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ARTICLE INFO ABSTRACT
Keywords: Background: Myocardial segmental motion is associated with cardiovascular pathology, often
Cardiovascular magnetic resonance imaging assessed through myocardial strain features. The stability of the motion can be influenced by

Complexity metrics
Late gadolinium enhancement
Segmental myocardial strain

myocardial fibrosis. This research aimed to explore the complexity metrics (CM) of myocardial
segmental motion curves, observe their correlation with late gadolinium enhancement (LGE)
transmural extension (TE), and assess diagnostic efficacy combined with segmental strains in
different TE segments.

Methods: We included 42 myocardial infarction patients, dividing images into 672 myocardial
segments (208 remote, 384 viable, and 80 unviable segments based on TE). Radial and circum-
ferential segmental strain, along with CM for motion curves, were extracted. Correlation between
CM and LGE, as well as the potential distinguishing role of CM, was evaluated using Pearson
correlation, univariate linear regression (F-test), multivariate regression analysis (T-test), area
under curve (AUC), machine learning models, and DeLong test.

Results: All CMs showed significant linear correlation with TE (P < 0.001). Six CMs were corre-
lated with TE (r > 0.3), with radial frequency drift (FD) displayed the strongest correlation (r =
0.496, P < 0.001). Radial and circumferential FD significantly differed in higher TE myocardium
than in remote segments (P < 0.05). Radial FD had practical diagnostic efficacy (remote vs.
unviable AUC = 0.89, viable vs. unviable AUC = 0.77, remote vs. viable AUC = 0.65). Combining
CM with segmental strain features boosted diagnostic efficacy than models using only segmental
strain features (DeLong test, P < 0.05).

Abbreviations: ACC, accuracy; AUC, area under curve; CM, complexity metrics; CMR, cardiac magnetic resonance; FD, frequency drift; LGE, late
gadolinium enhancement; LV, left ventricle; ROC, receiver operating characteristic; Sens, sensitivity; Spec, specificity; SVM, support vector ma-
chine; TE, transmural extension; XGBoost, eXtreme Gradient Boosting models.
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Conclusions: The CM of myocardial motion curves has been associated with LGE infarction, and
combining CM with strain features improves the diagnosis of different myocardial LGE infarction
degrees.

1. Introduction

Cardiac magnetic resonance (CMR) is the imaging gold standard for monitoring myocardial tissue characteristics and cardiac
performance [1]. In myocardial infarction patients, late gadolinium enhancement (LGE) imaging is often combined with cine CMR to
identify fibrotic myocardium tissue. LGE images delineate infarcted areas within the myocardium by enhancing the ischemic area with
a gadolinium-based contrast agent. However, certain patients, especially those younger or older, and medically ill with impaired
breath-holding capacity, compromised kidney function, or allergic reactions to gadolinium-based contrast agents, may be contra-
indicated for LGE imaging [2]. This challenges the clinical quantification of myocardial fibrosis areas and myocardial infarction
diagnosis.

Recently, this issue has garnered the interest of numerous researchers in extracting myocardial motion parameters from cine CMR
images to evaluate the degree of myocardial fibrosis and dysfunction. In existing studies, the assessment of myocardial motion has
predominantly utilized myocardial strain features. Researchers have extracted the strain and strain rate in the radial, circumferential,
and longitudinal directions of the entire heart or specific myocardial segments during myocardial contraction [3,4]. Earlier findings
indicated a strong association between myocardial strain characteristics and pathological conditions like hypertrophic cardiomyop-
athy or myocarditis [5,6]. They have attempted to evaluate myocardial dysfunction using these parameters quantitatively [7]. This
study indicates that for myocardium experiencing myocardial infarction, localized myocardial fibrosis may influence strain amplitude
and simultaneously affect the motion stability of myocardial segments in different directions. This motion stability can be efficiently
evaluated using complexity metrics (CM), a class of features used to gauge the degree of waveform randomness and chaos. These
features may provide valuable clinical information about myocardial motion and strain.

