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The ecological niche is the set of environments in which a population of a

species can persist without introduction of individuals from other locations.

A good mathematical or computational representation of the niche is a prerequi-

site to addressing many questions in ecology, biogeography, evolutionary

biology and conservation. A particularly challenging question for ecological

niche modelling is the problem of presence-only modelling. That is, can an eco-

logical niche be identified from records drawn only from the set of niche

environments without records from non-niche environments for comparison?

Here, I introduce a new method for ecological niche modelling from

presence-only data called range bagging. Range bagging draws on the concept

of a species’ environmental range, but was inspired by the empirical performance

of ensemble learning algorithms in other areas of ecological research. This paper

extends the concept of environmental range to multiple dimensions and shows

that range bagging is computationally feasible even when the number of

environmental dimensions is large. The target of the range bagging base learner

is an environmental tolerance of the species in a projection of its niche and is

therefore an ecologically interpretable property of a species’ biological require-

ments. The computational complexity of range bagging is linear in the number

of examples, which compares favourably with the main alternative, Qhull. In

conclusion, range bagging appears to be a reasonable choice for niche modelling

in applications in which a presence-only method is desired and may provide a

solution to problems in other disciplines where one-class classification is

required, such as outlier detection and concept learning.
1. Introduction
The aim of ecological niche modelling is to construct a mathematical or compu-

tational representation of the environmental tolerances of a species and/or the

species potential spatial distribution based on those tolerances. Niche model-

ling that uses only data about the environment at locations where the species

is found (called occurrence records) is referred to as the problem of presence-
only modelling [1–3]. The predictive performance of presence-only models is

typically poorer than that of methods that aim to optimally discriminate

locations where species are present from locations where they are absent

[4,5]. For this reason, presence–absence modelling is sometimes preferred

when additional data are available that reliably may be scored as absences

[4]. Alternatively, presence–background modelling aims to discriminate the set

of environments occupied by a species from the background distribution of

environments from which these are selected [6,7]. Presence–absence and pres-

ence–background approaches both assume that the modelling objective is

statistical classification of examples of two classes of environments (i.e. niche

versus non-niche environments or niche versus background environments).

The use of classification methods for ecological niche modelling is contro-

versial, however [4,8,9]. One reason is that sampling from the distribution of

niche environments is difficult. The set of environments constituting the
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Table 1. Notation used in this paper.

symbol definition

variables

z [ Rx the environment, a vector of environmental

variables

x dimension of environment

d order of the range-bagging model

v number of votes used for the range-bagging model

n number of occurrence records

Xi bootstrap sample

w tuning parameter

e tuning parameter

p ¼ w/n fraction of occurrence records used in the bootstrap

sample

k number of points in the convex hull

functions

p(z) probability density of environments

f (z) probability density of environments occupied by

species

q(z) habitat selection function

gN(z) mapping from environmental space to niche

hN(z) zero net growth isocline, the boundary of the niche

hF(z) boundary of the set of occupied environments

u(~z) niche centrality

sets

P set of realized environments

F set of occupied environments

N niche, the set of environments in which a species

can persist

Dd marginal niche, a projection of n onto a

d-dimensional subspace D , N

D̂i marginal niche model for the ith bootstrap sample
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niche is well defined. The niche is the set of environments in

which a population of the species could persist (subject to

other conditions, such as that it is introduced in sufficient

numbers to overcome Allee effects and it is not excluded

by interactions with other species [10,11]). However, only if

the species is at equilibrium within its range, all niche

environments are realized in nature, detection probability

is uniform across environments (i.e. detection probability is

independent of local abundance, habitat type, distance to

roads, etc.), and there are no occurrences of the species at

places it cannot persist in the absence of immigration (i.e.

the number of records of the species in population sinks is

negligible [12]) may one assume that occurrence records are

drawn from the distribution of niche environments in

nature. These biases often prevent random sampling from

the distribution of niche environments or even correcting a

non-random sample [11,13,14].

