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A B S T R A C T   

Background: Myocardial segmental motion is associated with cardiovascular pathology, often 
assessed through myocardial strain features. The stability of the motion can be influenced by 
myocardial fibrosis. This research aimed to explore the complexity metrics (CM) of myocardial 
segmental motion curves, observe their correlation with late gadolinium enhancement (LGE) 
transmural extension (TE), and assess diagnostic efficacy combined with segmental strains in 
different TE segments. 
Methods: We included 42 myocardial infarction patients, dividing images into 672 myocardial 
segments (208 remote, 384 viable, and 80 unviable segments based on TE). Radial and circum-
ferential segmental strain, along with CM for motion curves, were extracted. Correlation between 
CM and LGE, as well as the potential distinguishing role of CM, was evaluated using Pearson 
correlation, univariate linear regression (F-test), multivariate regression analysis (T-test), area 
under curve (AUC), machine learning models, and DeLong test. 
Results: All CMs showed significant linear correlation with TE (P < 0.001). Six CMs were corre-
lated with TE (r > 0.3), with radial frequency drift (FD) displayed the strongest correlation (r =
0.496, P < 0.001). Radial and circumferential FD significantly differed in higher TE myocardium 
than in remote segments (P < 0.05). Radial FD had practical diagnostic efficacy (remote vs. 
unviable AUC = 0.89, viable vs. unviable AUC = 0.77, remote vs. viable AUC = 0.65). Combining 
CM with segmental strain features boosted diagnostic efficacy than models using only segmental 
strain features (DeLong test, P < 0.05). 

Abbreviations: ACC, accuracy; AUC, area under curve; CM, complexity metrics; CMR, cardiac magnetic resonance; FD, frequency drift; LGE, late 
gadolinium enhancement; LV, left ventricle; ROC, receiver operating characteristic; Sens, sensitivity; Spec, specificity; SVM, support vector ma-
chine; TE, transmural extension; XGBoost, eXtreme Gradient Boosting models. 
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Conclusions: The CM of myocardial motion curves has been associated with LGE infarction, and 
combining CM with strain features improves the diagnosis of different myocardial LGE infarction 
degrees.   

1. Introduction 

Cardiac magnetic resonance (CMR) is the imaging gold standard for monitoring myocardial tissue characteristics and cardiac 
performance [1]. In myocardial infarction patients, late gadolinium enhancement (LGE) imaging is often combined with cine CMR to 
identify fibrotic myocardium tissue. LGE images delineate infarcted areas within the myocardium by enhancing the ischemic area with 
a gadolinium-based contrast agent. However, certain patients, especially those younger or older, and medically ill with impaired 
breath-holding capacity, compromised kidney function, or allergic reactions to gadolinium-based contrast agents, may be contra-
indicated for LGE imaging [2]. This challenges the clinical quantification of myocardial fibrosis areas and myocardial infarction 
diagnosis. 

Recently, this issue has garnered the interest of numerous researchers in extracting myocardial motion parameters from cine CMR 
images to evaluate the degree of myocardial fibrosis and dysfunction. In existing studies, the assessment of myocardial motion has 
predominantly utilized myocardial strain features. Researchers have extracted the strain and strain rate in the radial, circumferential, 
and longitudinal directions of the entire heart or specific myocardial segments during myocardial contraction [3,4]. Earlier findings 
indicated a strong association between myocardial strain characteristics and pathological conditions like hypertrophic cardiomyop-
athy or myocarditis [5,6]. They have attempted to evaluate myocardial dysfunction using these parameters quantitatively [7]. This 
study indicates that for myocardium experiencing myocardial infarction, localized myocardial fibrosis may influence strain amplitude 
and simultaneously affect the motion stability of myocardial segments in different directions. This motion stability can be efficiently 
evaluated using complexity metrics (CM), a class of features used to gauge the degree of waveform randomness and chaos. These 
features may provide valuable clinical information about myocardial motion and strain. 

