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Abstract

Prolonged activation of vascular endothelial growth factor receptor-2 (VEGFR-2) due to

mis-regulation of the VEGF pathway induces aberrant blood vessel expansion, which sup-

ports growth and survival of solid tumors. Therapeutic interventions that inhibit the VEGFR-

2 pathway have therefore become a mainstay of cancer treatment. Non-clinical studies

have recently revealed that blockade of angiogenesis can modulate the tumor microenviron-

ment and enhance the efficacy of concurrent immune therapies. Ramucirumab is an FDA-

approved anti-angiogenic antibody that inhibits VEGFR-2 and is currently being evaluated

in clinical studies in combination with anti-programmed cell death (PD-1) axis checkpoint

inhibitors (pembrolizumab, durvalumab, or sintilimab) across several cancer types. The pur-

pose of this study is to establish a mechanistic basis for the enhanced activity observed in

the combined blockade of VEGFR-2 and PD-1-axis pathways. Pre-clinical studies were con-

ducted in murine tumor models known to be responsive to anti-PD-1 axis therapy, using

monoclonal antibodies that block mouse VEGFR-2 and programmed death-ligand 1 (PD-

L1). Combination therapy resulted in enhanced anti-tumor activity compared to anti-PD-L1

monotherapy. VEGFR-2 blockade at early timepoints post-anti-PD-L1 therapy resulted in a
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dose-dependent and transient enhanced infiltration of T cells, and establishment of immuno-

logical memory. VEGFR-2 blockade at later timepoints resulted in enhancement of anti-PD-

L1-driven immune cell infiltration. VEGFR-2 and PD-L1 monotherapies induced both unique

and overlapping patterns of immune gene expression, and combination therapy resulted in

an enhanced immune activation signature. Collectively, these results provide new and

actionable insights into the mechanisms by which concurrent VEGFR-2 and PD-L1 antibody

therapy leads to enhanced anti-tumor efficacy.

Introduction

Angiogenesis, the formation of new blood vessels from pre-existing ones, is an important step

in cancer progression [1]. Tumor-induced angiogenesis is highly dysregulated compared to

normal angiogenesis, and results in structurally aberrant vessels with insufficient pericyte cov-

erage and leaky nascent vessels [2]. The interplay between aberrant tumor vessels and protu-

moral immune cells generates a vicious cycle that severely disturbs anti-cancer responses and

promotes tumor progression; abnormal tumor vessels promote immune cell evasion, which in

turn enhances tumor angiogenesis. This aberrant crosstalk hinders T-cell infiltration into the

tumor and impairs T-cell effector functions [3–6].

Overexpression of the soluble pro-angiogenic signal, vascular endothelial growth factor A

(VEGF-A), and subsequent engagement of its primary receptor vascular endothelial growth

factor receptor-2 (VEGFR-2), are considered key events that drive abnormal angiogenesis [7,

8]. As a result, several therapeutics designed to inhibit the VEGF/VEGFR-2 signaling axis have

been developed and introduced into clinical practice [9]. Anti-angiogenic therapies also act to

reduce blood supply around tumor cells, depriving cancer cells of oxygen and nutrients, and

reducing metastasis to distant sites. Bevacizumab, a monoclonal antibody that binds to and

blocks the function of VEGF, was the first anti-angiogenic drug approved by the United States

Food and Drug Administration (FDA) [10]. A number of additional anti-VEGF-pathway

agents followed, including ramucirumab, a monoclonal antibody that targets VEGFR-2, axiti-

nib, regorafenib, sorafenib, sunitinib, vandetanib, and other small-molecule tyrosine kinase

inhibitors that block the activity of VEGF receptors, and ziv-aflibercept, a recombinant fusion

protein that sequesters multiple ligands in the VEGF family [11, 12]. Despite demonstrable

clinical activity, the overall benefit of anti-angiogenic monotherapies is modest, with moderate

improvement of overall survival in some indications, and delayed disease progression without

extending overall survival in others [9]. As a result, there is growing interest in combining

anti-angiogenic drugs with other treatments. Anti-angiogenic therapies combined with cyto-

toxic chemotherapy have proven to be a more effective strategy compared to chemotherapy

alone [13]. Suppressing the VEGF signaling pathway improves tumor vessel structure and

function, resulting in better circulation and lower tumor interstitial pressure. As a result, func-

tional normalization of the vascular system leads to faster and more complete delivery of che-

motherapeutics [14].