Similar problems prevent sampling from the density of

non-niche environments, where the problem may be exacer-

bated. Again, the definition is clear enough: non-niche

environments of a species are those environments (real or ima-

ginary, compare reference [15]) that are not within the set of

environments in which a population of the species could per-

sist in isolation from other sources. The spatial distribution of

these in nature is also well defined. It is the locations of all such

environments among the realized environments in nature. The

problem is how this distribution is sampled and how that

sample (together with a sample from the niche environments)

relates to statistical classification. For instance, while the space

of habitable environments is relatively small, the number of

ways that an environment may be uninhabitable is huge

(and, of course, most of these will not be realized in nature

to be sampled from). The ambiguity of the classification pro-

blem introduces additional sampling biases. Are absence

locations chosen to be those at which searches for the species

were made but nothing collected or from all locations? But,

even where searches have been made, these will be of different

intensities at different locations and in any case will not be dis-

tributed in the same way as the non-niche environments

themselves. Or, should absence locations be taken to be

those that are ‘geographically close’ to occurrence records,

i.e. locations that the species presumably had opportunity,

but failed, to colonize (the set of ‘migratorily accessible’

environments M in the framework of Peterson et al. [11])?

Or, should absence locations be taken to be those that are

‘environmentally close’ to occurrence records, i.e. environ-

ments that might best delineate the boundary of the niche in

ecological space? These problems are well known in ecology

[11,16], and, for reasons like these, together with the impossi-

bility of documenting non-occurrence in a non-exhaustive

sample, and the expense and difficulty of obtaining sufficiently

large samples to determine that even if a species is present at a

site it must be present in low numbers, many studies have

ceased aiming to discriminate presences from absences, but

only to discriminate presences from the joint distribution of

environments overall (presence–background models) [7].

Unfortunately, there are even more problems. There

are numerous reasons why species are not found in envi-

ronments in which they could persist (even granting the

assumptions of range equilibrium and migratory accessibility),

including species interactions, metapopulation dynamics and

disturbance cycles [10]. For some species, it is plausible that

the majority of the locations within a species’ niche will not
be occupied [17]. Indeed, as the spatial resolution at which

sites are delineated increases, the fraction of sites occupied

will typically decline, so that prevalence is a scale-dependent

property [18]. Thus, regardless of whether a presence–absence

or presence–background approach is taken, from a practical

point of view, the occurrence records will always be a subset,

not a contrasting class. For these reasons, presence-only

methods might be preferred for the development of species

distribution models as well as other applications of niche

modelling [4,19].

1.1. The goal of niche modelling
There is also a positive case for presence-only modelling.

Central to the idea of the niche is the ecological concept of

tolerance [10,20]. We start with the joint distribution of envi-

ronments in nature p(z), z [ Rx (see table 1 for a summary of

notation; figure 1a). The set of all realized environments is

designated P (although the picture in figure 1a is slightly

misleading—P may not be simply connected). We will say
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Figure 1. The probability density of environments occupied by a species, f (z), is
the product of their distribution in nature, p(z), and the habitat selection func-
tion, q(z). P is the set of environments realized in nature. The boundary hN(z)
separates niche environments, N, from non-niche environments. A similar
boundary, hF(z), encloses the support F of the distribution of environment in
nature. If P is broad with respect to N, then hN(z) � hF(z) even if p(z) and
q(z) are far from uniform. (a) Probability density of environment p(z).
(b) Habitat selection function q(z) . 0. (c) Density of occupied environments
f (z) ¼ p(z)q(z).
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that a species tolerates an environment z if and only if it can

locally persist (i.e. persist in the absence of supplemental

migration) in z. The effect of environment z on the persistence

of a population is determined by the fitnesses of individuals in

that environment. We will assume that fitness in z may be

mapped to a habitat selection function, q(z), which gives the prob-

ability that environment z is occupied by the species (figure 1b)

[21,22]. We assume q(z) ¼ 0 if and only if fitness in P is less than

one. The niche is defined by the indicator function

gN(z) ¼ 1 if z [ N
0 if z � N:

�
(1:1)

The limits to tolerance are the boundaries in the environmental

space between the subsets of the environments in which the

species can persist (the niche, N) and those where it cannot,
or the zero net growth isocline, denoted hN(z), which is the

boundary of N [23,24].