Therefore, the main objective of this study was to investigate whether CM extracted from cine CMR can provide additional 
diagnostic value for patients with myocardial infarction based on traditional segmental myocardial strain parameters. We hypothe-
sized that CM could manifest implicit differences in motion between infarcted and normal myocardium that may go unnoticed by the 
human eye. When combined with segmental myocardial strain, CM is expected to better assess different degrees of myocardial 
infarction and help differentiate between different degrees of myocardial infarction assessed by LGE. 

2. Materials and methods 

2.1. Study group 

This retrospective study included myocardial infarction patients who underwent CMR between September 2020 and December 
2021. Inclusion criteria were as follows: patients (1) aged between 18 and 90 years and (2) diagnosed with myocardial infarction 
according to the European Society of Cardiology diagnostic criteria [8] and showed scarring on LGE images. Exclusion criteria were as 
follows: (1) NYHA cardiac function class III-IV; (2) eGFR <30 mL/min/1.73 m2; (3) patients with other severe cardiomyopathies or 
cardiac implants including atrial fibrillation, mitral stenosis, or prosthetic valves; (4) contrast allergy; (5) contraindications to MR 
examination. The study protocol was approved by the hospital ethics committee and complied with the 1975 Declaration of Helsinki 
guidelines. All patients or their family members signed written informed consent. 

2.2. Baseline characteristics 

Basic information, history of cardiomyopathy, and vascular risk factors were collected through patient case records. Vascular risk 
factors collected included hypertension, diabetes, hypercholesterolemia, and smoking history. Hypertension was defined as patients 
with blood pressure greater than 140/90 mmHg or taking antihypertensive medication. Hypercholesterolemia was defined as patients 
with low-density lipoprotein cholesterol levels greater than 140 mg/dL, high-density lipoprotein cholesterol levels less than 40 mg/dL, 
and triglyceride levels greater than 15 mg/dL, or who were being treated with lipid-lowering drugs. Diabetes mellitus was defined as 
patients with fasting blood glucose greater than 125 mg/dL or HbAlc greater than 6.5 % or who were treated with hypoglycemic drugs. 
Patients who had smoked in the 12 months before admission were categorized as smokers. 

2.3. CMR imaging protocol and analysis 

Image acquisition was conducted using an integrated PET/MR scanner (uPMR 790, United Imaging Healthcare, Shanghai, China). 
CMR was performed utilizing a 12-channel cardiac phased array coil. Imaging was executed by end-expiratory breath-hold and 
electrocardiography gating. The CMR programs included cine and LGE sequences. Cine CMR sequences were acquired for two- 
chamber, four-chamber, and short-axis images. The scanning sequence employed a balanced steady-state free-feeding sequence 
without a contrast agent, with a repetition time and echo time of 3.1 ms and 1.4 ms, respectively, a flip angle of 40◦, a matrix size of 
288 × 256, and a scanning time control of 10–15 s at each level. 
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Based on the cine CMR images in short-axis view, we calculated basic left ventricle (LV) parameters, including LV ejection fraction 
(%), LV end-diastolic volume index (mL/m2), LV end-systolic volume index (mL/m2), and LV mass (g/m2) in all subjects. 

2.4. LGE imaging protocol 

LGE imaging was conducted following the completion of cine CMR. The protocol commenced with an intravenous injection of 
gadopentetate dextran (dose 0.15 mmol/kg, flow rate 2.0 mL/s) and an equivalent saline volume. After waiting 8–10 min, a phase- 
sensitive inversion recovery sequence scan was performed. The scanning plane and localization of the LGE were consistent with the 
cine CMR sequence, with a repetition time and echo time of 4.7 ms and 1.9 ms, respectively, a flip angle of 20◦, a matrix size of 240 ×
180, and an inversion time of 300–330 ms. 

2.5. Myocardial segmentation 

We segmented the LV myocardium of cine CMR and LGE images in this research. Two professionally trained researchers contoured 
the LV inner and outer membrane boundaries of the short-axis cine CMR images using the 3D Slicer software (version 5.22 stable 
release). Despite minimal differences in the contours drawn by the two individuals, calibration was performed to ensure the relative 
objectivity and accuracy of the data. Based on the mapped LV inner and outer membrane boundaries, we used the criteria specified by 
the Society for Cardiovascular Magnetic Resonance in 2020 to segment the LV myocardium [1]. Only cross-sectional images containing 
a full 360◦ of myocardium were included. After excluding apical segments, the LV was divided into three thick, short-axis planes: basal, 
intermediate, and apical layers. These three planes were subdivided into six, six, and four segments, yielding 16 myocardial segments 
according to the segmentation principle. 

