cleavage by plasmin and
was used in order to delay in vivo processing of proBDNF.
On d20–22, underperforming mice in group ‘‘impaired +
TAT-Pep5’’ were injected with a solution of TAT-Pep5
(EMD Millipore, Billerica, MA, USA) 4 ng/0.4 µL/side, while
underperforming mice in ‘‘group impaired + SAL’’ were injected
with saline 0.4µL/side. All drug solutions were infused at a speed
of 0.1 µL/min. Cannulae were left in place an extra 2 min post
infusion. Patency of cannulae was tested after each injection. Ten
minutes after infusion, mice were tested in the WRAM.

Histological Analysis of Cannula
Placement
After the last day of testing, mice were sacrificed and brains
collected for histological analyses to ascertain the placement
of cannulae. Mice were deeply anesthetized with isoflurane
and transcardially perfused with 4% paraformaldehyde solution.
Brains were collected and sectioned at 50 µm thickness on a
vibrating microtome (Leica VT1200S, Germany). Sections were
placed on positively charged glass slides, rehydrated and stained
with a 0.1% cresyl violet solution, then cleared and coverslipped
with Permount. Sections were examined for cannula placement
on a Zeiss AxioImager M2 motorized research microscope with
an imaging system. Only animals with cannulae correctly placed
were used for analyses. Two mice in group impaired + SAL and
one mouse in group unimpaired + proBDNF were eliminated for
improper cannula placement and/or clogged cannula guides.

Protein Biochemistry
Fresh whole hippocampus was collected and stored in liquid
nitrogen (Barnes and Thomas, 2008). Tissue was homogenized
in lysis buffer (50 mM Tris, 150 mM NaCl, 1% Triton X-100,
50 mM octylglucoside, 2 mM EDTA, 2 mM EGTA, protease
and phosphatase inhibitors). Equal protein amounts (20 µg)
were separated onto 4%–20% Novex gels (Invitrogen, Carlsbad,
CA, USA) and transferred to PVDF membranes. Proteins were
visualized using primary antibodies, HRP-conjugated secondary
antibodies (Jackson Immunoresearch, West Grove, PA, USA)
and ECL (ThermoFisher Scientific, Grand Island, NY, USA).
The following antibodies were used: anti-BDNF, anti-TrkB and
anti-pTrk and anti-CPE (Santa Cruz Biotechnology, Dallas,
TX, USA), anti-p75NTR (ABCAM, Cambridge, MA, USA),
anti-tPA (American Diagnostica, Stamford, CT, USA). Cofilin
and phospho-cofilin (Ser3) were obtained from Cell Signaling
Technologies (Danvers, MA, USA). Antibodies were validated
by the manufacturer and other users and tested for specificity
in our laboratory. After evaluating several BDNF antibodies,
sc-546 (Santa Cruz Biotechnology, Dallas, TX, USA) was chosen
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as the only one to reliably identify both BDNF (14 kDa) and
proBDNF (approx. 30 kDa; see comparison to BDNF KO brain
lysates, Figure 2B). Equal protein loading was verified using an
HRP-conjugated anti-GAPDH antibody (ABCAM, Cambridge,
MA, USA); major products were quantified (relative to GAPDH
and to a standard brain lysate) using a FluorChem9900 system
(Alpha Innotech, San Leandro, CA, USA).

Statistical Analyses
In Experiment 1, WM errors (entries in previously visited arms)
and RM errors (entries in arms that never contained platforms;
Jarrard et al., 1984) were subjected to mixed ANOVAs with
between-subjects variable age (aged, young) and within-subjects
variable block (four blocks), followed by post hoc analyses.
Levels of BDNF, proBDNF, p-trk140, trkB140, p75, CPE and
tPA relative to GAPDH in hippocampal lysates were normalized
to the average levels found in young mice, and subjected to
Student t tests.