The role of VEGF/VEGFR-2 in the anti-tumor immune response is another area of

increased interest for combined angiogenic therapy approaches. VEGF levels were found to be

inversely correlated with tumor-infiltrating leukocytes in human tumors [15], whereas VEGF

pathway inhibitors increased leukocyte infiltration into tumors [16, 17]. More recent evidence

suggests that this suppressive effect on the anti-tumor immune response is mediated by the

VEGF/VEGFR-2 axis. Inhibition of this pathway facilitates T cell migration into the tumor,
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and reduces the direct immune inhibitory activity promoted by tumor endothelial cells [18,

19]. Combining anti-angiogenic antibodies with immune checkpoint inhibitors (ICIs) has

shown promising results in solid tumors [20–22]. Recent work has shown increases in T cell

infiltration following programmed death-ligand 1 (PD-L1) and VEGF blockade combination

therapy in patients with hepatocellular carcinoma (HCC) and suggests that targeting VEGF

potentially synergies mechanistically with PD-1/PD-L1 blockade. Analysis of responses

showed improved survival in patients with higher inhibitory myeloid signatures receiving

VEGF and PD-L1 inhibition, suggesting the combination relieves immune suppression in the

tumor microenvironment [23]. However, the mechanisms underlying immunomodulatory

activity of agents that target the VEGF/VEGFR-2 axis, and how inhibition of VEGF signaling

leads to restoration of productive immunity, have yet to be fully elucidated.

Previous studies using murine tumor models have combined ICIs with anti-angiogenic

therapies [4, 24, 25]. Yasuda and colleagues demonstrated that simultaneous blockade of PD-1

and VEGFR-2 produced a synergistic anti-tumor effect in the syngeneic CT26 colon adenocar-

cinoma model [26]. Allen and colleagues observed that DC101, a mouse surrogate of ramucir-

umab, stimulated the formation of high endothelial venules within tumors that facilitated

enhanced T cell infiltrate, explaining synergistic effects of anti-angiogenic therapy combined

with checkpoint inhibition [27]. Similarly, Shigeta and colleagues reported that dual anti-PD-1

and DC101 therapy overcame treatment resistance to either treatment alone, and increased

overall survival in both anti-PD-1 therapy-resistant and anti-PD-1 therapy-responsive HCC

models [28]. Notably, in immune replete syngeneic mouse models, it has been reported that

blockade of VEGFR-2 but not VEGFR-1 or VEGFR-3, regulates intra-tumor immune cell infil-

tration, but the mechanics of their different roles in immunotherapy combinations require fur-

ther investigation [12, 29, 30].

In this report, we investigate the efficacy and mechanism of action of combined VEGFR-2

and PD-L1 blockade using the syngeneic models of colorectal (MC38) and breast mammary

carcinoma (EMT6) tumors. Combination therapy led to increases in myeloid and T cell infil-

tration, enhanced innate immune response (e.g., dendritic cell maturation, antigen presenta-

tion) and T cell activation, and an immune activation gene expression signature in the tumor.

Mice achieving complete tumor regressions after the combination treatment resisted tumor

re-challenge, demonstrating the development of immunological memory. Taken together,

these results highlight the potential for anti-VEGFR-2 antibodies to relieve innate immune

suppression induced by VEGF, providing new insights into the mechanisms by which com-

bined VEGFR-2 and PD-L1 antibody therapy leads to enhanced anti-tumor efficacy.

Material and methods

Mice

Female BALB/c and C57BL/6 mice (6–8 weeks of age) were purchased from Harlan Laborato-

ries/Envigo. Mice were anesthetized by vaporizer with isoflurane in a closed chamber, and

euthanized by CO2, followed by cervical dislocation to alleviate suffering. Experimental proto-

cols were approved by the Institutional Animal Care and Use Committee and all animal exper-

imental procedures were conducted in accordance with the guidelines of the National

Institutes of Health Guide for Care and Use of Animals.

In vivo tumor studies

In vivo tumor studies and assessment of anti-tumor efficacy have been described in detail pre-

viously [30]. Briefly, female BALB/c or C57BL/6 mice (6–8 weeks of age) were subcutaneously

implanted in the flank with 1x106 MC38 or 5x105 EMT6-LM2 tumor cells, respectively, on day
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0. Both cell lines are PD-L1 positive [31–33]. Rat monoclonal antibodies DC101, MF1, and

mF4-31C1 were produced by Eli Lilly and Company as previously described [12, 28, 29]. Rat

anti-mouse anti-PD-L1 was generated from a rat of Lou/WS1 strain immunized with recombi-

nant mouse PD-L1-Fc protein. 178G7 was identified based on its binding to PD-L1 (EC50 0.1

nM) and blocking activities against PD-L1 interactions with PD-1 and CD80 (IC50 1.5 nM

and 2.5 nM, respectively).

Body weight and tumor volume (TV) were recorded twice a week. TV was calculated as TV

(mm3) = π/6 � length � width2. Animals were sacrificed due to progressive disease if tumor

burden was greater than 2,500mm3, or growth would surpass 2,500 mm3 before the next mea-

surement. For experiments with secondary tumor re-challenge, mice were re-challenged with

1x106 MC38 or 5x105 EMT6-LM2 tumors on the opposite flank of the original tumor injection

site. Secondary challenge tumor growth was followed for up to 22 days.