Therefore, the main objective of this study was to investigate whether CM extracted from cine CMR can provide additional
diagnostic value for patients with myocardial infarction based on traditional segmental myocardial strain parameters. We hypothe-
sized that CM could manifest implicit differences in motion between infarcted and normal myocardium that may go unnoticed by the
human eye. When combined with segmental myocardial strain, CM is expected to better assess different degrees of myocardial
infarction and help differentiate between different degrees of myocardial infarction assessed by LGE.

2. Materials and methods
2.1. Study group

This retrospective study included myocardial infarction patients who underwent CMR between September 2020 and December
2021. Inclusion criteria were as follows: patients (1) aged between 18 and 90 years and (2) diagnosed with myocardial infarction
according to the European Society of Cardiology diagnostic criteria [8] and showed scarring on LGE images. Exclusion criteria were as
follows: (1) NYHA cardiac function class III-IV; (2) eGFR <30 mL/min/1.73 mZ; (3) patients with other severe cardiomyopathies or
cardiac implants including atrial fibrillation, mitral stenosis, or prosthetic valves; (4) contrast allergy; (5) contraindications to MR
examination. The study protocol was approved by the hospital ethics committee and complied with the 1975 Declaration of Helsinki
guidelines. All patients or their family members signed written informed consent.

2.2. Baseline characteristics

Basic information, history of cardiomyopathy, and vascular risk factors were collected through patient case records. Vascular risk
factors collected included hypertension, diabetes, hypercholesterolemia, and smoking history. Hypertension was defined as patients
with blood pressure greater than 140/90 mmHg or taking antihypertensive medication. Hypercholesterolemia was defined as patients
with low-density lipoprotein cholesterol levels greater than 140 mg/dL, high-density lipoprotein cholesterol levels less than 40 mg/dL,
and triglyceride levels greater than 15 mg/dL, or who were being treated with lipid-lowering drugs. Diabetes mellitus was defined as
patients with fasting blood glucose greater than 125 mg/dL or HbAlc greater than 6.5 % or who were treated with hypoglycemic drugs.
Patients who had smoked in the 12 months before admission were categorized as smokers.

2.3. CMR imaging protocol and analysis

Image acquisition was conducted using an integrated PET/MR scanner (uPMR 790, United Imaging Healthcare, Shanghai, China).
CMR was performed utilizing a 12-channel cardiac phased array coil. Imaging was executed by end-expiratory breath-hold and
electrocardiography gating. The CMR programs included cine and LGE sequences. Cine CMR sequences were acquired for two-
chamber, four-chamber, and short-axis images. The scanning sequence employed a balanced steady-state free-feeding sequence
without a contrast agent, with a repetition time and echo time of 3.1 ms and 1.4 ms, respectively, a flip angle of 40°, a matrix size of
288 x 256, and a scanning time control of 10-15 s at each level.
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Based on the cine CMR images in short-axis view, we calculated basic left ventricle (LV) parameters, including LV ejection fraction
(%), LV end-diastolic volume index (mL/mz), LV end-systolic volume index (mL/m?), and LV mass (g/mz) in all subjects.

2.4. LGE imaging protocol

LGE imaging was conducted following the completion of cine CMR. The protocol commenced with an intravenous injection of
gadopentetate dextran (dose 0.15 mmol/kg, flow rate 2.0 mL/s) and an equivalent saline volume. After waiting 8-10 min, a phase-
sensitive inversion recovery sequence scan was performed. The scanning plane and localization of the LGE were consistent with the
cine CMR sequence, with a repetition time and echo time of 4.7 ms and 1.9 ms, respectively, a flip angle of 20°, a matrix size of 240 x
180, and an inversion time of 300-330 ms.