In Experiment 2, baseline memory performance (WM
and RM errors) was evaluated in mixed ANOVAs with
between-subjects variable group (three groups) and within-
subjects variable session (before surgery: average performance
in the last block of three daily sessions before surgery,
and after surgery: d19 first session after surgery), followed
by post hoc analyses. Memory performance (WM and RM
errors) in the impaired + SAL group was further evaluated
in repeated-measures ANOVAs with within-subjects variable
session (four local SAL infusion sessions: d19–d22) followed by
post hoc analyses. Memory performance (WM and RM errors)
in the unimpaired + proBDNF group relative to the impaired
+ SAL group was evaluated in mixed ANOVAs with between-
subjects variable group (two groups) and within-subjects variable
session (four drug infusion sessions: d19–d22) followed by post
hoc analyses. Memory performance (WM and RM errors) in
the impaired + TAT-Pep5 group relative to the impaired +
SAL group was evaluated in mixed ANOVAs with between-
subjects variable group (two groups) and within-subjects variable
session (four drug infusion sessions: d19–d22) followed by
post hoc analyses. Levels of p-cofilin to total cofilin ratio were
normalized to the average ratio found in unimpaired mice and
subjected to a one-wayANOVAwith factor group (three groups),
followed by post hoc analyses. Statistical analyses were performed
in STATISTICA (StatSoft, Palo Alto, CA, USA). All statistical
analyses were conducted at an alpha level 0.05.

RESULTS

Spatial Reference and Working Memory
Errors in the WRAM Increase with Age, and
Are Positively Correlated with proBDNF
Levels
In Experiment 1, WRAM spatial RM and WM performance
was evaluated in aged (22–24-months old, n = 15) and young
(4-months old, n = 21) mice as shown in the upper panels of
Figure 2A. Mice showed improvement in WRAM performance
(decrease in number of errors) over blocks of four daily

sessions both in RM (F(3,102) = 16.58, p < 0.01) and WM
(F(3,102) = 5.54, p < 0.01). However, analyses also indicated an
age × block interaction both in regard to RM (F(3,102) = 3.69,
p < 0.05) and WM (F(3,102) = 4.80, p < 0.01) suggesting that
aged mice showed less improvement over sessions relative to
young mice. Indeed, performance was significantly impaired
in aged mice relative to young mice in the last block of
the WRAM task both in regard to RM (F(1,34) = 7.96,
p < 0.01) and WM (F(1,34) = 6.67, p < 0.05). The lower
panels of Figure 2A indicate the pattern of RM and WM
errors relative to proBDNF levels (quantified relative to GAPDH)
in aged and young mice. Plots indicate a relative diversity
of the pattern at both ages. Most importantly, irrespective of
age, proBDNF levels correlated significantly both with RM
errors (R2 = 0.33, p < 0.01) and WM errors (R2 = 0.27,
p < 0.05).

Aging Is Characterized by Changes in
BDNF Processing and Signaling Pathways
Western blot analyses of hippocampal lysates (Figure 2B)
suggested that aged animals exhibit an increase in the proBDNF
to BDNF ratio when compared to young mice. Quantification
of BDNF and proBDNF relative to GAPDH in 22–24-months
old aged mice (n = 9) and young 4-month old mice (n = 13)
indicated a significant increase in proBDNF levels with age
(t(20) = 5.14, p < 0.01), but no significant difference in BDNF
levels (t(20) < 0.01, p > 0.05). Moreover, as indicated in
Figure 2C, we identified a significant decrease in p-trk140
(t(20) = 5.45, p < 0.01), and trkB140 (t(20) = 3.26, p < 0.01), and
a significant increase in p75NTR levels (t(20) = 2.42, p < 0.05)
in aged mice relative to young mice; no changes were found
in trkB95 levels (t(20) = 1.69, p > 0.05). Evaluation of tPA,
which activates plasmin, an enzyme required for proBDNF
processing (Pang et al., 2004), and CPE, a protein required for
both cellular transport and processing of proBDNF (Park et al.,
2008), revealed decreased tPA levels (t(20) = 5.13, p < 0.01),
but not CPE levels (t(20) = 0.74, p > 0.05), in aged mice
relative to young (Figure 2D). Overall, these results suggest that
proBDNF processing and receptor levels in the hippocampus
changed with age, and that manipulating proBDNF levels
and receptor activation may alter both RM and WM spatial
performance in the WRAM task. This hypothesis was tested
by observing the effects of local hippocampal infusions of
proBDNF and TAT-Pep5 on performance in the WRAM task in
aged mice.

