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Rapid acceleration and deceleration are vital for
survival in many predator and prey animals and
are important attributes of animal and human
athletes. Adaptations for acceleration and
deceleration are therefore likely to experience
strong selective pressures—both natural and
artificial. Here, we explore the mechanical and
physiological constraints to acceleration. We
examined two elite athletes bred and trained
for acceleration performance (polo ponies and
racing greyhounds), when performing maximal
acceleration (and deceleration for ponies) in a
competitive setting. We show that maximum
acceleration and deceleration ability may be
accounted for by two simple limits, one mechan-
ical and one physiological. At low speed,
acceleration and deceleration may be limited
by the geometric constraints of avoiding net
nose-up or tail-up pitching, respectively. At
higher speeds, muscle power appears to limit
acceleration.
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Figure 1. Free-body diagram of the stride-average forces
acting on a generic quadruped of unvarying body geometry,

assuming acceleration/deceleration are powered predomi-
nantly by limb torques. � denotes CoM, Fz vertical
ground reaction force (opposes weight), and Fx horizontal
force that accelerates/ decelerates (2Fx) the animal. We con-
1. INTRODUCTION
Acceleration requires power from muscles to increase
the kinetic energy of the centre of mass (CoM). The
muscle-specific powers associated with near-maximal
accelerations for a range of bipeds are high: accelerat-
ing turkeys (Roberts & Scales 2002) can reach a
mean of 55–60 W kg21 over a complete gait cycle.
Similar values are achieved by sprinting humans
(Cavagna et al. 1971; Janssen et al. 2000). Accel-
erating wallabies (McGowan et al. 2005) achieve
114 W kg21 hindlimb muscle mass-specific power
for a complete gait cycle (although this is probably
an overestimate as it ignores power from trunk
muscles). Therefore, muscles have been reasonably
hypothesized as performing maximally during maxi-
mal accelerations (Roberts & Scales 2002). Our inter-
est here is whether muscle power presents the single
limit accounting for maximal acceleration and decel-
eration. If so, the main selective pressure concerning
acceleration is the amount of power locomotor
Electronic supplementary material is available at http://dx.doi.org/10.
1098/rsbl.2009.0360 or via http://rsbl.royalsocietypublishing.org.
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muscles can produce and the reduction of
non-muscle mass.

Accelerating quadrupeds may, by analogy with
accelerating motorcycles, be limited by two further,
inter-related physical constraints: pitch avoidance
and traction. Just as an increase in accelerating
torque in a motorcycle results in nose-up pitching
and reduced weight support on the front wheel, a
similar principle applies to accelerating quadrupeds
(where the hind leg is equivalent to a spoke of the
rear wheel and most of the propulsive musculature
is arranged to retract, or pull the leg backwards). In
figures 1 and 2a–c, we present a free-body diagram
of hypothesized forces during maximal accelerations
of quadrupeds. The model (see electronic supplemen-
tary material, pitch-avoidance model) is similar to
that proposed by Gray (1944) for animals standing
on inclined surfaces and is similarly simplified by
applying the following assumptions and constraints:
(i) a net pitching acceleration over a stride is avoided;
(ii) the body geometry is constant: this assumption is
deliberately simplistic, ignoring motions of the head
(and tail) with respect to the CoM (contrasting with
a similar formulation expressed for lizards (Aerts
et al. 2003)); and (iii) accelerations are presumed to
be powered by torque of the limb (about shoulder
and/or hips), rather than limb extension (Biewener
1989; Williams et al. 2009)—hence the feet are
drawn directly beneath the hip/shoulder in figures 1
and 2. This results in a constraint to horizontal accel-
eration, �ax, as the net force vector over a stride,
during maximal acceleration (propulsion) must pass
through or behind the CoM (see figure 1 and the
electronic supplementary material):

�ax �
g Lcaud

Lleg

; ð1:1Þ

where g is the acceleration caused by gravity, Lcaud the
distance between hips and CoM and Lleg the length of
the hind leg.
sider only Fx,fore during braking and Fx,hind during

propulsion. Lleg is the length of leg, Lcran and Lcaud are the
distances from CoM to hip/shoulder joint, respectively.
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Figure 2. (a–c). The body geometry used to create limiting stride-averaged accelerations for maximally accelerating greyhounds

and accelerating and decelerating horses. The maximum net nose-up (a,b) or tail-up (c) pitching acceleration is determined by
constraining the total ground force vector (dotted line) to be at the mean (mid-stance) hind (a,b) or fore (c) foot position and
assuming that geometry is largely constant. The resulting maximum acceleration (d,e) and deceleration ( f ) predictions are indi-
cated by horizontal grey bars. Bar thickness denotes 1 s.d. due to the range of body geometry measured (n ¼ 5, horses and
dogs). (d) Acceleration data for greyhounds (70 strides, 10 dogs). (e) Accelerating polo ponies (160 strides, five ponies).