2.5. Myocardial segmentation

We segmented the LV myocardium of cine CMR and LGE images in this research. Two professionally trained researchers contoured
the LV inner and outer membrane boundaries of the short-axis cine CMR images using the 3D Slicer software (version 5.22 stable
release). Despite minimal differences in the contours drawn by the two individuals, calibration was performed to ensure the relative
objectivity and accuracy of the data. Based on the mapped LV inner and outer membrane boundaries, we used the criteria specified by
the Society for Cardiovascular Magnetic Resonance in 2020 to segment the LV myocardium [1]. Only cross-sectional images containing
a full 360° of myocardium were included. After excluding apical segments, the LV was divided into three thick, short-axis planes: basal,
intermediate, and apical layers. These three planes were subdivided into six, six, and four segments, yielding 16 myocardial segments
according to the segmentation principle.

2.6. Myocardial classification

The infarction areas were manually delineated in the LGE images, and the scar then corresponded to 16 myocardial segments to
calculate the transmural extension (TE) for each segment. Based on the value of TE, all myocardium was classified into three groups.
Myocardium without any LGE enhancement was defined as remote myocardium (Remote segments); myocardial segments showing O
% < TE < 50 % were defined as infarcted but viable myocardium (Viable segments), and myocardial segments with a TE > 50 % were
defined as nonviable myocardium (Unviable segments) [9].

2.7. Feature extraction

The strain, strain rate, and CM of each myocardial segment were extracted from cine CMR images. This process commenced by
obtaining the radial and circumferential lengths of the myocardial segments from the short-axis cine CMR images for every frame,
allowing the generation of radial and circumferential motion curves throughout one cardiac cycle. These curves were filtered using
wavelet transform, and feature extraction was performed. The strain characteristics of myocardial segments included radial strain,
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Fig. 1. General methodology diagram based on segmental myocardial strain features and CM approach for distinguishing between
remote, viable, and unviable segments. Using LGE as a reference, each segment’s TE ratio was computed, serving as the foundation for category
definition. Segmental myocardial strain features and CM were extracted from cine CMR images and used to train classifiers to classify myocardial
regions with different TE.



G. Lietal Heliyon 10 (2024) e31889

radial strain rate, circumferential strain, and circumferential strain rate. For radial and circumferential curves, the CM of myocardial
segments comprised frequency drift (FD), power spectral entropy, margin factor, and singular spectrum entropy. Overall, each
myocardial segment had four strain parameters along with eight CM.

2.8. Classification

This study assessed the classification performance of CM features by training the machine learning models using various input data,
including segmental myocardial strain, CM, or a combined dataset of myocardial strain and CM. The classification effects of these three
types of parameters were compared using DeLong’s test. The model performed one-to-one classification of remote vs. viable segments,
viable vs. unviable segments, and remote vs. unviable segments, respectively. A five-fold cross-validation was employed for iterative
training during the model training process.

The classification models were trained using three different algorithms: nonlinear support vector machine (SVM) models, eXtreme
Gradient Boosting models (XGBoost), and Neural network models. The study employed the cost-sensitive learning approach [10] with
uniform down-sampling to address the issue stemming from the imbalance in the three types of myocardial data.

The general methodology diagram of the model’s training process in this study is displayed in Fig. 1.

2.9. Statistical analysis

Continuous variables were expressed as mean =+ standard deviation. Kruskal-Walli’s test with post hoc Bonferroni test was per-
formed for intergroup analysis. Pearson correlation coefficients were calculated to determine the correlation between CM features and
the TE of myocardial segments. Additionally, univariate linear regression analysis was conducted using p values and validated through
the F-test. To ensure the validity of our regression analysis, the normality, independence, and homoscedasticity of residuals were
assessed using the D’Agostino-Pearson test, Durbin-Watson test, and standardized residual plots, respectively. Multiple linear
regression analysis was conducted to assess the independent predictive ability of CMs, with segmental myocardial strain as a covariate.
The significance of individual coefficients in multiple regression analysis was tested using T-tests. Collinearity test was assessed via the
variance inflation factor (VIF). Moreover, to test each parameter’s diagnostic efficacy, we evaluated each feature’s classification
performance in differentiating three distinct degrees of myocardial infarction. Prior to conducting the aforementioned analysis, all
data extracted in this study underwent screening according to the Pauta criterion method (also known as the 3¢ criterion).