Immunohistochemistry & immunofluorescence

Immunohistochemistry (IHC) and immunofluorescence (IF) were performed on 5 μm whole

tumor sections from the formalin fixed, paraffin embedded tissue blocks. For IF, tumor sec-

tions were baked at 60˚C for 1 hour followed by deparaffinizing and hydrating using graded

concentrations of ethanol to deionized water. Antigen retrieval was performed using DIVA

decloaker in a digital electric pressure cooker (decloaking chamber, Biocare Medical) for 10

minutes at 110˚C for antigen CD3, ICAM-1, CD31, and Meca-79; or by incubating with pro-

teinase K (Agilent Technologies) for 5 minutes at room temperature for antigen NG2. Follow-

ing antigen retrieval, all sections were washed and blocked with protein block (Agilent

Technologies) for 30 minutes at room temperature. Tissue sections were then incubated for 90

minutes with primary antibody pairs diluted in antibody diluent (Agilent Technologies):

CD31, CD3, ICAM1 (Abcam), NG2 (Millipore), or Meca-79 (Novus Biologicals), with appro-

priate isotype control IgG antibodies, followed by a 60-minute incubation with appropriate

secondary antibody pairs in antibody diluent at room temperature. Sections were then coun-

terstained with Hoechst stain (Invitrogen) and mounted under coverslips. Representative fluo-

rescent images were captured using the A1 confocal microscope (Nikon).

IHC was used for quantitative CD3+ analysis. 5 μm whole tumor FFPE sections were

baked, deparaffinized and antigens were retrieved in the same manner as IF staining protocol

described above. Diaminobenzidine staining was carried out to detect CD3 positive cells and

hematoxylin was used as a nuclear counterstain. Analysis was performed in whole slide sec-

tions scanned using the Aperio system. Spectrum analysis software was used to determine the

percentage of CD3+ cells, and one-way ANOVA was used to determine statistical significance.

Flow cytometry analysis

After tumors were harvested from individual mice, 2 cubic millimeters of tumor were sepa-

rated from the whole tumor and were frozen in liquid nitrogen for gene expression analysis.

The rest of the tumor tissue was processed into single cells by homogenizing through 40 μm

nylon mesh strainers into complete media (RPMI+10% FBS). First, single cell samples were

blocked with Fc block (Tonbo), and then incubated with fluorescently labeled antibodies to

identify immune markers using murine specific antibodies against CD3, CD4, CD8, CD11b,

CD19, CD45, CD11c, CD137, CD25, GITR, Lag3, Tim3, PD1, PDL1, MHCII, and CD86

(eBioscience, Thermo Fisher), and a fixable viability dye (Affymetrix, Thermo Fisher). Appro-

priate unstained and “Fluorescence Minus One” controls were used. Next, the cells were fixed,

permeabilized, and stained with intracellular markers Ki67 and FoxP3 (eBioscience, Thermo

Fisher). Labeled single cell suspensions of tissues were collected individually from each mouse
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and subjected to flow cytometry following a described gating strategy [34]. Samples were col-

lected on a 4-laser Fortessa X-20 cytometer (BD Biosciences) and analyzed with FlowJo V10

software (Flowjo, LLC, Ashland, OR). The level of infiltration was determined using prism

software.

nCounter gene expression analysis

Total RNA was isolated as described in Schaer et al. [34]. In the nCounter1 assay (Nano-

String1 Technologies, Seattle, WA), 50 to 100 ng of RNA was used using mouse-specific

nCounter1 PanCancer Immune Profiling and PanCancer Pathways Panels. Samples were pre-

pared using an nCounter1 Prep Station and codeset/RNA complexes were immobilized on

nCounter1 cartridges for data collection; data were collected on a NanoString Digital

Analyzer.

Statistical analysis methods

In vivo tumor study analysis and anti-tumor efficacy measurement. Tumor volumes

were transformed to a log10 scale to equalize the variance across time and treatment. Log10

volume and body weight were separately analyzed using a two-way repeated measures analysis

of variance model (RM ANOVA) consisting of time, treatment, and the interaction between

time and treatment using the MIXED procedure of the SAS software package (Version 9.4).

Spatial Power covariance structure was used to model the correlation of observations across

time for the same subject. Kenward-Roger denominator degrees of freedom calculations were

used for tests of fixed effects. Post-hoc pairwise t-tests were used to compare tumor volumes

and body weights of treated groups to the control group on the summarized day, p-

values� 0.05 were considered statistically significant. The MIXED procedure was also used

separately for each treatment group to calculate least squares means and standard errors for

each time point for the purpose of plotting and inclusion in summary tables.

Anti-tumor efficacy definitions. Efficacy was calculated at the end of the treatment if at

least half of the initial number of subjects in the control group remained in the study. Other-

wise, efficacy was calculated on the most recent observation day prior to the end of treatment

where these conditions were met.

% Delta T/C. % Delta T/C was defined as 100 times the ratio of the tumor volume change

from Baseline at time t of the treated group versus the tumor volume change from Baseline of

the control group at time t, where t is greater than tBaseline and the treated group change from

Baseline is greater than zero. Baseline tumor volume is the grand mean of all tumors at tBaseline.
% Tumor regression. % Regression was defined as 100 times the ratio of the tumor volume

change from Baseline of the treated group versus Baseline tumor volume at time t, where t is

greater than tBaseline and the treated group change from Baseline is less than or equal to zero.

% Tumor Growth Inhibition (TGI). % TGI was defined as 100 minus % Delta T/C or 100

minus % Regression as applicable.