Stable Memory Performance Pre- and
Post-Surgery
Analyses of memory performance before and after surgery
failed to indicate differences in performance before and after
surgery for either RM (F(1,30) = 0.48, p > 0.05) or WM
(F(1,30) = 0.22, p > 0.05), or any interactions with this
variable for either RM (F(2,30) = 0.18, p > 0.05) or WM
(F(2,30) = 0.01, p > 0.05), indicating stable performance pre- and
post-surgery. However, analyses indicated differences between
groups for both RM (F(2,30) = 30.39, p < 0.05) and WM
(F(2,30) = 27.63, p < 0.05). For both RM and WM errors,
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FIGURE 2 | Memory impairment in aged mice positively correlates with increases in hippocampal proBDNF levels. (A) Average (±SEM) reference memory (RM) and
working memory (WM) errors over four 4-session blocks of a WRAM task in 24-month old aged mice and 4-month old young mice. RM and WM errors positively
correlate with proBDNF levels. (B) Increase in proBDNF, but not brain-derived neurotrophic factor (BDNF), in 24-month old aged mice relative to young 4-month old
mice. (C) Relative to young 4-month old mice, aged 24-month old mice show increased p75 Neurotrophin Receptor (p75NTR) and decreased p-trk140 and trk140.
(D) Relative to young 4-month old mice, aged 24-month old mice show decreased Tissue Plasminogen Activator (tPA), but not carboxypeptidase E (CPE).
∗p < 0.05; ∗∗p < 0.01.

post hoc Tukey tests indicated reliable differences between
impaired and unimpaired mice (p > 0.05), but no differences
between the two groups of impaired mice (p > 0.05), both
before and after surgery. Figures 3A,B show the average
number of RM (left) and WM (right) errors (±SEM) in the
WRAM task in days 19–22 in unimpaired + proBDNF mice
(n = 16, open circles), impaired + TAT-Pep5 mice (n = 9,
closed circles), and impaired + SAL mice (n = 8, open
triangles). Figure 3C shows representative images detailing the
CA1 infusion location.

No Improvement in Performance in
Memory-Impaired Mice Infused with Saline
in the CA1 Region of the Dorsal
Hippocampus
WM and RM errors for the memory impaired mice infused
with saline (impaired + SAL, n = 8, open triangles) are shown
in Figure 3A. For both RM and WM errors, analyses failed
to indicate an effect of session for either RM (F(3,21) = 0.98,
p > 0.05) or WM (F(3,21) = 1.41, p > 0.05), suggesting that
memory impaired mice receiving intra-hippocampal infusions

with saline failed to improve reliably over the four sessions.
The performance of memory impaired mice infused with TAT-
Pep5, and of unimpaired (well-performing) mice infused with
proBDNF was evaluated relative to that of memory impaired
mice infused with saline as discussed below.

Decline in Working and Reference Memory
in Unimpaired Mice Infused with proBDNF
in the CA1 Region of the Dorsal
Hippocampus
On days d20–22 unimpaired mice were infused with proBDNF
(unimpaired + proBDNF, n = 16, open circles), while
memory impaired mice were infused with saline (impaired
+ SAL, n = 8, open triangles). Figure 3A shows behavioral
performance in regard to RM (left) and WM (right) in
the two groups. Analyses suggest that proBDNF infusions
over d20–22 produced a considerable decline in performance
relative to d19. Analyses indicated a reliable main effect of
group for both RM (F(1,22) = 19.22, p < 0.05) and WM
(F(1,22) = 5.44, p < 0.05), indicating that over the four sessions
unimpaired mice performed better than memory impaired
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FIGURE 3 | Intra-hippocampal infusion of proBDNF impairs memory in well-performing (unimpaired) mice, while TAT-Pep5 infusion improves memory in
poorly-performing (impaired) mice. (A) Average (±SEM) RM and WM errors in memory impaired 18-month old mice receiving intra-hippocampal saline infusions
(impaired + SAL, n = 8, open triangles) and well-performing 18-month old aged mice receiving uncleavable proBDNF intra-hippocampal infusions (unimpaired +
proBDNF, n = 16, open circles) over four daily sessions of a WRAM task. (B) Average (± SEM) RM and WM errors in memory impaired 18-month old mice infused
with saline (impaired + SAL, n = 8, open triangles) and memory impaired 18-month old mice receiving intra-hippocampal infusions of TAT-Pep5 (impaired +
TAT-Pep5, n = 9, closed circles) over four daily sessions of a WRAM task. (C) Representative images indicating the locations of drug infusions at two levels of the
hippocampus. ns not significant; ∗p < 0.05; ∗∗p < 0.01.