Receiver operating characteristic (ROC) curves of the validation set results for each classification were generated for the trained
SVM, XGBoost, and neural network models. The area under curve (AUC), specificity (Spec), sensitivity (Sens), and accuracy (ACC)
were calculated to assess the classification accuracy. Myocardial segmentation, feature extraction, correlation analysis, linear
regression analysis and DeLong test were performed using Matlab (version 2018b, The MathWorks Inc, Natick, MA) or MedCalc
software (version 20.217, MedCalc Software Ltd, Ostend, Belgium). The machine learning classifiers to distinguish between various
types of segments were constructed using Matlab Classification Toolbox (https://michem.unimib.it/download/matlab-toolboxes/
classification-toolbox-for-matlab/).

Table 1
Baseline characteristics of the study group and cardiac magnetic resonance parameters.

Characteristics Myocardial infarction patients
N =42

Baseline characteristics

Age (years) 60.71 + 11.23

Male (%) 33(78.57)

Diabetes mellitus (%) 19 (45.24)

Hypertension (%) 20 (47.62)

Dyslipidemia (%) 9 (21.43)

Current Smoker (%) 27 (64.29)

Heart rate (beats per min) 68.29 + 10.89

Magnetic resonance parameters

Stroke Volume (ml) 68.85 + 17.93

LV Ejection fraction (%) 47.06 + 14.56

LV End-diastolic volume index (ml/m?) 85.30 + 14.56

LV End-systolic volume index (ml/m?) 50.60 + 31.21

LV mass (g/m?) 108.76 + 30.07

Infarct percent (% of LV mass) 23.62 +11.34

Infarct location

Anterior (%) 20 (48)

Inferior (%) 16 (38)

Other (%) 6 (14)

Continuous variables are expressed as mean + standard deviation. LV: Left ventricle.
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3. Results
3.1. Patient characteristics

Table 1 presents the clinical characteristics and CMR parameters of the individuals. The study comprised 42 patients with
myocardial infarction, of whom 33 were men, and the mean age was 60.71 + 11.23 years. A total of 672 cine CMR sequences of
myocardial segments were used for feature extraction, including 208 remote segments (31.0 %), 384 viable segments (57.1 %), and 80
unviable segments (11.9 %).

3.2. Correlation of myocardial features with TE

The correlation between individual myocardial characteristics and the severity of myocardial fibrosis was initially examined.
Table 2 illustrates the correlation between strain, strain rate, and CM with TE. Among the segmental myocardial strain characteristics,
there was a correlation between radial strain, radial strain rate, and circumferential strain with TE (r > 0.3), with a significant negative
correlation between radial strain and radial strain rate with TE (r =- 0.496, P < 0.001; r = - 0.528, P < 0.001) and a positive correlation
between circumferential strain and TE (r = 0.327, P < 0.001).

There was a correlation between six features of CM and LGE volume (r > 0.3), with the correlation between FD of the radial motion
curve and TE being the most pronounced among all CM (r = 0.496, P < 0.001). At the same time, the results of univariate linear
regression analysis shows that the eight CM parameters of radial and circumferential strain all shows significant linear correlation (P <
0.001). Among them, six passes the normality test, independence test, and homoscedasticity test of residuals. Furthermore, there was a
positive linear correlation between the radial CM and TE, indicating that as the LGE ratio increases, the radial motion complexity
increases. Conversely, there was a negative linear correlation between the circumferential CM and TE, indicating that the complexity
of circumferential motion decreased with the increase of TE. The findings indicated a significant correlation between CM of myocardial
motion and LGE-TE.

We analyzed the diagnostic efficacy of all acquired myocardial features for three different types of segments with different degrees
of LGE. Table 2 depicts that the parameter of FD for radial and circumferential motions exhibited good AUC (AUC = 0.65-0.89, AUC =
0.60-0.79), indicating its diagnostic efficacy. CM, other than FD, also showed practical diagnostic efficacy. Significantly, while
employing CM to categorize the three types of segments, viable vs. unviable segments (AUC = 0.61-0.78) and remote vs. unviable
segments (AUC = 0.71-0.89), all had practical classification efficacy. However, the classification efficacy of the individual CM be-
tween remote vs. unviable segments was comparatively less effective (AUC = 0.56-0.68).