I suggest that we think of niche identification as the esti-

mation of hN(z). Obviously, the distribution of occupied

environments in nature, f (z), depends on both the density

of environments from which species can select and the habi-

tat selection function (figure 1c). We designate this set F and

denote its boundary by hF(z). The key insight is that if the set

P is ‘large’ compared with N, then hN(z) � hF(z) and a model

of hF(z) may be substituted for hN(z) in practice. Figure 2 pre-

sents this idea graphically. What it means for P to be large is

somewhat ambiguous. The intuition is that information is

required mainly near the boundary of N, the zero net

growth isocline and is relatively unimportant elsewhere.

Possibly, this criterion could be made more precise by stating

additional conditions ensuring that the species had the

opportunity to explore its environmental space, for instance

that for all points in hN(z) there must exist within a local

neighbourhood points in P. Importantly, the approximation

of hN(z) by hF(z) may be good even where f (z) and q(z)

have very different shapes (figures 1 and 2). This is useful

because one typically has data drawn from f (z) but not q(z).

For this reason, we may wish to speak of ‘estimating the sup-

port of f’, by which we mean estimating the parameters of a

model ĥF, or a trained algorithm. The estimation of hF may be

construed as a classification problem, but does not have to be.

Further, this picture makes no explicit assumptions concern-

ing the prevalence of a species in nature (i.e. whether q(z) is

large or small in places where it is positive).

The framework introduced here assumes that (i) the rea-

lized environments (P) are large with respect to the species

niche, (ii) the environmental space has been widely sampled

by the species (compare [16]) and (iii) few occurrences are

found in sink environments (i.e. there are few occurrence

records where, in fact, q(z) ¼ 0). While this picture differs

from that of many authors with respect to the proper goals

of niche modelling, assumptions (i)–(iii) are common to vir-

tually all approaches. Finding methods that achieve the

objectives of niche modelling when these assumptions are vio-

lated is an important area for further work. Concerning (ii),

particularly, although we require N > P = Ø we do not

require N , P and we do not require the species to have

‘sampled’ P in any particular way (i.e. randomly, or at spatial

equilibrium, or evenly—although we do want it to have

sampled a wide range of P, particularly in the vicinity of the

unknown boundary hN). For instance, in a continuous niche

dimension (e.g. average annual temperature), the fundamental

niche may consist of a closed interval [21.75, 2.75] as for vari-

able z1 in figure 2. By hypothesis (and contrary to the

illustration in figure 2), we assume that no locations presently

exist with (z1 ¼ 2.2, z2 ¼ 2), so that this environment is not in

the support of the sampling density f. Nevertheless, because

this point is contained in N (and enclosed by the boundary

hN), it may nevertheless be included in the estimated niche.

A trickier problem is presented by the subset of N not con-

tained in the boundary of P. In figure 2, these are

environments in N\P. Inevitably, this kind of failure leads to

biased estimates of the boundary hF. The point of figure 2 is

that this bias may not be severe (the maximum displacement

between hF and hN is much smaller than the displacement

between the peaks of f(z) and q(z) in figure 2). However,

there are no guarantees. The conclusion of this argument is

that numerical methods that aim to model the support of a
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Figure 2. If the density of environments p(z) is far from uniform, the distribution of occupied environments in nature, f (z) may bear little resemblance to the
habitat selection function q(z). This plot shows the two-dimensional habitat selection function, q(z), and joint density of occupied environments, f (z), ‘marginalized’
over variable z2 (a). Importantly, the maxima of these functions are displaced from each other by approximately half the habitable range. Nonetheless, hF(z), the
boundary of the support of f (z) may be a very good approximation to hN(z), the zero net growth isocline (b). Note, particularly, that even though the maxima of p(z)
and q(z) belong to different modes the supports of these functions are nearly identical.
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distribution [25–28] may work much better for niche model-

ling than methods that focus on matching the higher

moments (mean, variance, etc. [8,6,29]). At the very least,

such methods could enrich the niche modelling toolbox.
1.2. What is a range?
The main objective of this paper is to propose a new method

for ecological niche modelling called range bagging. Range

bagging is motivated by the success of popular ensemble

methods for ecological niche modelling (e.g. boosted

regression trees [30]) together with a closer look at what ecol-

ogists mean by ‘niche’. The conception that I propose is that

the niche is the range of environments in which the species can
persist. But, what is a range? In general, range is the interval

between two extremes of an ordered set. In biogeography,

range is the interval between two extreme occurrences

(e.g. latitudinal range, compare [31,32]). In statistics, range is

the interval between the minimum and the maximum of a

sample [33]. In some cases, we do not have an ordered set,

but rather consider range to be the set of possibilities or

the cardinality of the set. In parasitology, host range is the

number or composition of host species infected by a parasite

[34]. In mathematics, range is the set of all values of a

function, i.e. its image [35].