2.6. Myocardial classification 

The infarction areas were manually delineated in the LGE images, and the scar then corresponded to 16 myocardial segments to 
calculate the transmural extension (TE) for each segment. Based on the value of TE, all myocardium was classified into three groups. 
Myocardium without any LGE enhancement was defined as remote myocardium (Remote segments); myocardial segments showing 0 
% < TE < 50 % were defined as infarcted but viable myocardium (Viable segments), and myocardial segments with a TE > 50 % were 
defined as nonviable myocardium (Unviable segments) [9]. 

2.7. Feature extraction 

The strain, strain rate, and CM of each myocardial segment were extracted from cine CMR images. This process commenced by 
obtaining the radial and circumferential lengths of the myocardial segments from the short-axis cine CMR images for every frame, 
allowing the generation of radial and circumferential motion curves throughout one cardiac cycle. These curves were filtered using 
wavelet transform, and feature extraction was performed. The strain characteristics of myocardial segments included radial strain, 

Fig. 1. General methodology diagram based on segmental myocardial strain features and CM approach for distinguishing between 
remote, viable, and unviable segments. Using LGE as a reference, each segment’s TE ratio was computed, serving as the foundation for category 
definition. Segmental myocardial strain features and CM were extracted from cine CMR images and used to train classifiers to classify myocardial 
regions with different TE. 
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radial strain rate, circumferential strain, and circumferential strain rate. For radial and circumferential curves, the CM of myocardial 
segments comprised frequency drift (FD), power spectral entropy, margin factor, and singular spectrum entropy. Overall, each 
myocardial segment had four strain parameters along with eight CM. 

2.8. Classification 

This study assessed the classification performance of CM features by training the machine learning models using various input data, 
including segmental myocardial strain, CM, or a combined dataset of myocardial strain and CM. The classification effects of these three 
types of parameters were compared using DeLong’s test. The model performed one-to-one classification of remote vs. viable segments, 
viable vs. unviable segments, and remote vs. unviable segments, respectively. A five-fold cross-validation was employed for iterative 
training during the model training process. 

The classification models were trained using three different algorithms: nonlinear support vector machine (SVM) models, eXtreme 
Gradient Boosting models (XGBoost), and Neural network models. The study employed the cost-sensitive learning approach [10] with 
uniform down-sampling to address the issue stemming from the imbalance in the three types of myocardial data. 

The general methodology diagram of the model’s training process in this study is displayed in Fig. 1. 

2.9. Statistical analysis 

Continuous variables were expressed as mean ± standard deviation. Kruskal-Walli’s test with post hoc Bonferroni test was per-
formed for intergroup analysis. Pearson correlation coefficients were calculated to determine the correlation between CM features and 
the TE of myocardial segments. Additionally, univariate linear regression analysis was conducted using β values and validated through 
the F-test. To ensure the validity of our regression analysis, the normality, independence, and homoscedasticity of residuals were 
assessed using the D’Agostino-Pearson test, Durbin-Watson test, and standardized residual plots, respectively. Multiple linear 
regression analysis was conducted to assess the independent predictive ability of CMs, with segmental myocardial strain as a covariate. 
The significance of individual coefficients in multiple regression analysis was tested using T-tests. Collinearity test was assessed via the 
variance inflation factor (VIF). Moreover, to test each parameter’s diagnostic efficacy, we evaluated each feature’s classification 
performance in differentiating three distinct degrees of myocardial infarction. Prior to conducting the aforementioned analysis, all 
data extracted in this study underwent screening according to the Pauta criterion method (also known as the 3σ criterion). 