mice. Analyses also indicated a reliable group × session
interaction for both RM (F(3,66) = 3.46, p < 0.05) and WM
(F(3,66) = 3.09, p < 0.05), suggesting that the performance
of unimpaired mice infused with proBDNF declined (mice
made more errors) with repeated proBDNF infusions. While
on d19 unimpaired + proBDNF mice performed reliably better
than memory-impaired controls both in RM (F(1,22) = 50.03,
p < 0.01) and WM (F(1,22) = 42.83, p < 0.01), their
performance declined with proBDNF infusions, such that on

d21–22 there was no reliable difference from that of memory-
impaired controls, neither in RM (Fs(1,22) = 1.29, p > 0.05)
nor in WM (F(1,22) = 0.02, p > 0.05). Furthermore, following
proBDNF infusion, unimpaired + proBDNF mice performed
significantly worse during the last 2 days d21–22 than on
d19, for both RM (F(1,22) = 13.25, p < 0.01) and WM
(F(1,22) = 21.09, p < 0.01), suggesting that proBDNF infusion
had a considerable worsening effect on both WM and RM
performance (Figure 3A).
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Infusion of TAT-Pep5 in the CA1 Region of
the Dorsal Hippocampus Improved
Working and Reference Memory in
Impaired Aged Mice
To assess whether blocking signaling downstream the proBDNF
receptor, p75NTR, would have opposite effects on spatial
learning and memory, i.e., would improve WRAM performance,
we evaluated the effects of infusions of TAT-Pep5, a peptide
which interferes with the interaction between p75NTR and Rho-
GDI, thus modulating RhoA activity (Yamashita and Tohyama,
2003). Impaired mice were randomly assigned to two groups
infused in d20–22 with either TAT-Pep5 (impaired + TAT-
Pep5, n = 9, closed circles) or saline control (impaired +
SAL, n = 8, open triangles). Figure 3B shows behavioral
performance in regard to RM (left) and WM (right) in
the two groups, and indicates that TAT-Pep5 infusions over
d20–22 produced a gradual improvement in performance
relative to d19. Analyses indicated a reliable main effect of group
for both RM (F(1,15) = 14.19, p < 0.05) and WM (F(1,15) = 9.27,
p < 0.05), indicating that over the 3 sessions memory-impaired
mice infused with TAT-Pep5 performed better both in RM
and WM than saline controls. Analyses failed to indicate a
main effect of session on both RM (F(3,45) = 2.46, p > 0.05)
and WM (F(3,45) = 2.19, p > 0.05), or group × session
interactions for either RM (F(3,45) = 0.69, p > 0.05) or WM
(F(3,45) = 1.79, p > 0.05). While on d19 performance was not
different in the two groups neither for RM (F(1,15) = 1.43,
p > 0.05) or WM (F(1,15) = 0.02, p > 0.05), over sessions
with TAT-Pep5 infusions performance improved such that
on d21–22 performance was reliably better than that of
control mice infused with saline both in RM (F(1,15) = 5.85,
p < 0.05) and WM (F(1,15) = 5.97, p < 0.05). Furthermore,
following TAT-Pep5 infusion, impaired + TAT-Pep5 mice
performed significantly better during last 2 days d21–22 than
on d19, for both RM (F(1,15) = 7.07, p < 0.05) and WM
(F(1,15) = 7.28, p < 0.05), suggesting that TAT-Pep5 infusion
had a beneficial effect on both WM and RM performance
(Figure 3B).

Increased p-Cofilin Levels in the
Hippocampi of Impaired Mice and of
Unimpaired proBDNF-Infused Mice
Neuronal plasticity is essential for learning and memory.
Rapid reorganization of the actin skeleton is an important
factor for neuronal plasticity (Segal, 2017): for example, the
actin filament depolymerizing protein ADF/cofilin controls
dendritic spine morphology, as well as synaptic availability
of AMPA receptors, and exocytosis of synaptic vesicles
(Rust, 2015). Loss of cofilin-mediated synaptic actin dynamics
leads to impairment of all types of associative learning
(Rust et al., 2010). Since phosphorylation of cofilin is an
end target for RhoA pathways (Rex et al., 2009; Briz et al.,
2015), we have analyzed p-cofilin levels as a neuronal plasticity
marker, in mice showing memory impairments in the WRAM,
well-performing mice and well-performing mice receiving
proBDNF infusions in the hippocampus.