( f ) Decelerating polo ponies (160 strides, five ponies). Each data point indicates mean speed and mean acceleration for a
single stride; bar ends denote initial and final velocity of the stride. At low speeds, maximal accelerations are consistent with
pitch avoidance. At higher speeds, lower maximum accelerations are achieved, consistent with a power constraint. Body-mass
specific power requirements for the curves are 60, 30 and 223 W kg21 for figure parts d– f, respectively.
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Here, we use this model in conjunction with exper-
imental measurements of racing greyhound and polo
pony (horse) accelerations in order to determine
whether, and when, power or pitch-avoidance might
constrain acceleration in quadrupeds.
Biol. Lett. (2009)
2. MATERIAL AND METHODS
(a) Morphological measurements

All measurements for the pitch-avoidance model (figures 1 and
2a–c) were taken during quiet standing of five greyhounds and five
horses. Lleg denotes distance from foot to greater trochanter of
femur (hip) (when considering accelerations) and foot to greater
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tubercle of humerus (shoulder) (for decelerations). Lcaud denotes the
distance from hip to CoM, derived from the distance measured
between hip and cranial aspect of the shoulder, and published
front-hind weight bias during steady locomotion (0.56 for dogs
(Lee et al. 1999) and 0.57 for horses (Witte et al. 2004)).

(b) Greyhounds

Ten race-fit greyhounds, each performing a single acceleration from
racing traps, were filmed (250 fps, 1280 � 256 resolution, Trouble-
shooter HR, Fastec imaging, San Diego, USA) through a calibrated
space (average of 70 pixels m21) during pre-race trials. Digitized
motions of a CoM proxy were smoothed (least-squares spline filter;
Walker 1998) and differentiated to provide velocity and acceleration;
means over a stride are reported. Mean body and muscle mass-specific
power requirements were also determined from kinematics (maximum
constraining power taken as the maximum of the products of mean
speed and mean acceleration over each stride) and the known body/
muscle masses of racing greyhounds (Williams et al. 2008).

(c) Polo ponies

Five competition polo ponies were ridden by a professional rider to
perform five maximal accelerations and five maximal decelerations
in an all-weather polo arena. Body velocities and accelerations were
derived from GPS and inertial sensor measurements: velocities
over each of 160 strides (30–40 per horse) in acceleration and 160
strides in deceleration were measured using high performance dual
frequency carrier wave differential GPS (20 Hz update rate, 0.02 m
horizontal position accuracy, 0.03 m s21 speed accuracy, OEM4
Novatel, Calgary, Canada, postprocessed in Grafnav 7.60, Waypoint,
Calgary, Canada). High-frequency (within stride) changes in velocity
and position of the horse relative to the rider were tracked by inte-
grating measurements from an inertial measurement unit (MTx
Xsens Enschede, The Netherlands (Pfau et al. 2005)), mounted on
the trunk of the horse. Both types of sensor data were combined to
give increased measurement accuracy (Tan et al. 2008). Stride
timings were derived from hoof-mounted 50 g accelerometers
logged into MP3 recorders (Parsons & Wilson 2006).
3. RESULTS AND DISCUSSION
(a) Morphological measurements

Greyhound Lleg ¼ 0.59+0.04 m (mean+s.d.
throughout), and Lcaud ¼ 0.57+0.03 m. Polo pony,
forelimb Lleg ¼ 1.31+0.02 m, and hindlimb Lleg ¼

1.32+0.03 m. Lcaud and Lcran were 0.70+0.02, and
0.52+0.02 m, respectively.