Receiver operating characteristic (ROC) curves of the validation set results for each classification were generated for the trained 
SVM, XGBoost, and neural network models. The area under curve (AUC), specificity (Spec), sensitivity (Sens), and accuracy (ACC) 
were calculated to assess the classification accuracy. Myocardial segmentation, feature extraction, correlation analysis, linear 
regression analysis and DeLong test were performed using Matlab (version 2018b, The MathWorks Inc, Natick, MA) or MedCalc 
software (version 20.217, MedCalc Software Ltd, Ostend, Belgium). The machine learning classifiers to distinguish between various 
types of segments were constructed using Matlab Classification Toolbox (https://michem.unimib.it/download/matlab-toolboxes/ 
classification-toolbox-for-matlab/). 

Table 1 
Baseline characteristics of the study group and cardiac magnetic resonance parameters.  

Characteristics Myocardial infarction patients 
N = 42 

Baseline characteristics 
Age (years) 60.71 ± 11.23 
Male (%) 33 (78.57) 
Diabetes mellitus (%) 19 (45.24) 
Hypertension (%) 20 (47.62) 
Dyslipidemia (%) 9 (21.43) 
Current Smoker (%) 27 (64.29) 
Heart rate (beats per min) 68.29 ± 10.89 
Magnetic resonance parameters 
Stroke Volume (ml) 68.85 ± 17.93 
LV Ejection fraction (%) 47.06 ± 14.56 
LV End-diastolic volume index (ml/m2) 85.30 ± 14.56 
LV End-systolic volume index (ml/m2) 50.60 ± 31.21 
LV mass (g/m2) 108.76 ± 30.07 
Infarct percent (% of LV mass) 23.62 ± 11.34 
Infarct location 
Anterior (%) 20 (48) 
Inferior (%) 16 (38) 
Other (%) 6 (14) 

Continuous variables are expressed as mean ± standard deviation. LV: Left ventricle. 
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3. Results 

3.1. Patient characteristics 

Table 1 presents the clinical characteristics and CMR parameters of the individuals. The study comprised 42 patients with 
myocardial infarction, of whom 33 were men, and the mean age was 60.71 ± 11.23 years. A total of 672 cine CMR sequences of 
myocardial segments were used for feature extraction, including 208 remote segments (31.0 %), 384 viable segments (57.1 %), and 80 
unviable segments (11.9 %). 

3.2. Correlation of myocardial features with TE 

The correlation between individual myocardial characteristics and the severity of myocardial fibrosis was initially examined. 
Table 2 illustrates the correlation between strain, strain rate, and CM with TE. Among the segmental myocardial strain characteristics, 
there was a correlation between radial strain, radial strain rate, and circumferential strain with TE (r > 0.3), with a significant negative 
correlation between radial strain and radial strain rate with TE (r = - 0.496, P < 0.001; r = - 0.528, P < 0.001) and a positive correlation 
between circumferential strain and TE (r = 0.327, P < 0.001). 

There was a correlation between six features of CM and LGE volume (r > 0.3), with the correlation between FD of the radial motion 
curve and TE being the most pronounced among all CM (r = 0.496, P < 0.001). At the same time, the results of univariate linear 
regression analysis shows that the eight CM parameters of radial and circumferential strain all shows significant linear correlation (P <
0.001). Among them, six passes the normality test, independence test, and homoscedasticity test of residuals. Furthermore, there was a 
positive linear correlation between the radial CM and TE, indicating that as the LGE ratio increases, the radial motion complexity 
increases. Conversely, there was a negative linear correlation between the circumferential CM and TE, indicating that the complexity 
of circumferential motion decreased with the increase of TE. The findings indicated a significant correlation between CM of myocardial 
motion and LGE-TE. 

We analyzed the diagnostic efficacy of all acquired myocardial features for three different types of segments with different degrees 
of LGE. Table 2 depicts that the parameter of FD for radial and circumferential motions exhibited good AUC (AUC = 0.65–0.89, AUC =
0.60–0.79), indicating its diagnostic efficacy. CM, other than FD, also showed practical diagnostic efficacy. Significantly, while 
employing CM to categorize the three types of segments, viable vs. unviable segments (AUC = 0.61–0.78) and remote vs. unviable 
segments (AUC = 0.71–0.89), all had practical classification efficacy. However, the classification efficacy of the individual CM be-
tween remote vs. unviable segments was comparatively less effective (AUC = 0.56–0.68). 