FIGURE 4 | Intra-hippocampal infusion of proBDNF increases p-cofilin levels
in memory-unimpaired mice to levels seen in memory-impaired mice.
(A) p-Cofilin to total cofilin ratio in memory-unimpaired mice, memory-impaired
mice, and memory-unimpaired mice infused with proBDNF. (B) Representative
p-cofilin and cofilin blots. ∗∗p < 0.01.

Western blot analyses of hippocampal lysates suggested that
mice showing memory impairments in the WRAM exhibited
an increase in the p-cofilin to cofilin ratio when compared
to well-performing mice (Figure 4B). Quantified levels of
p-cofilin to total cofilin ratios in memory impaired mice
(n = 7), unimpaired mice (n = 7), and unimpaired mice
infused with proBDNF (n = 5) were subjected to a one-way
ANOVA, which indicated a main effect of group (F(2,16) = 18.42,
p < 0.01). Post hoc comparisons (Scheffe test) indicated reliably
lower levels of p-cofilin to total cofilin ratio in unimpaired
mice relative to either memory impaired mice (p < 0.01)
or unimpaired mice infused with proBDNF (p < 0.01), but
no significant difference in p-cofilin levels between memory
impaired mice and unimpaired mice infused with proBDNF
(Figure 4A).

DISCUSSION

The current study evaluated the role of proBDNF and of the
p75NTR neurotrophin receptor in aging-associated learning
and memory deficits. Our results revealed that proBDNF
was increased in the aged mouse hippocampus, compared to
young, possibly as a result of decreased tPA and plasmin
activation; proBDNF levels negatively correlated with good
performance (RM and WM) in a water radial maze task.
Infusions of ‘‘uncleavable’’ proBDNF into the CA1 region of
the dorsal hippocampus significantly impaired memory recall in
mice that previously learned the task, while blocking p75NTR
association with RhoGDI using the TAT-Pep5 peptide improved
performance in memory-impaired aged mice. These effects were
gradual (over daily sessions) rather than immediate; this suggests
that TAT-Pep5 affected not solely memory recall but also
learning.
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Changes in both neurotrophins and neurotrophin receptor
levels occur during aging and neurodegeneration. In aged rats,
proBDNF levels are elevated in the hippocampus while proNGF
is elevated both in the hippocampus and cortex (Perovic et al.,
2013). Increased proBDNF levels were also found in human and
mouse Down’s syndrome brains, a disorder characterized by
learning and memory deficits and neuronal degeneration similar
to AD (Iulita et al., 2014). Our study revealed a similar elevation
of proBDNF levels in the aged mouse hippocampus. A reduction
in mature BDNF was reported in the aged human parietal and
frontal cortices (Ferrer et al., 1999), hippocampus (Phillips et al.,
1991; Hock et al., 2000) and nucleus basalis (Fahnestock et al.,
2002), and in cortex in mouse models of AD (Peng et al., 2009),
however, our study did not reveal significant changes in mature
BDNF levels in the aged mouse hippocampus, but only increases
in proBDNF. As previously observed in the hippocampus in
aged humans (Webster et al., 2006) and rats (Silhol et al., 2005),
our study indicated a reduction in trkB receptor levels in aged
mice. Moreover, in similarity to studies reporting that p75NTR is
increased in the aged brain (Costantini et al., 2006) but lost with
AD progression (Mufson et al., 2002), we have found an increase
in p75NTR in the aged mouse hippocampus.