Flow cytometry analysis. Data from all flow cytometry experiments were analyzed using

either two-sample t-test, one-way, or two-way ANOVA models as appropriate for the design

of each experiment. Dunnett’s method was used for ANOVA analyses to compare treated

groups to control. A type I error rate of 5% (p-value�0.05) was used to denote statistical sig-

nificance. Statistical analyses were performed using either JMP (ver. 15.2.0, SAS Institute Inc.,

Cary, NC) or GraphPad Prism (ver. 7) software packages. Results were summarized and plot-

ted as means ± standard error.

nCounter gene expression analysis. nCounter RNA count data were normalized using

the geometric mean of the housekeeping genes. The log2 transformed normalized counts were
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first analyzed to detect and exclude statistical outliers. Observations were considered statistical

outliers if the absolute value of its studentized residual from a one-way ANOVA model was

greater than 3.5. The log2 transformed data were then analyzed using one-way ANOVA by

gene followed by post-hoc t-tests to compare treated groups to control. The significance of the

combination treatment effect for gene expression was also tested using an ANOVA contrast

statement equivalent to comparing the observed combination effect to its expected if additive

effect as defined by the Bliss Independence method. The treatment fold change from control

was estimated by taking the anti-log of the log2 mean differences.

The results from the statistical analysis were then used in biological pathway analyses using

Ingenuity Pathway Analysis. Data visualizations were done using Spotfire1 software (TIBCO,

Somerville, MA).

Results

Anti-VEGFR-2 treatment increases intra-tumor T cell infiltration in a

dose-dependent manner and reduces vessel density in MC38 mouse tumor

model

It has been reported that optimal inhibition of angiogenesis leads to a more homogenous dis-

tribution of functional tumor vessels, which facilitates intra-tumor immune cell infiltration

[35, 36]. Since multiple VEGF receptors could have an effect on vessel development, we first

investigated and confirmed if VEGFR-2 has a major role in T cell infiltration. MC38 bearing

mice were treated with a single dose of 40 mg/kg DC101 (anti-VEGFR-2), MF1 (anti-VEGFR-

1), or mF4-31C1 (anti-VEGFR-3). After 15 days of therapy, only treatment with DC101, the

anti-VEGFR-2 antibody, significantly increased the frequency of CD3+ T cells at the evaluated

timepoint, compared to the control treatment (Rat IgG) (S1 Fig).

Having confirmed the potential role of VEGFR-2 in controlling T cell infiltration, we next

evaluated whether the DC101-dependent intra-tumor T cell infiltration was dose dependent

and how it related to anti-tumor efficacy. DC101 (5 mg/kg, 20 mg/kg, and 40 mg/kg) was

administered to MC38 tumor-bearing mice, and T cell infiltration into tumors was measured

by IHC and flow cytometry. At day 21, the tumor volumes for the lowest dose of DC101 (5

mg/kg) were not statistically different from control, whereas the mid (20 mg/kg) and high (40

mg/kg) doses of DC101 both showed dose-dependent statistically significant tumor growth

inhibition (% Delta T/C = 46.7% and 35.4%, respectively) (Fig 1A). After 7 days of therapy,

tumors were collected and analyzed by immunofluorescence and flow cytometry to check for

changes in angiogenic markers and T cell frequency. Consistent with the tumor growth inhibi-

tion data, tumor vessel density based on CD31 and pericyte marker NG2 staining did not

change in the 5 mg/kg group compared to the control IgG treatment group (Fig 1B). In con-

trast, both the 20 mg/kg and 40 mg/kg doses of DC101 treatments reduced vessel density

(Fig 1B). By IHC, T cell infiltration appeared to be significantly increased only at the highest

dose of DC101 treatment compared to control at day 15 (Fig 1C). Comparatively, a similar

result was observed using flow cytometry, with a trend toward a dose-dependent increase in T

cell frequency compared to control at day 15 (Fig 1D). At day 19, increased T cell infiltration

was only maintained in the 40 mg/kg of DC101 treatment cohort.

High endothelial venules (HEV) have been found in human solid tumors and their pres-

ence correlates with lymphocyte infiltration [27]. To investigate further the mechanism of

increased T cell infiltration after DC101 therapy, we evaluated if DC101 treatment induces

HEV formation in the same MC38 tumor model. Immunohistochemical analysis of the tumor

samples revealed the presence of more HEV, as detected by Meca 79 staining, in tumors from

the 40mg/kg DC101 treated mice, compared to tumors from control treated mice (Fig 1E).
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Combination of anti-VEGFR-2 with anti-PD-L1 antibodies improves the

antitumor efficacy, and induces immune memory in murine tumor models

To better understand the combination potential of VEGFR-2 with PD-L1 therapy and deter-

mine if the increased intra-tumor T cell infiltration induced by anti-VEGFR-2 therapy is a pri-

mary mechanism improving the benefit of PD-L1 checkpoint blockade, we evaluated the

combined therapy in MC38 and an additional syngeneic tumor model EMT-6. PD-L1 therapy

has been well characterized in both models allowing us to confirm combination effect and

extrapolate the potential contribution of VEGFR-2. In the MC38 tumor-bearing mice treated

with anti-VEGFR-2 or anti PD-L1 antibodies as single agents starting on day 3 (Fig 2A), a

slight delay in tumor growth was observed (Fig 2B and 2C). Concurrent administration of

anti-VEGFR-2 with anti-PD-L1 antibodies achieved greater tumor growth delay, with two

complete responders (Fig 2D). In the EMT6-LM2 tumor model, moderate tumor growth inhi-

bition was observed with anti-PD-L1 and anti-VEGFR-2 antibody monotherapies (anti-