(b) Acceleration

In both species maximum acceleration dropped with
speed (figure 2d– f ). The theoretical pitch-avoidance
limit is shown as horizontal bars (thickness denotes 1
s.d.); constant power requirement limits as curves. At
speeds above 5 m s21, maximum accelerations are con-
sistent with constant, constrained power availability.
The muscle powers required to drive maximal accel-
erations are very high: the limiting lines represent
60 W kg21 (greyhounds), and 30 W kg21 (ponies) in
body mass specific terms—very high compared with
the 8–13 W kg21 measured for bipeds (Cavagna et al.
1971; Roberts & Scales 2002), and similar to the
CoM powers of ascending quail (Askew et al. 2001;
65 W kg21). Using published values for muscle mass
as a proportion of body mass (greyhounds 50%
(Williams et al. 2008), horse 40% (hence horseþ
rider 35%, assuming no rider contribution to power)),
muscle mass-specific power is calculated as 120 and
85 W kg21 for greyhound and pony, respectively.
These values are very high for cyclic activity, supporting
the suggestion that muscles may be operating at maxi-
mal power during maximal acceleration at high
speeds. Mass specific muscle power should be directly
Biol. Lett. (2009)
measured in order to establish unequivocally whether
this is the case.

At low speeds, the power requirement curve fails to
account for maximal accelerations. Instead, the data
fall within or below the linear limit predicted by the
pitch-avoidance model. At low speeds, this limit is
reached but, crucially, not exceeded by both greyhounds
and horses: maximal accelerations were 10 and 6 m s22,
respectively. Video illustrates that such accelerations can
cause net nose-up pitch (see movie S1, electronic sup-
plementary material): the forelimbs barely contact the
ground during the stride and the trunk pitches up
during hindlimb contact. This may initially appear to
contradict the suggestion that accelerations cannot
breach the theoretical ‘pitch-limit’, however, the animal
is unrestricted by the various constraints of the model.
(c) Deceleration

Results for deceleration in ponies largely mirror those
of acceleration. There appears to be a reduced capacity
for deceleration at higher speeds, suggesting a ‘nega-
tive’ or ‘dissipative’ power constraint of approximately
223 W kg21 of horse þ rider mass (227 W kg21 of
horse mass). With little a priori knowledge of the func-
tional muscle mass for deceleration, however, this is
difficult to interpret further. An alternative explanation
may be that at high speeds, horses may begin decelera-
tion with a ‘preparatory’ stride in order to get ready for
substantial braking.

At lower speeds, decelerations occasionally exceeded
those predicted by the pitch-avoidance model; in this
case, the assumption of unvarying geometry is clearly
broken. Indeed, during rapid deceleration, both the
rider and the pony’s head and neck move backwards.
Such motions can, however, be understood within the
context of the simple pitch-avoidance model since this
moves the CoM towards the hips, increasing Lcran.
(d) Context

The pitch-avoidance and power-limit models, while
simple, provide a framework for understanding behav-
ioural and anatomical adaptations for extreme
accelerations, sometimes by simply highlighting when
the three key assumptions are being broken. (i) Muscle
power. Very high accelerations are possible in jumping
(locusts (Bennet-Clark 1975), galagos (Aerts 1998)
and froghoppers (Burrows 2006)), as mechanical
power is not limited by muscle power because energy
is stored in elastic elements, and released quickly
during the leap. (ii) Pitch-avoidance. Springtails achieve
high acceleration jumps, but break the assumption of
zero net change in angular velocity: they spin rapidly
backwards during their ballistic flight (Brackenbury &
Hunt 1993). (iii) Constant geometry. Most jumpers and
accelerating bipeds (Roberts & Scales 2002) avoid
pitching during high accelerations by aligning the resul-
tant force vector through the CoM and powering
through limb extension using several joints.

Traction may, on occasion, also present a constraint to
acceleration; however, slipping was not observed, and
greater centripetal accelerations are achieved for both
greyhounds and ponies when running around bends
(14 m s22 (from Usherwood & Wilson 2005) and
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8 m s22, respectively). Alternative factors, particularly
muscle mechanics, cannot be discounted from
providing constraints to acceleration capacity at low
speeds. Assuming the effective mechanical advantage of
the limb is constrained to some degree, then high forces
applied during accelerations at low-intermediate speeds
might restrict the availability of muscle power. This is
because force-velocity properties of muscles predict
higher muscle forces at low contraction velocities and
maximum muscle powers to occur at about 31 per cent
of maximum shortening speed (Hill 1938). Additionally,
the assumptions imposed for our model can be seen, to a
certain extent, to be broken (hind legs do not produce
purely torquing forces, nor is the CoM rigidly connected
to the hips). However the pitch-constraint model has the
benefit of providing a reductionist, parsimonious and,
remarkably, predictive account for the observation of
reduced acceleration capacity at low speeds.
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