The linear regression analysis was performed to assess the autonomous predictive capability of CM, with segmental myocardial
strain included as a covariate. The results in Table 2 indicated that, there is no significant collinearity among these parameters (VIF
<10). Furthermore, even with segmental myocardial strain considered as a covariate, four CMs retained independent predictive
significance (P < 0.05). This underscores the continued importance of CMs in assessing myocardial motion, demonstrating their
sustained predictive value despite the influence of segmental myocardial strain.

Table 2
Correlation between parameters and myocardial severity and diagnostic performance of parameters.
Features re Is p* AUC
Remote vs. Viable Viable vs. Unviable Remote vs. Unviable

Segmental myocardial strain

Radial strain —0.496 —0.742 0.68 + 0.05 0.73 + 0.06 0.87 + 0.05
Radial strain rate —0.528 —0.537 0.68 + 0.05 0.75 + 0.06 0.89 + 0.05
Circumferential strain 0.327 0.194 0.59 + 0.04 0.66 + 0.07 0.75 + 0.07
Circumferential strain rate 0.241 0.405 0.56 + 0.05 0.63 £+ 0.07 0.69 + 0.05

Complexity metrics
Radial strain

FD 0.496 0.0137 <0.001 0.65 + 0.04 0.77 £+ 0.05 0.89 + 0.04
Power spectral entropy 0.376 0.0887 <0.001 0.59 £+ 0.05 0.69 £ 0.07 0.78 £+ 0.06
Clearance factor 0.443 0.403 0.960 0.68 + 0.05 0.69 + 0.05 0.84 + 0.06
Singular spectrum entropy 0.334 0.2587 0.320 0.67 + 0.05 0.61 £+ 0.07 0.77 £+ 0.06
Circumferential strain

FD —0.365 —0.0051 <0.001 0.60 + 0.05 0.70 + 0.07 0.79 + 0.08
Power spectral entropy —0.341 —0.0987 0.021 0.58 + 0.05 0.69 £+ 0.07 0.76 + 0.07
Clearance factor -0.274 -0.172 0.840 0.59 + 0.05 0.68 + 0.05 0.76 + 0.07
Singular spectrum entropy —0.240 —0.16171 0.219 0.60 £ 0.05 0.61 £ 0.06 0.71 £ 0.07

FD: Frequency drift. AUC: Area under curve.

& Pearson Correlation Coefficient (All P < 0.001).

b The significance of the regression coefficients was tested using the F-test (All P < 0.001). The normality, independence, and homoscedasticity of
residuals were assessed using the D’Agostino-Pearson (f passes, P > 0.05), Durbin-Watson (all passes, 0-4), and standardized residual plots (all
passes), respectively.

¢ Multiple linear regression with segmental myocardial strain covariates was analyzed using the T-test. Collinearity assessed via variance inflation
factor (VIF) showed no significant collinearity with all VIF <10.
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The correlation between FD and TE was most pronounced among all CM features. Fig. 2 illustrates the correlation between FD and
TE, along with the normal probability plot of residuals and the residuals equality of variances plot. Fig. 3 shows the differences in FD
among myocardial types, and the diagnostic performance of FD. Fig. 2A-C shows that with the increase of TE, there is a statistically
significant increase in the FD of radial motion curves (P < 0.001), and the residuals satisfies both the normality test (P > 0.05) and the
homogeneity of variances. Fig. 3A and B illustrate the FD of the radial motion curve, and shows varying severity among the three
groups of segments. When radial FD was used for myocardial classification, it demonstrated effective differentiation between remote
and unviable segments (AUC = 0.89) and effective between unviable and viable (AUC = 0.77). However, it had marginally inferior
performance distinguishing between remote and viable (AUC = 0.65). Fig. 2D-F demonstrate that the circumferential motion curve FD
exhibited a negative correlation with TE, and Fig. 3C and D shows varied statistically among the three types of segments. Although
circumferential FD exhibited inferior diagnostic performance compared to radial FD, it successfully distinguished remote vs. unviable
segments (AUC = 0.79) and viable vs. unviable segments (AUC = 0.70).