The linear regression analysis was performed to assess the autonomous predictive capability of CM, with segmental myocardial 
strain included as a covariate. The results in Table 2 indicated that, there is no significant collinearity among these parameters (VIF 
<10). Furthermore, even with segmental myocardial strain considered as a covariate, four CMs retained independent predictive 
significance (P < 0.05). This underscores the continued importance of CMs in assessing myocardial motion, demonstrating their 
sustained predictive value despite the influence of segmental myocardial strain. 

Table 2 
Correlation between parameters and myocardial severity and diagnostic performance of parameters.  

Features r a βb Pc AUC 

Remote vs. Viable Viable vs. Unviable Remote vs. Unviable 

Segmental myocardial strain 
Radial strain − 0.496 − 0.742  0.68 ± 0.05 0.73 ± 0.06 0.87 ± 0.05 
Radial strain rate − 0.528 − 0.537  0.68 ± 0.05 0.75 ± 0.06 0.89 ± 0.05 
Circumferential strain 0.327 0.194  0.59 ± 0.04 0.66 ± 0.07 0.75 ± 0.07 
Circumferential strain rate 0.241 0.405  0.56 ± 0.05 0.63 ± 0.07 0.69 ± 0.05 
Complexity metrics 
Radial strain 
FD 0.496 0.013† <0.001 0.65 ± 0.04 0.77 ± 0.05 0.89 ± 0.04 
Power spectral entropy 0.376 0.088† <0.001 0.59 ± 0.05 0.69 ± 0.07 0.78 ± 0.06 
Clearance factor 0.443 0.403 0.960 0.68 ± 0.05 0.69 ± 0.05 0.84 ± 0.06 
Singular spectrum entropy 0.334 0.258† 0.320 0.67 ± 0.05 0.61 ± 0.07 0.77 ± 0.06 
Circumferential strain 
FD ¡0.365 − 0.005† <0.001 0.60 ± 0.05 0.70 ± 0.07 0.79 ± 0.08 
Power spectral entropy − 0.341 − 0.098† 0.021 0.58 ± 0.05 0.69 ± 0.07 0.76 ± 0.07 
Clearance factor − 0.274 − 0.172 0.840 0.59 ± 0.05 0.68 ± 0.05 0.76 ± 0.07 
Singular spectrum entropy − 0.240 − 0.161† 0.219 0.60 ± 0.05 0.61 ± 0.06 0.71 ± 0.07 

FD: Frequency drift. AUC: Area under curve. 
a Pearson Correlation Coefficient (All P < 0.001). 
b The significance of the regression coefficients was tested using the F-test (All P < 0.001). The normality, independence, and homoscedasticity of 

residuals were assessed using the D’Agostino-Pearson († passes, P > 0.05), Durbin-Watson (all passes, 0–4), and standardized residual plots (all 
passes), respectively. 

c Multiple linear regression with segmental myocardial strain covariates was analyzed using the T-test. Collinearity assessed via variance inflation 
factor (VIF) showed no significant collinearity with all VIF <10. 
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The correlation between FD and TE was most pronounced among all CM features. Fig. 2 illustrates the correlation between FD and 
TE, along with the normal probability plot of residuals and the residuals equality of variances plot. Fig. 3 shows the differences in FD 
among myocardial types, and the diagnostic performance of FD. Fig. 2A–C shows that with the increase of TE, there is a statistically 
significant increase in the FD of radial motion curves (P < 0.001), and the residuals satisfies both the normality test (P > 0.05) and the 
homogeneity of variances. Fig. 3A and B illustrate the FD of the radial motion curve, and shows varying severity among the three 
groups of segments. When radial FD was used for myocardial classification, it demonstrated effective differentiation between remote 
and unviable segments (AUC = 0.89) and effective between unviable and viable (AUC = 0.77). However, it had marginally inferior 
performance distinguishing between remote and viable (AUC = 0.65). Fig. 2D–F demonstrate that the circumferential motion curve FD 
exhibited a negative correlation with TE, and Fig. 3C and D shows varied statistically among the three types of segments. Although 
circumferential FD exhibited inferior diagnostic performance compared to radial FD, it successfully distinguished remote vs. unviable 
segments (AUC = 0.79) and viable vs. unviable segments (AUC = 0.70). 