Broadly in keeping with these related concepts of range,

we will say the environmental range of a species consists of

the closed interval defined by its tolerance limits (minimum

and maximum) for an environmental variable (e.g. tempera-

ture [36]). To extend this concept of range to multi-

dimensional environmental spaces, we will say that the

environmental range of a species in Rx is the smallest

convex set that contains N, i.e. the convex hull of N. A set

is convex if and only if for every pair of points within the

set, every point on the straight line segment joining the pair

is also within the set. Defined this way, the environmental

range satisfies our intuitions about what a range is and, more-

over, is invariant to translations and rotations of the

environmental coordinate system. Equivalently, the convex
set contains the univariate ranges of all possible rotations of

the environmental coordinate system.
2. Methods
2.1. Range bagging
While it is unknown if species’ niches typically are convex

and simply connected, it is plausible that they might be.

(Under what conditions would species evolve non-convex, non-

connected niches?) Although non-convex niches have sometimes

been measured [37, p. 114], both classical [38, p. 235] and con-

temporary [8,39,40] contributions often assume niches to be

convex. In any case, niches with irregular, complicated bound-

aries are likely to be rare and a convex, simply connected space

appeals as an approximation to something more complicated.

It follows that if an approach can be developed to estimate

species environmental ranges from data, such a model might

also be interpreted to be a model of the niche. Range bagging

is such an approach.

The basic idea of range bagging is to vote ranges of environ-

mental variables obtained from bootstrap samples of a sample

from the distribution f (z). To explain in more detail, we first

introduce the concept of the marginal niche, which is the environ-

mental range of a species viewed from a lower-dimensional

perspective. Specifically, a set Dd is a marginal niche if and

only if it is a d-dimensional projection of N onto a space D , N
of dimension d , x. If d ¼ 1, the marginal niche is the numerical

range of an environmental variable over which the species may

be found, say salinity or temperature. Following the discussion

above, the concept of marginal niche is readily extended to

dimension d . 1 as the convex hull in Rd of the environments

in N. The value of d is central to the range-bagging algorithm.

We say that d is the order of the model.

One (possibly unrealistic) proposal is to use the x-dimensional

convex hull of the occurrence records as a model of the niche

[41,42]. This idea is unworkable, because convex hulls in high

dimensions are typically too complex to compute (the upper

bound theorem gives the worst-case complexity as O(nbd/2c),

where b . c is the floor function [43]) and because typical samples

(at best drawn evenly with respect to the individual environmental

variables and more likely with some substantial tendency to be
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concentrated) will be highly clustered in the centre of a high-

dimensional space. A second proposal, then, is to use an estimate

of the marginal niche, comprised of the convex hull of a subset d ,

x of the original environmental variables, as a reduced or partial

model of the niche. Given that we are thinking of the marginal

niche as a projection of N onto D, we might think of this as the

niche from a particular perspective, say from the perspective of
thermal tolerance or from the perspective of available food resources.
Such a model is expected to have better statistical properties than

a model constructed from the convex hull of the entire set of occur-

rence records, because the range is more evenly sampled in d

dimensions than x dimensions.

However, we can possibly do even better. It has recently

become apparent in many disciplines, including ecology, that

ensembles of models are often more reliable (stable, accurate,

unbiased) than individual models. In machine learning, one

approach to ensemble modelling is called bootstrap aggregation

or bagging [44]. Bagging consists of multiply selecting a bootstrap

sample of the original data, fitting models to individual samples

and averaging the outcome [45]. Range bagging, then, consists of

two core steps:

let n be the number of records in the dataset, represented by x
environmental variables. For each iteration, i [ [1,2,3, . . . v];

(1) Sample step. For a model of order d, randomly select (without

replacement) d , x environmental variables. From the result-

ing n � d table of records, randomly select (without

replacement) w � n records to be included in the bootstrap

sample, Xi.