3.3. Classification performance

The three types of segments were categorized on a one-to-one basis in this study utilizing multiple machine learning algorithms,
and the myocardial strain parameters, CM, and myocardial strain combined CM as inputs to the models. The validation set classifi-
cation outcomes of the models trained with these three types of parameters are displayed in Table 3. Evidently, the validated AUC of
the classification model was lower than that of the myocardial strain parameter (AUC = 0.69-0.90) after training solely with CM (AUC
= 0.67-0.89). In contrast, when myocardial strain parameters were trained with CM, the classification model exhibited improved
diagnostic performance compared to using only one parameter type as input (AUC = 0.70-0.92). The DeLong test results revealed
different ROC curves for combining the two groups of parameters compared to using only segmental myocardial strain parameters (P
< 0.05), indicating distinct test efficacies. Sensitivities, specificities, and accuracies for all models are given in Table 3.

Fig. 4 depicts the ROC curves of the top three models trained using myocardial strain combined with CM as model input. The results
indicated that the classifier could distinguish between remote vs. unviable segments (AUC = 0.92) and viable vs. unviable segments
(AUC = 0.78). However, it showed moderate effectiveness in distinguishing between remote and viable segments (AUC = 0.70).
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Fig. 2. Linear correlation between FD and LGE TE in myocardial segments. Radial strain FD and TE have a strong positive linear correlation in
(A), (B) demonstrates that the residuals of the linear regression analysis satisfy the assumption of normality, (C) shows that the residuals of the linear
regression exhibit homoscedasticity. Circumferential strain FD exhibits a negative correlation with TE in (D), along with the (E) and (F) shows that
the normality and homoscedasticity of residuals were passed. P-values of (A) (D) were calculated using F-test. P-values of (B) (E) were calculated
using D’Agostino-Pearson test.
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ferences in circumferential FD among the three myocardial groups, with (D) emphasizing the diagnostic value of circumferential FD for these
groups. The * represents P < 0.001, and the ** represents P < 0.05. P-values were calculated using Kruskal-Walli’s test with Bonferroni post hoc.

Table 3

AUC, specificity (%), sensitivity (%), and accuracy (%) of classification models using different inputs.
Models Remote vs. Viable Viable vs. Unviable Remote vs. Unviable

AUC Spec Sens ACC AuUC Spec Sens ACC AUC Spec Sens ACC

Segmental myocardial strain features
SVM 0.63 67 62 62 0.70 69 65 66 0.85 85 88 87
XGBoost 0.69 68 62 65 0.75 74 70 71 0.90 90 83 86
Neural network 0.60 63 65 62 0.76 65 73 70 0.89 88 86 87
Complexity metrics
SVM 0.63 67 62 63 0.70 71 66 67 0.88 86 83 84
XGBoost 0.63 69 56 63 0.73 81 68 71 0.89" 92 86 88
Neural network 0.67* 64 65 63 0.66 65 65 65 0.86 86 83 84
Segmental myocardial strain features + complexity metrics
SVM 0.64 66 54 63 0.71 67 70 69 0.89 85 87 86
XGBoost 0.66 66 62 66 0.78" 79 70 72 0.92% 89 88 88
Neural network 0.70" 63 66 64 0.72 76 66 68 0.88 84 83 83

AUC: Area under curve. Spec: Specificity. Sens: Sensitivity. ACC: Accuracy. SVM: Support Vector Machine. XGBoost: eXtreme Gradient Boosting.
& ROC curves were statistically significantly different from models with segmental myocardial strain features as input. (P < 0.05, by a DeLong test
for correlated ROC curves).