3.3. Classification performance 

The three types of segments were categorized on a one-to-one basis in this study utilizing multiple machine learning algorithms, 
and the myocardial strain parameters, CM, and myocardial strain combined CM as inputs to the models. The validation set classifi-
cation outcomes of the models trained with these three types of parameters are displayed in Table 3. Evidently, the validated AUC of 
the classification model was lower than that of the myocardial strain parameter (AUC = 0.69–0.90) after training solely with CM (AUC 
= 0.67–0.89). In contrast, when myocardial strain parameters were trained with CM, the classification model exhibited improved 
diagnostic performance compared to using only one parameter type as input (AUC = 0.70–0.92). The DeLong test results revealed 
different ROC curves for combining the two groups of parameters compared to using only segmental myocardial strain parameters (P 
< 0.05), indicating distinct test efficacies. Sensitivities, specificities, and accuracies for all models are given in Table 3. 

Fig. 4 depicts the ROC curves of the top three models trained using myocardial strain combined with CM as model input. The results 
indicated that the classifier could distinguish between remote vs. unviable segments (AUC = 0.92) and viable vs. unviable segments 
(AUC = 0.78). However, it showed moderate effectiveness in distinguishing between remote and viable segments (AUC = 0.70). 

Fig. 2. Linear correlation between FD and LGE TE in myocardial segments. Radial strain FD and TE have a strong positive linear correlation in 
(A), (B) demonstrates that the residuals of the linear regression analysis satisfy the assumption of normality, (C) shows that the residuals of the linear 
regression exhibit homoscedasticity. Circumferential strain FD exhibits a negative correlation with TE in (D), along with the (E) and (F) shows that 
the normality and homoscedasticity of residuals were passed. P-values of (A) (D) were calculated using F-test. P-values of (B) (E) were calculated 
using D’Agostino-Pearson test. 
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4. Discussion 

In this research, we extracted CM of myocardial motion curves based on the cine CMR of 42 myocardial infarction patients. We 
discovered that various CM correlated significantly with myocardial LGE severity; in particular, FD performed exceptionally well in 
differentiating between myocardium of varying severity. By training machine learning models, it was revealed that classification 
efficacy may be enhanced by combining segmental myocardial strain with CM, as compared to using just segmental myocardial strain. 
These findings underscore the potential role of CM in distinguishing between remote, viable, and unviable myocardial segments in cine 
CMR images, proposing that CM features may be robust, reproducible, and generalizable imaging markers of myocardial fibrosis and 

Fig. 3. The intergroup differences and diagnostic performance of FD. (A) illustrates significant variations in radial FD across the three 
myocardial groups. (B) underscores radial FD’s robust diagnostic potential for these myocardial types. (C) points out statistically significant dif-
ferences in circumferential FD among the three myocardial groups, with (D) emphasizing the diagnostic value of circumferential FD for these 
groups. The * represents P < 0.001, and the ** represents P < 0.05. P-values were calculated using Kruskal-Walli’s test with Bonferroni post hoc. 

Table 3 
AUC, specificity (%), sensitivity (%), and accuracy (%) of classification models using different inputs.  

Models Remote vs. Viable Viable vs. Unviable Remote vs. Unviable 

AUC Spec Sens ACC AUC Spec Sens ACC AUC Spec Sens ACC 

Segmental myocardial strain features 
SVM 0.63 67 62 62 0.70 69 65 66 0.85 85 88 87 
XGBoost 0.69 68 62 65 0.75 74 70 71 0.90 90 83 86 
Neural network 0.60 63 65 62 0.76 65 73 70 0.89 88 86 87 
Complexity metrics 
SVM 0.63 67 62 63 0.70 71 66 67 0.88 86 83 84 
XGBoost 0.63 69 56 63 0.73 81 68 71 0.89a 92 86 88 
Neural network 0.67a 64 65 63 0.66 65 65 65 0.86 86 83 84 
Segmental myocardial strain features + complexity metrics 
SVM 0.64 66 54 63 0.71 67 70 69 0.89 85 87 86 
XGBoost 0.66 66 62 66 0.78a 79 70 72 0.92a 89 88 88 
Neural network 0.70a 63 66 64 0.72 76 66 68 0.88 84 83 83 

AUC: Area under curve. Spec: Specificity. Sens: Sensitivity. ACC: Accuracy. SVM: Support Vector Machine. XGBoost: eXtreme Gradient Boosting. 
a ROC curves were statistically significantly different from models with segmental myocardial strain features as input. (P < 0.05, by a DeLong test 

for correlated ROC curves). 
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could potentially offer added value as an incremental parameter in early clinical diagnosis or prognostic follow-up of myocardial 
fibrosis. 