PD-L1, complete response [CR] = 1; anti-VEGFR-2, CR = 2) (Fig 2E and 2G). Stronger tumor

growth inhibition was observed when anti-PD-L1 and anti-VEGFR-2 therapies were com-

bined, with seven complete responders (Fig 2H).

Having established that these models showed primary combinational benefit, we then tested

if this extended to the development of immunological memory in complete responders. All

complete responders in the representative experiment from Fig 2 were re-challenged with

either MC38 (Fig 2I) or EMT6-LM2 (Fig 2J) tumor cells on the opposite flank of the original

Fig 1. VEGFR-2 blockade induces anti-tumor effects and increases T cell infiltration in tumors. (A) Mean MC38 tumor volumes in BALB/c mice

during 5 mg/kg (green), 20 mg/kg (blue), and 40 mg/kg (red) DC101 treatment (measured twice per week for 3 weeks). (B) Representative IHC images

of CD31 (green), α-smooth muscle actin NG2 (red), and cell nuclei (Hoechst) immunostaining on tumor sections from day 15 (scale bars: 100 μM). (C)

Percentage of CD3+ cell infiltrates into tumor by IHC on day 15 by IHC (n = 5 for each group). (D) Percentage of CD3+ cells in tumor measured by

flow cytometry analysis on day 15 and day 19 (n = 5 for each group). (E) Representative IHC images of CD31 (green), Mega 79 (red), and cell nuclei

(Hoechst) immunostaining on tumor sections from day 13. Right bottom graph represents the 60x amplification (scale bar: 10 μM) of inset in left

bottom graph (scale bar: 100 μM). Bar graph showed the quantification of Meca 79+ cell area in total tumor area among the treatment groups (n = 4 to

5 for each group). Statistical significance: �P�0.05, ��P�0.01, ���P�0.001. Error bars indicate SEM.

https://doi.org/10.1371/journal.pone.0268244.g001
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tumor on day 60, more than 30 days after cessation of treatment. All mice that achieved CRs

after the primary tumor challenge in the MC38 model, rejected secondary re-challenged

tumors, implying the formation of a memory T cell response during the first tumor rejection.

This response was not observed in naïve mice implanted with MC38 tumors as a control

(Fig 2I). In the EMT6-LM2 model, three of seven CRs resisted re-challenge after the primary

tumor challenge (Fig 2J), again implying the development of immunological memory. How-

ever, in four of seven CRs, it was observed the re-challenged EMT6-LM2 tumors were able to

grow, albeit at a slightly slower rate (Fig 2J compared to Fig 2H), suggesting that the develop-

ment of immune memory is only partial.

Anti-VEGFR-2 immune effects synergizes with anti-PD-L1 to enhance

immunomodulation

To understand the combination effects between anti-VEGFR-2 and anti-PD-L1 therapy at the

molecular level, changes in immune cell subset frequency were examined in MC38 tumors

Fig 2. Combination of VEGFR-2 blockade with anti-PD-L1 antibodies improves antitumor efficacy and induces

immunological memory in MC38 and EMT6-LM2 syngeneic murine model. (A) Schema of MC38 tumor-bearing mice

treatment regimen. Dosing started at day 3. Subsequently, DC101 and Rat IgG were given i.p. 40 mg/kg, twice per week for 3

weeks. Anti-PD-L1 (178G7) was given 500 μg/mouse, i.p., once per week, 3 times in total. (B) Individual tumor growth curves

of the DC101 treatment group are superimposed to Rat IgG control group. (C) Individual tumor growth curves of the anti-

PD-L1 treatment group are superimposed to Rat IgG control group. (D) Individual tumor growth curves of the combination

treatment group (DC101 with anti-PD-L1) are superimposed to Rat IgG control group. (E) Schema of EMT6-LM2 tumor-

bearing mice treatment regimen. (F) Individual tumor growth curves for DC101. Dosing started at day 6. Subsequently,

DC101 and Rat IgG were given i.p. 40 mg/kg, twice per week for 3 weeks. Anti-PD-L1 (178G7) was given 500 μg/mouse, i.p.,

once per week, 3 times in total. (G) Individual tumor growth curves for anti-PD-L1 (178G7). (H) Individual tumor growth

curves for the combination treatment group. (I) Individual tumor growth curves for the 2 CR mice from (D) (red lines) and 2

naïve mice (black lines), which were re-challenged with MC38 tumor cells on the opposite flank on day 60. (J) Individual

tumor growth curves for 7 CR mice from (H) (red lines), which were re-challenged with EMT6-LM2 tumor cells on the

opposite flank on day 60. CR, complete response. �P�0.05, ��P�0.01, ���P�0.001. Error bars indicate SEM.