Interestingly, studies using heterozygous BDNF knock
out (BDNF+/−) mice, which exhibit an approximately 50%
reduction of BDNF protein levels compared to wild type
littermates (Endres and Lessmann, 2012; Meis et al., 2012;
Psotta et al., 2013), reveal seemingly discrepant findings for
a BDNF requirement in hippocampus-dependent learning:
Two studies observed slight impairments during training trials
in 3–4 and 12 months old BDNF+/− mice (Uutela et al.,
2012; Rantamäki et al., 2013), while a more recent study
(Petzold et al., 2015) found age-dependent learning deficits in
BDNF+/− mice starting at seven months of age and a positive
correlation between individual learning performance and
hippocampal BDNF protein levels of well-performing animals.
Moreover, several studies using region-specific, inducible BDNF
knock out mouse models reported deficits in spatial learning
in hippocampus or forebrain-restricted BDNF knockout mice
(Gorski et al., 2003; Heldt et al., 2007). Although these studies
point to an important role of BDNF in hippocampal learning and
memory, since the genetically-modified animals have chronically
(life-long) reduced BDNF levels, it is unclear whether the
deficits in learning found in these animals are linked directly
to the BDNF deficit or to subsequent changes in multiple gene
expression levels.

Preservation of neuronal numbers and electrophysiological
properties with age, in humans and rodents (Barnes, 1979;
West, 1993; Amrein et al., 2004), suggests that age-related
memory deficits are not due to cell loss but to alterations of
functional and anatomical connectivity within the hippocampus,
or between the hippocampus and entorhinal cortex (Lister and
Barnes, 2009). Stereological counts of synapses in aged relative to
young rats revealed a 24% reduction in synapses in the dentate
gyrus (Geinisman et al., 1992), consistent with electrophysiology
(Barnes and McNaughton, 1980; Foster et al., 1991; Patrylo and
Williamson, 2007). Alterations of the postsynaptic densities at
Schaffer collateral synapses in stratum radiatum and reduced

densities of dendritic spines on CA1 basal dendrites were found
in aged memory-impaired rats (Nicholson et al., 2004) and mice
(von Bohlen und Halbach et al., 2006).

Neuronal plasticity is an important process for learning
and memory. Dendritic spines, the main target of excitatory
input on pyramidal neurons in the hippocampus and cortex,
are highly dynamic actin-rich structures (Landis and Reese,
1983; Matus, 2000). Spine dynamics has been suggested as a
mechanism for memory formation or elimination (Matsuzaki,
2007; Kasai et al., 2010). Rapid reorganization of the actin
skeleton is an important factor, and recent evidence suggests
that the link between synaptic activity, spine density and
morphology and synapse formation andmaintenance is provided
by signaling pathways converging on the actin cytoskeleton
(Hotulainen and Hoogenraad, 2010); major players in these
pathways are members of the family of small Rho GTPases
(Rac, cdc42 and RhoA; Ethell and Pasquale, 2005; Tada
and Sheng, 2006). Rho GTPases act as molecular switches,
existing in an active GTP-bound and an inactive guanosine
diphosphate (GDP)-bound state (Van Aelst and D’Souza-
Schorey, 1997; Hall, 1998). The activation of Rho GTPases
is mediated by guanine-nucleotide exchange factors (Rho-
GEFs), and is followed by recruitment of several downstream
effectors. Guanine nucleotide dissociation inhibitors (GDIs),
negatively regulate Rho GTPases by sequestering Rho proteins
and interfering with both the GDP/GTP exchange as well as with
the GTP hydrolysis (Van Aelst and D’Souza-Schorey, 1997). In
neurons, Rho GTPases are found in dendritic spines and are
major hotspots in actin cytoskeleton regulation: RhoA activation
is necessary for expression of LTP, via cofilin phosphorylation
and inactivation (Rex et al., 2009); Rac and cdc42 regulate
spine head formation, mainly by activating Arp2/3 complex-
induced actin nucleation and inhibiting actin depolymerization
(Irie and Yamaguchi, 2002; Wegner et al., 2008; Hotulainen
et al., 2009). Mutations in several Rho GEFS and GAPs have
been shown to cause mental retardation, schizophrenia or
autism (Newey et al., 2005). For example, DISC1 (Disrupted
in Schizophrenia) regulates dendritic spine morphology via
Rac1 (Hayashi-Takagi et al., 2010) and mutations in the cofilin
kinase PAK3 lead to X-linked mental retardation and memory
impairments (Allen et al., 1998). Interestingly, LIMK-1 knockout
mice, which are unable to regulate cofilin activity through
phosphorylation, have enhanced hippocampal LTP (Meng et al.,
2002). Loss of cofilin-mediated synaptic actin dynamics leads
to impairment of all types of associative learning (Rust et al.,
2010).