4. Discussion

In this research, we extracted CM of myocardial motion curves based on the cine CMR of 42 myocardial infarction patients. We
discovered that various CM correlated significantly with myocardial LGE severity; in particular, FD performed exceptionally well in
differentiating between myocardium of varying severity. By training machine learning models, it was revealed that classification
efficacy may be enhanced by combining segmental myocardial strain with CM, as compared to using just segmental myocardial strain.
These findings underscore the potential role of CM in distinguishing between remote, viable, and unviable myocardial segments in cine
CMR images, proposing that CM features may be robust, reproducible, and generalizable imaging markers of myocardial fibrosis and
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Fig. 4. ROC curves and AUC values of classification models using segmental myocardial strain features and CM as inputs. The model aimed
at distinguishing between Remote and Viable myocardium was trained using a Neural network, achieving an AUC of 0.70 (red). The models for
differentiating between Viable and Unviable myocardium, as well as between Remote and Unviable myocardium, were trained using the XGBoost
algorithm, yielding AUCs of 0.78 (Blue) and 0.92 (Green), respectively.

could potentially offer added value as an incremental parameter in early clinical diagnosis or prognostic follow-up of myocardial
fibrosis.

In existing studies, myocardial motion measurement frequently utilizes global and segmental myocardial strains. A combination of
these parameters is often employed to diagnose or predict various myocardial diseases, including myocardial fibrosis [11], micro-
vascular obstructions [12], myocarditis [13], and hypertrophic cardiomyopathy [14]. The current investigation emphasizes the sig-
nificance of motion stability in pathological conditions that induce alterations in myocardial properties, including myocardial fibrosis
resulting from myocardial infarction.

The CM is a class of feature values used to assess the degree of randomness and chaos in waveforms, exclusively capturing vari-
ations throughout the entire waveform. Distinguishing itself from the majority of parameters, CM exhibits significantly reduced
susceptibility to inevitable errors, such as variations in sampling position, thereby exhibiting enhanced stability and reproducibility. It
is commonly used in mechanical engineering to evaluate the wear and tear of mechanical equipment or for fault identification [15].
Recently, this class of parameters has garnered the attention of many medical researchers. Some researchers have used the complexity
parameters of electromyography to assess the state of human muscles [16]. Others have performed complexity analysis of electro-
encephalographic signals to monitor emotional states [17] or to diagnose cognitive disorders like epilepsy or depression [18,19]. Zhao
et al. and Wang et al. [20,21] identified a substantial correlation between the image entropy of LGE infarct margins and ventricular
arrhythmias in cardiovascular imaging. In this study, we calculated the CM of myocardial segmental motion curves and used them to
assess myocardial motion stability quantitatively in different directions.

Our results revealed a noteworthy association between CM and myocardial TE, particularly with FD, characterizing the standard
deviation of the oscillatory frequency of the motion curve [22]. FD shows a significant linear correlation (P < 0.001) with the pro-
portion of scarring, with a correlation coefficient of 0.496. The variations in FD among different severity of myocardium were sta-
tistically significant. All other CM demonstrated significant correlation with TE, with six of them passing the normality test,
independence test, and homoscedasticity test for residuals. Besides FD, several other CM-TE correlations exceeded 0.3. CM of
myocardial motion also had strong diagnostic performance in detecting the severity of LGE in myocardial infarction patients.
Moreover, when we combined these two types of parameters as inputs for the classification models, the ROC curves of the models
differed from those when only the traditional myocardial strain parameter was used, and the performance of the model was higher
than that of the results when the two types of parameters were trained separately. This further validates the diagnostic efficacy of CM
and suggests that CM is not a replacement for segmental myocardial strain parameters. In addition, the computational cost of CM
features is relatively low. Based on the extraction of motion curves and calculation of myocardial strain features, CM parameters can be
extracted with low time consumption. Therefore, we believe it can be a supplementary tool to improve the diagnostic outcomes of
segmental myocardial strain parameters.