https://doi.org/10.1371/journal.pone.0268244.g002
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from a separate mechanism of action (MOA) study. Tumor volume changes for this indepen-

dent study are shown in Fig 3A. Anti-PD-L1 monotherapy increased intra-tumor immune cell

infiltration of all cell subsets analyzed, with statistically significant changes in CD3+ T cell,

CD4+ T cell, and natural killer (NK) cells. The combination of anti-VEGFR-2 with

anti-PD-L1 antibodies further enhanced infiltration of the same immune cell subsets

(Fig 3B).

To further understand the mechanisms driving the observed combinational effects, MC38

tumor samples collected from treated animals were evaluated by high-content gene expression

analysis, using the murine-specific nCounter PanCancer Immune Profiling and PanCancer

Pathways panels (Fig 3C). Direct analysis of differentially expressed genes in the experimental

treatment groups compared to control samples revealed that anti-VEGFR-2 and anti-PD-L1

monotherapies induced both shared and non-overlapping changes in expression of immune-

related genes (Fig 3D). Furthermore, anti-VEGFR-2 and anti-PD-L1 combination had the

greatest impact on gene expression profiles within tumors, with biological pathways modu-

lated in both the monotherapy groups more strongly modulated in the combination group

(Fig 3C and Table 1). When compared to monotherapies, pathway analysis in the combination

group revealed enrichment of pathways generally associated with T helper cell signaling, T cell

activation, dendritic cell (DC)/NK cells and cytokine signaling, as well as pathways associated

Fig 3. Combination of VEGFR-2 blockade with anti-PD-L1Ab results in antitumor effects, increased T cell infiltration, and unique intra-tumor

gene upregulation signature in MC38 syngeneic murine model. (A) Mean MC38 tumor volumes in C57B16 mice for mechanism of action study,

according to treatment. �P�0.05, ��P�0.01, ���P�0.001. Error bars indicate SEM. (B) Absolute leukocyte subset numbers in tumor collected on day

20. �P�0.05, ��P�0.01 (C) nCounter analysis using PanCancer Immune Profiling in MC38 tumors at day 20; volcano plots show log2-fold change of

gene expression in the treatment groups, compared with the control group. Differentially expressed genes (DEGs) that display greater or less than 2-fold

differences are indicated by red and green arrows, respectively. Red data points indicate p<0.05 (one-way ANOVA). (D) Venn diagrams show the

number of shared and treatment-specific DEGs across experimental groups from PanCancer Immune Profiling (left) and PanCancer Pathways panel

(right).

https://doi.org/10.1371/journal.pone.0268244.g003
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with pro-inflammatory and pro-apoptotic activity. The top scoring pathways were related to T

cell and DC/NK cell functions (Table 1). In summary, VEGFR-2 inhibition alone causes alter-

ations in the expression of immune genes related to DC maturation and T cell activation, and

this effect was enhanced when combined with anti-PD-L1 therapy.

Table 1. Unique intra-tumor gene upregulation signature in MC38 syngeneic murine model. Ingenuity Pathway Analysis (IPA) using both the (A) PanCancer

Immune Profiling panel and (B) PanCancer Pathways panel lists DEGs with fold-change +/-1.5 and p<0.05. Pathway significantly enriched if log (B-H p-value)�1.3.

(A) Nanostring PanCancer Immune panel:

-LOG(B-H p-value)

Functional Class Ingenuity Canonical Pathways PD-L1

(178G7)

VEGFR2

(DC101)

Combo (PD-L1

+VEGFR2)

T Helper Cells Signaling/

Differentiation

iCOS-iCOSL Signaling 12.2 10.9 18.9

CD28 Signaling 12.2 10.6 18.4

Differentiation 10.8 11.8 21.6

T-cell Activation/Signaling Role of NFAT in Regulation of the Immune Response 10.6 10.1 18.3

PKCθ Signaling 9.65 6.82 14.2

TCR Signaling 12.6 12.6 12.6

Cytokine Mediated

Inflammation

IL-4 Signaling 6.02 4.53 8.72

Role of JAK1 & JAK3 in γc Cytokine Signalling 3.92 3.82 9.42

Regulation of IL-2 Expression in Act.&Anergic T Cells 3.72 2.55 7.67

Pro-Inflammatory Activity TREM1 Signaling 3.93 6.26 9.47

IL-12 Signaling and Production in Macrophages 3.76 n.s. 6.98

Pro-Apoptotic Activity Nur77 Signaling in T Lymphocytes 7.42 5.7 12.3

Calcium-induced T Lymphocyte Apoptosis 7.07 4.12 10.2

CTLA4 Signaling in Cytotoxic T Lymphocytes 4.53 2.33 9.57

Dendritic Cells Dendritic Cell Maturation 9.65 11.5 19.9

DC/NK Crosstalk Crosstalk between Dendritic Cells and Natural Killer Cells 12.2 13 19.9