(2) Marginal niche estimation step. As a base learner, estimate the

marginal niche D̂i of the points in Xi. If d ¼ 1, the marginal

niche is simply the interval between the minimum and maxi-

mum values in the bootstrap sample. For d . 1, the marginal

niche is the convex hull of the bootstrap sample.

A new point ~z is assigned niche centrality u(~z) ¼ (1=v)
P

iID̂i
(~z),

where I(.) is the indicator function. That is, the point ~z is tested

for whether it belongs to each of the estimated marginal niche

models D̂i, and the resulting ensemble of predictions is averaged

to provide an index. In the event that we seek a categorical

response (niche/non-niche), class assignment will be made

using the indicator function h(~z) ¼ Iu(~z).e(~z) for some 0 � e � 1.

Note that a choice of e . 0 implies the species to have been

found in a sink environment.

A couple of notes on this procedure are in order. First, for

the bootstrap samples, it does not make sense to sample with

replacement, because duplicated points have no effect on the

estimate of the range (minimum and maximum) or the convex

hull of points. Second, the value w is a tuning parameter (per-

haps best thought of in terms of the fraction of points sampled,

p ¼ w/n). This model will be increasingly ‘conservative’ (in the

sense of excluding peripheral but tolerable environments from

the estimated marginal niche D̂i) as p is reduced from its maxi-

mum at one towards zero. This could be very useful with

species or datasets in which a lot of examples are from sink

habitats. In this respect, p may be thought of as a robustifying

parameter. In the typical case where it is assumed that obser-

vations from sink habitats are rare or non-existent, we will set

p ¼ 1 to maximize the chance of sampling the extreme cases

that are most informative about the niche boundary. Finally,

range bagging has time complexity of the order of the base lear-

ners (O(n) for d ¼ 1 and O(n log k) for d ¼ 2 and d ¼ 3, where k is

the number of points in the resulting hull).

2.2. R implementation
The range bagging algorithm is easily implemented in R [46]

using the interface provided by the geometry package to the

Qhull library [47]. This study was performed using only two
new functions (rb and rb.test) that provide wrappers to the

functions convhulln for computing the convex hull of a

multi-dimensional set of points and tsearchn for determining

which element of a Delaunay triangulation a particular point

belongs to, which may be used as a test for whether the point

is contained within the convex hull. These functions are included

in the electronic supplementary material.

To compare computational complexity with Qhull (the full

convex hull), I simulated n ¼ 100 training records from a

d-dimensional (d [ [1, 2, 3, . . . 9]) multivariate normal distribution

with mean 0 and unit variance. These were considered to be a

sample of occurrence records from the joint distribution f (z).

Next, I generated a sample of ~n ¼ 50 test records from a

d-dimensional multivariate normal distribution with mean 5 and

unit variance. Computing time (time required to test 50 records

selected from the original 100 used for training together with the

50 outliers) for range bag models was almost constant with dimen-

sion, whereas time required to compute the full convex hull with

Qhull increased approximately exponentially (figure 3).
2.3. Case study: two-spined blackfish
To illustrate, I compared range bagging with MaxEnt using data

from a case study on two-spined blackfish Gadopsis bispinosus, a

medium-sized (15–17 cm length) freshwater fish that inhabits

flowing waters of Australia’s Murray–Darling river system.

Data are from Elith et al. [7] and include occurrence records for

255 sites and background data from a random sample of 10 000

of the approximately 240 000 mapped river segments within

the biogeographic range of G. bispinosus. Covariate data com-

prised 19 variables pertaining to climate, geography and

ecology at three spatial scales as well as an indicator variable

for the subriver system to which each segment belongs. Elith

et al. [7] fit a MaxEnt model to these data and obtained an aver-

age AUC of 0.97 on withheld data in cross-validation. To look at

the performance of range bagging with respect to the tuning

variables, I performed one- and two-dimensional range bagging

(d ¼ 1 and d ¼ 2) on the occurrence data over a range of the

tuning variables v (number of base learners voted to obtain the

final model) and p (the fraction of records in each bootstrap

sample). To measure performance, I computed the average

AUC in 10-fold cross-validation. The results may be visualized

as a heat map (figure 4). For d ¼ 1, range bagging achieved a

maximum AUC of 0.954 at p ¼ 227/2 � 0.088 and v ¼ 1024. For

d ¼ 2, the maximum AUC was 0.968 at p ¼ 223/2 � 0.354 and

v ¼ 256, indistinguishable from the MaxEnt result reported by

Elith et al. More importantly, the increase in performance
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increased rapidly with the number of votes reaching its maxi-

mum quickly and showing no evidence for a reduction with

further increases in v. Further, as clearly shown in figure 4,

there was very little effect of p on the performance at all.