Signaling through the mature BDNF receptor, trkB, and the
proneurotrophin receptor p75NTR have differential effects on
the activation of neuronal Rho GTPases and spine morphology:
trkB activation induces activation of the Rac1-Pak1 pathway,
with actin polymerization and inhibition of cofilin-dependent
actin depolymerization (Huang and Reichardt, 2003), inducing
an increase in spine head size, while p75NTR was shown to
associate with RhoGDI and modulate RhoA activity (Yamashita
and Tohyama, 2003), inducing a reduction in spine density.
ProBDNF reduces the density of dendritic spines in culture
and this effect may be in part mediated by the p75NTR
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FIGURE 5 | Theoretical model of the role of proBDNF in learning in memory in
aged individuals. In young individuals, maturation of proBDNF to BDNF is
controlled by plasmin and tPA, and is essential for learning and memory. Aged
individuals show decreased levels of tPA and plasmin, and increased levels of
uncleaved proBDNF, associated with increased spine remodeling and memory
deficits. Blockade of p75NTR (e.g., by TAT-Pep5, as in the current study) leads
to spine growth, and rescues learning and memory.

receptor via RhoA (Koshimizu et al., 2009). As an end
target of RhoA, cofilin seems to be a particularly intriguing
molecule: it can be found in different states (active/inactive,
dephosphorylated/phosphorylated) and participates in many
processes related to synaptic plasticity (Shaw and Bamburg,
2017). While many studies report that cofilin phosphorylation
and actin polymerization are essential during the early
phases of LTP (Chen et al., 2007; Zhang et al., 2010),
constitutive cofilin activity is required to maintain spine head
volumes, possibly through actin severing and increases in
free barbed-ends, followed by actin polymerization to generate
branched filaments and actin networks (Calabrese et al.,
2014). Moreover, increased cofilin activity induces AMPA
recruitment to the membrane after chemically-induced LTP
(Gu et al., 2010). Thus our results showing an increase in
p-cofilin in memory-impaired animals and after hippocampal
proBDNF infusion on spatial memory in the WRAM task
are particularly interesting. Modulation of cofilin activation
and the effects on spine morphology and AMPA receptor
trafficking, besides the role in promoting hippocampal LTD
(Woo et al., 2005), could explain the effects of hippocampal
proBDNF infusion on spatial memory observed in our study,
supporting a theoretical model such as that presented in
Figure 5.

Although the effects of proBDNF infusions on spatial memory
are largely explained by the interaction with p75NTRs, since

p75NTR is a common proneurotrophin receptor, the effects of
TAT-Pep5 infusions may also reflect modulation of signaling
pathways downstream proNGF or other proneurotrophins.
Indeed, we have reported previously (Fortress et al., 2011) that a
single intra-hippocampal proNGF injection in aged rats induces
morphological changes in basal forebrain cholinergic neurons,
with dendritic retraction and atrophy of cell bodies. Recent
studies also showed that a reduction of p75NTR expression
ameliorates the cognitive deficits (Murphy et al., 2015) and
increases cholinergic innervation in the dentate gyrus (Dokter
et al., 2015), basolateral amygdala (Busch et al., 2017) and
visual cortex (Von Bohlen und Halbach and Von Bohlen
und Halbach, 2016); moreover, a small molecule ligand of
p75NTR (LM11A-31) reverses cholinergic neurite dystrophy
in Alzheimer’s Disease mouse models (Simmons et al., 2014).
Therefore, we cannot exclude that the improvement of spatial
learning and memory in TAT-Pep5 infused mice reflects
positive effects on basal forebrain cholinergic neurons and their
hippocampal projections.

In summary, our study supports a role for the elevated
p75NTR and proBDNF levels in the aged hippocampus
in learning and memory deficits and supports p75NTR as
a therapeutic target for aging-related memory impairments.
Further studies are required to evaluate whether alterations in
proBDNF levels occur in other brain regions relevant to spatial
learning and memory. Also, since our study examined only
aged male mice and given the important relationship between
BDNF and estrogen (Luine and Frankfurt, 2013), additional
experiments need to clarify whether similar changes occur in
aged females.
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