In existing studies, myocardial motion measurement frequently utilizes global and segmental myocardial strains. A combination of 
these parameters is often employed to diagnose or predict various myocardial diseases, including myocardial fibrosis [11], micro-
vascular obstructions [12], myocarditis [13], and hypertrophic cardiomyopathy [14]. The current investigation emphasizes the sig-
nificance of motion stability in pathological conditions that induce alterations in myocardial properties, including myocardial fibrosis 
resulting from myocardial infarction. 

The CM is a class of feature values used to assess the degree of randomness and chaos in waveforms, exclusively capturing vari-
ations throughout the entire waveform. Distinguishing itself from the majority of parameters, CM exhibits significantly reduced 
susceptibility to inevitable errors, such as variations in sampling position, thereby exhibiting enhanced stability and reproducibility. It 
is commonly used in mechanical engineering to evaluate the wear and tear of mechanical equipment or for fault identification [15]. 
Recently, this class of parameters has garnered the attention of many medical researchers. Some researchers have used the complexity 
parameters of electromyography to assess the state of human muscles [16]. Others have performed complexity analysis of electro-
encephalographic signals to monitor emotional states [17] or to diagnose cognitive disorders like epilepsy or depression [18,19]. Zhao 
et al. and Wang et al. [20,21] identified a substantial correlation between the image entropy of LGE infarct margins and ventricular 
arrhythmias in cardiovascular imaging. In this study, we calculated the CM of myocardial segmental motion curves and used them to 
assess myocardial motion stability quantitatively in different directions. 

Our results revealed a noteworthy association between CM and myocardial TE, particularly with FD, characterizing the standard 
deviation of the oscillatory frequency of the motion curve [22]. FD shows a significant linear correlation (P < 0.001) with the pro-
portion of scarring, with a correlation coefficient of 0.496. The variations in FD among different severity of myocardium were sta-
tistically significant. All other CM demonstrated significant correlation with TE, with six of them passing the normality test, 
independence test, and homoscedasticity test for residuals. Besides FD, several other CM-TE correlations exceeded 0.3. CM of 
myocardial motion also had strong diagnostic performance in detecting the severity of LGE in myocardial infarction patients. 
Moreover, when we combined these two types of parameters as inputs for the classification models, the ROC curves of the models 
differed from those when only the traditional myocardial strain parameter was used, and the performance of the model was higher 
than that of the results when the two types of parameters were trained separately. This further validates the diagnostic efficacy of CM 
and suggests that CM is not a replacement for segmental myocardial strain parameters. In addition, the computational cost of CM 
features is relatively low. Based on the extraction of motion curves and calculation of myocardial strain features, CM parameters can be 
extracted with low time consumption. Therefore, we believe it can be a supplementary tool to improve the diagnostic outcomes of 
segmental myocardial strain parameters. 

Notably, the correlation between CM and TE for radial and circumferential motion curves shows an opposite trend. Specifically, 
radial motion CM increases with increasing myocardial infarction, while circumferential motion CM decreases with increasing 
myocardial infarction. We speculate that this phenomenon is related to these parameters’ scar distribution or physiologic significance. 
First, radial motion reflects changes in the thickness of the myocardium. The scar distribution is usually heterogeneous when localized 
infarction occurs in a myocardial segment. This non-uniform distribution can lead to variations in the myocardium’s contraction and 
diastole, which may significantly increase the disorganization of the radial motion curve in the infarcted myocardium. This increased 
disorganization is reflected in increased complexity with higher TE. In contrast, the circumferential motion of myocardial segments is 
less affected by scar distribution and mainly reflects changes in the amplitude of myocardial motion. Infarcted myocardium is typically 
less active due to ischemia, causing smoother motion with less fluctuation in the circumferential motion curve. Consequently, 
circumferential motion complexity decreases with higher TE. Although the mechanisms mentioned above remain speculative and 