Natural Killer Cell Signaling Natural Killer Cell Signaling 3.14 1.34 5.52

B Cell Development and

Signaling

B Cell Development 10.9 13.9 15.5

B Cell Receptor Signaling 3.04 4.6 3.93

(B) Nanostring PanCancer Pathways panel:

-LOG(B-H p-value)

Functional Class Ingenuity Canonical Pathways PD-L1

(178G7)

VEGFR2

(DC101)

Combo (PD-L1

+VEGFR2)

T Helper Cells Signaling/

Differentiation

Th2 Pathway 5.65 4.98 7.63

Th1 and Th2 Activation Pathway 6.15 4.53 7.04

Th1 Pathway 5.83 4.12 5.47

IL-12 Signaling and Production in Macrophages 6.81 7.31 6.74

Dendritic Cells/Natural Killer

Cells

Crosstalk between Dendritic Cells and Natural Killer Cells 4.3 5.11 6.74

Dendritic Cell Maturation 5.22 4.54 4.91

Cytokine Mediated

Inflammation

HMGB1 Signaling 4.61 8.41 6.74

NF-B Signaling 5.16 8.47 5.96

IL-6 Signaling 4.61 7.37 5.47

IL-10 Signaling 2.03 4 5.43

PKC-Ɵ Signaling in T Lymphocytes 4.61 6.26 4.39

Cytokine Signaling Role of JAK1 and JAK3 in γc Cytokine signaling 6.81 6.35 6.74

IL-9 Signaling 3.6 4.49 4.73

Differential Regulation of Cytokine Production in Macrophages and T

Helper Cells by IL-17A and IL-17F

3.04 2.85 4.51

TLR Signaling Toll-like Receptor Signaling 4.29 6.35 5.37

https://doi.org/10.1371/journal.pone.0268244.t001
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Flow cytometry confirms increased T cell activation and antigen

presentation in response to anti-VEGFR-2 and anti-PD-L1 combination

therapy

To confirm the effects of combination therapy on T cell activation and antigen presentation,

EMT6-LM2 tumors from the experiment shown in Fig 2, where the combination effect was

more pronounced, were collected 20 days after tumor implantation to examine changes in

immune cell activation markers by flow analysis (the experimental design and tumor growth

curves are shown in Fig 2E–2H). These analyses confirmed the increased T cell activation phe-

notype observed molecularly after anti-VEGFR-2 and anti-PD-L1 therapy, as evidenced by a

higher frequency of proliferating (ki67+) CD8 cells and increased frequency of CD137+, CD25

+ and CD8+ T cells, compared to the control group (Fig 4A). In this model, anti-PD-L1 mono-

therapy resulted in the strongest effect on T cell activation markers, while combination treat-

ment had a less pronounced effect on T cell activation makers. However, a caveat is that

combination therapy was very efficacious in reducing tumor size (Fig 2H), therefore remain-

ing tumor material available for flow analysis was limiting, confounding data interpretation.

Both anti-VEGFR-2, anti-PD-L1 monotherapies as well as combination therapy, resulted in an

enhanced antigen presentation profile on myeloid subsets, specifically on macrophages and

Ly6CG-population, as reflected by the upregulation of MHCII. In comparison to the control

group (where approximately 20% of macrophages are MHCII+) anti-VEGFR-2 and anti-

PD-L1 monotherapies as well as combination therapy resulted in more MHCII+ macrophages

(approximately 40%, 80%, and 90% respectively) (Fig 4B bottom). Moreover, combination

therapy significantly increased the level of MHCII expression on both macrophages and

Ly6CG- population, as shown by MHCII MFI (Fig 4B top). Furthermore, compared to the

control group, anti-VEGFR-2, anti-PD-L1 monotherapies and combination therapy resulted

in more MHCII and CD86 double positive macrophages, specifically, 2.9X, 4.3X, and 4.3X

CD86, MHCII and double positive macrophages, respectively (Fig 4C). Neither anti-VEGFR-2

nor anti-PD-L1 monotherapy, nor the combination, significantly affected Myeloid-Derived

Suppressor Cells (identified by Ly6G+ and Ly6C+). Finally, anti-VEGFR-2 therapy resulted in

upregulation of PD-L1 expression on macrophages (Fig 4D).

Discussion

In this study, we evaluated the functional and molecular consequences of anti-VEGFR-2 ther-

apy as monotherapy and in combination with anti-PD-L1 checkpoint blockade. Delayed

tumor growth induced by inhibition of tumor angiogenesis with DC101 was associated not

only with vasculature normalization, but also HEV formation. This suggests that the increased

T cell infiltration observed after DC101 therapy resulted not only from inhibition of tumor

angiogenesis but also through activation of the vasculature causing T cell recruitment. It is pos-

sible that tumor infiltrated T cells are further activated by the treatment to recognize tumor

antigens, but our experiments were not designed to address this question and additional

research will be needed. Finally, we did not observe any changes in NK cell percentages or

counts, suggesting NK cells are not critical driving the observed response.