Notably, the correlation between CM and TE for radial and circumferential motion curves shows an opposite trend. Specifically,
radial motion CM increases with increasing myocardial infarction, while circumferential motion CM decreases with increasing
myocardial infarction. We speculate that this phenomenon is related to these parameters’ scar distribution or physiologic significance.
First, radial motion reflects changes in the thickness of the myocardium. The scar distribution is usually heterogeneous when localized
infarction occurs in a myocardial segment. This non-uniform distribution can lead to variations in the myocardium’s contraction and
diastole, which may significantly increase the disorganization of the radial motion curve in the infarcted myocardium. This increased
disorganization is reflected in increased complexity with higher TE. In contrast, the circumferential motion of myocardial segments is
less affected by scar distribution and mainly reflects changes in the amplitude of myocardial motion. Infarcted myocardium is typically
less active due to ischemia, causing smoother motion with less fluctuation in the circumferential motion curve. Consequently,
circumferential motion complexity decreases with higher TE. Although the mechanisms mentioned above remain speculative and
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await confirmation through future studies, there seems to be a noticeable correlation between the CM and myocardial status,
discernible in both radial and circumferential movements.

Based on strain parameters and CM, this study utilized multiple machine learning models to obtain good diagnostic results for LGE
ratios of myocardial segments. These models showed excellent performance in distinguishing between myocardial segments with TE >
50 % and TE = 0 % (AUC = 0.92). Additionally, they exhibited good performance in differentiating between myocardial segments with
TE > 50 % and those with 0 % < TE < 50 % (AUC = 0.78). An earlier study pointed out that at TE levels >50 %, full recovery of the
damaged myocardial segments is difficult even if revascularization procedures are successful [23], highlighting the importance of
distinguishing TE > 50 % from other myocardial categories. The models presented in this study are able to automatically differentiate
TE > 50 % from the remaining two myocardial categories, solely utilizing cine CMR images without requiring additional LGE imaging.
This provides clinicians with invaluable information in a timely manner. However, the diagnostic efficacy of the classifiers was low
when differentiating between segments in the remote group with TE = 0 and the viable group segments with 0 % < TE < 50 % (AUC =
0.70). Several factors may be associated: some studies have noted impaired kinetic coordination and synchronization of adjacent
myocardial segments in the setting of reduced function in the infarcted region [24]. Others have suggested that it appears normal on
LGE images and may have a high degree of extracellular fibrosis [25]. With these effects, it becomes challenging to effectively
differentiate between the LGE imaging results of these two types of myocardium, whether by using myocardial strain parameters, CM
alone, or combining both types of features. This problem may be alleviated by combining multimodal imaging of the heart and
classifying the myocardium at a finer level.

4.1. Study limitations

Certain limitations apply to this study. First, the sample size was relatively small, and the dataset was relatively limited for machine
learning models. However, the models were designed to validate the association between CM and LGE, as well as to assess the
additional predictive information provided by CM in forecasting LGE. Through a comprehensive consideration of the training results of
the machine learning models, correlation analysis, and linear regression analysis, it is sufficient to demonstrate the reliability of the
results and key conclusions of this study. Second, manual LV myocardial edge and LGE region segmentation was used. Utilizing
existing, mature deep-learning segmentation techniques for myocardial edges could enable automated CM analysis of cine CMR [26].
Moreover, this study exclusively employed short-axis cine images to compute radial and circumferential strains and CM for analysis.
Previous studies have shown that segmental longitudinal myocardial strain exhibited inferior diagnostic performance in LGE imaging
compared to the abovementioned strain types [24]. In addition, the popularity of CMR scanning is hindered by its high demands for
MRI equipment and scanning personnel, which restricts the widespread clinical application of the findings from this study. However,
we believe that CM characterization of longitudinal motion curves could offer additional diagnostic information as the principal
finding of this research. Additional investigation is warranted in future studies.

5. Conclusion

In this research, we discovered a significant correlation between myocardial segment motion curve complexity and the LGE
infarction severity. These CMs, specifically FD, demonstrate strong diagnostic properties and can be combined with segmental
myocardial strain parameters as an additional tool to offer a new perspective for clinical diagnosis. Furthermore, the introduction of
these CMs present a novel approach for exploring research related to myocardial function, potentially advancing the understanding of
cardiac physiology.
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