Fig. 4. ROC curves and AUC values of classification models using segmental myocardial strain features and CM as inputs. The model aimed 
at distinguishing between Remote and Viable myocardium was trained using a Neural network, achieving an AUC of 0.70 (red). The models for 
differentiating between Viable and Unviable myocardium, as well as between Remote and Unviable myocardium, were trained using the XGBoost 
algorithm, yielding AUCs of 0.78 (Blue) and 0.92 (Green), respectively. 
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await confirmation through future studies, there seems to be a noticeable correlation between the CM and myocardial status, 
discernible in both radial and circumferential movements. 

Based on strain parameters and CM, this study utilized multiple machine learning models to obtain good diagnostic results for LGE 
ratios of myocardial segments. These models showed excellent performance in distinguishing between myocardial segments with TE >
50 % and TE = 0 % (AUC = 0.92). Additionally, they exhibited good performance in differentiating between myocardial segments with 
TE > 50 % and those with 0 % < TE < 50 % (AUC = 0.78). An earlier study pointed out that at TE levels >50 %, full recovery of the 
damaged myocardial segments is difficult even if revascularization procedures are successful [23], highlighting the importance of 
distinguishing TE > 50 % from other myocardial categories. The models presented in this study are able to automatically differentiate 
TE > 50 % from the remaining two myocardial categories, solely utilizing cine CMR images without requiring additional LGE imaging. 
This provides clinicians with invaluable information in a timely manner. However, the diagnostic efficacy of the classifiers was low 
when differentiating between segments in the remote group with TE = 0 and the viable group segments with 0 % < TE < 50 % (AUC =
0.70). Several factors may be associated: some studies have noted impaired kinetic coordination and synchronization of adjacent 
myocardial segments in the setting of reduced function in the infarcted region [24]. Others have suggested that it appears normal on 
LGE images and may have a high degree of extracellular fibrosis [25]. With these effects, it becomes challenging to effectively 
differentiate between the LGE imaging results of these two types of myocardium, whether by using myocardial strain parameters, CM 
alone, or combining both types of features. This problem may be alleviated by combining multimodal imaging of the heart and 
classifying the myocardium at a finer level. 

4.1. Study limitations 

Certain limitations apply to this study. First, the sample size was relatively small, and the dataset was relatively limited for machine 
learning models. However, the models were designed to validate the association between CM and LGE, as well as to assess the 
additional predictive information provided by CM in forecasting LGE. Through a comprehensive consideration of the training results of 
the machine learning models, correlation analysis, and linear regression analysis, it is sufficient to demonstrate the reliability of the 
results and key conclusions of this study. Second, manual LV myocardial edge and LGE region segmentation was used. Utilizing 
existing, mature deep-learning segmentation techniques for myocardial edges could enable automated CM analysis of cine CMR [26]. 
Moreover, this study exclusively employed short-axis cine images to compute radial and circumferential strains and CM for analysis. 
Previous studies have shown that segmental longitudinal myocardial strain exhibited inferior diagnostic performance in LGE imaging 
compared to the abovementioned strain types [24]. In addition, the popularity of CMR scanning is hindered by its high demands for 
MRI equipment and scanning personnel, which restricts the widespread clinical application of the findings from this study. However, 
we believe that CM characterization of longitudinal motion curves could offer additional diagnostic information as the principal 
finding of this research. Additional investigation is warranted in future studies. 

5. Conclusion 

In this research, we discovered a significant correlation between myocardial segment motion curve complexity and the LGE 
infarction severity. These CMs, specifically FD, demonstrate strong diagnostic properties and can be combined with segmental 
myocardial strain parameters as an additional tool to offer a new perspective for clinical diagnosis. Furthermore, the introduction of 
these CMs present a novel approach for exploring research related to myocardial function, potentially advancing the understanding of 
cardiac physiology. 
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