VEGF-A is a multifunctional factor which plays an important role in angiogenesis. It regu-

lates vascular permeability and promotes vascular endothelial cell proliferation, migration, and

survival [37–39]. Using specific antagonist antibodies, we showed that these effects are depen-

dent on VEGFR-2, and not VEGFR-1 or VEGFR-3. VEGF-A induces signaling through the

VEGFR-1 and VEGFR-2 receptors, while the related proteins VEGF-C and VEGF-D signal

through the VEGFR-3 receptor involved in lymph angiogenesis and tumor angiogenesis.

While the three VEGF receptors can have overlapping and unique functions in cancer, our
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data suggest that VEGF-A, through engagement of VEGFR-2 modulates tumor immune

infiltration.

TILs levels have also been shown to correlate with the efficacy of ICI therapy, suggesting

treatments that enhance T cell infiltration could promote the efficacy of ICIs [40]. This is fur-

ther supported by previous findings that anti-VEGFR-2 treatment can sensitize tumors to

checkpoint blockade by inducing T cell infiltration; however, treatment also leads to PD-L1

Fig 4. Increased T cell activation and antigen presentation in response to anti-VEGFR-2 and anti-PD-L1

treatment in murine EMT6-LM2 tumor model by flow cytometry. EMT6-LM2 tumor samples for each group

(n = 5) were collected on day 20 from study shown in Fig 2E. (A) The expression of activation markers CD137, CD25,

GITR, Ki67, Lag3, and PD1 on intra-tumor CD8 cell were assessed for DC101, anti-PD-L1, or combination treatment.

(B) Percentage of MHCII+ cells and MHCII expression level on tumor macrophages and Ly6CG Neg population were

assessed for DC101, anti-PD-L1, or combination treatment. (C) Percentages of double positive expression for CD86

+ and MHCII+ on tumor macrophages were analyzed and one set of representative plots is shown. (D) PD-L1

expression on tumor infiltrating macrophages was analyzed and one set of representative plots is shown. �P�0.05, ��P

�0.01, ���P�0.001. Error bars indicate SEM.

https://doi.org/10.1371/journal.pone.0268244.g004
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expression which can inhibit a T cell response [27, 41]. Likewise, anti-VEGFR-2 therapy led to

enhanced T cell infiltration into tumors. However, inhibition additionally led to increased

intra-tumor immune inflammation, which led to upregulation of PD-L1 on macrophages as

well. This suggests that, while VEGFR-2 inhibition leads to increased immune inflammation,

the feedback inhibition of the PD-1/PD-L1 pathway in the tumor limits immune activation.

Notably, the combined treatment led to immunological memory, since animals that responded

to treatment were resistant to tumor rechallenge.

Several groups have recently reported the combinational effect of angiogenic blockade with

ICIs using either PD-1 or PD-L1 in murine tumor models [27, 28, 42]. These studies suggest a

similar mechanism of combinatorial efficacy as shown here, further highlighting the potential

of anti-angiogenic combination with ICI. The combination appears to target two mechanisms

that suppress anti-tumor immunity; blocking the PD-1/L1 axis, in tandem with increased

immune infiltration and inflammation induced by VEGF axis inhibition, leads to a fully inte-

grated anti-tumor immune response.

The combination of anti-angiogenic molecules with ICIs holds great promise. Recent Phase

3 trials have shown the benefit of combining PD-1 or PD-L1 antibodies with anti-VEGF

reagent, bevacizumab, or anti-VEGFR agent, axitinib, resulting in FDA approval for the com-

binations across multiple tumor types including in an ICI-experienced setting (NCT02684006,

lung; NCT03434379, hepatocellular carcinoma; and NCT02366143, kidney). Several clinical

trials combining the anti-VEGFR-2 antibody, ramucirumab, and PD1 or PD-L1 antibodies are

ongoing in several indications, including non-small-cell lung cancer, recurrent/metastatic

head and neck squamous cell carcinoma, and mesothelioma (NCT03904108, NCT03650764,

NCT03502746), and early indications suggest the results of this combination will be

promising.

The results presented here show that blocking VEGFR-2 improves T cell infiltration into

tumors while PD-L1 antibodies protect these T cells from exhaustion, resulting in enhanced

antitumor activity and immunological memory. These data provide further support for the

therapeutic strategy of simultaneous VEGFR-2 and PD-L1 inhibition for the treatment of

patients with solid tumors.

Supporting information

S1 Fig. VEGFR-2 blockade induces tumor T cell infiltration. MC38 tumor bearing mice

were treated with 40mg/kg Rat IgG, MF1 (anti-VEGFR-1), DC101 (anti-VEGFR-2) and mF4-

31C1 (VEGFR-3) at a single dose, and then tumors were collected on day 14. (A) Representa-

tive IHC images of CD31 (green), α-smooth muscle actin NG2 (red) and cell nuclei (Hoechst)

immunostaining on tumor sections from day 15; (B) Percentage of CD3+ cell infiltrates by

IHC (calculated as CD3+ cells over Hoechst positive nuclei) in each tumor sample on day 15

(n = 3 for each group).

(TIF)
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