Together, these observations suggest that range bagging, like

other ensemble methods, may be deployed in a way that is

very robust to model choices.
3. Discussion
3.1. Niche theory
What is the aim of niche theory? In my view, a theory of the

ecological niche is successful if it provides the concepts

needed to understand the relationship between species and

their environments and accurately predicts the spatial distri-

bution of species by way of these concepts. Although

seemingly similar in intent, the framework adopted in this

paper is different to that of Peterson et al. [11] in several

respects. Consistent with standard practice in ecology, both

assume that environments are represented by a vector of

measurements (denoted z here and e by Peterson et al. [11]).

However, z is restricted to the real numbers, whereas e in

Peterson et al. is also intended to encompass categorical

and ordinal covariates. The concept of environmental range

developed here is not consistent with categorical and ordinal

covariates. Moreover, most of the key concepts in the theory

of Peterson et al. [11] are defined only with respect to existing

environments, whereas the niche theory underlying range

bagging applies to both realized and possible environments.

Thus, for example, the set of realized environments (P), is

central to range bagging, but appears only briefly in an

appendix of Peterson et al. [11] (where it is designated by

N ). Similarly, the range bagging approach considers the

niche (N ) to be fundamental (and defined via q) and esti-

mable, whereas Peterson et al. [11] are largely concerned

with only the intersection of P and N. Further, range bagging

considers the boundaries hN and hF to be the key targets of

estimation. These quantities have no counterpart in the

theory of Peterson et al. [11]. These differences are important

for both practical and theoretical reasons. Practically, the two

approaches lend themselves to different approaches to evalu-

ation. A model of the environmental range is good when the

fit model ĥF lies close to the unknown boundary hN. In their

approach to evaluation, Peterson et al. [11] are primarily con-

cerned with the correct prediction of species’ occurrence (or

conditional probability of occurrence) at observed locations,
rather than at discrepancies between the fit model and the out-

come of a hypothetical test (if the species were to be introduced

to environment z, would it persist or not?). It is my view that

the empirical assertions made by this latter subjunctive con-

ditional statement are the essential characteristics of a niche

theory [9].
3.2. Range bagging
This paper introduces range bagging, a new method for iden-

tifying the niche of a species from records of its occurrence in

nature. Through simulation, I established that this method is

more efficient (less computuationally complex) than fitting

the full multi-dimensional convex hull. Although motivated

by, and designed for, the ecological problem of niche identi-

fication, it is possible that range bagging could be useful for

many kinds of one-class classification [25], including estimat-

ing the support of a statistical distribution [26], concept

learning [48] and outlier detection [49].

Why does range bagging work? There is a theoretical

worry. Although range bagging is not itself a bootstrap estima-

tor, when p , 1 it does depend on bootstrap estimates of

distributional minima and maxima. These are not theoretically

consistent. (Estimates obtained in this way do not converge in

probability to the true values.) Is this consistency a problem?

Possibly not. Bagging algorithms are not generally consistent,

although bagging preserves the consistency of its base learners,

and may even convert inconsistent base learners to consistent

ensemble learners [50]. Moreover, bagging may perform very

well in applications even when inconsistent [50]. Motivated

by this observation, it is easy to envision a number of exten-

sions to the basic range bagging algorithm presented here

and plausible that further gains in performance could be

achieved. First, because the minimum and maximum of a

sample (or of a bootstrap sample of a sample) are biased esti-

mators of the true minimum and maximum of a distribution,

the marginal niche models that are the base learners of range

bagging will always be proper subsets of the models that

would be obtained from an infinite sample, even if the ‘boot-

strap’ sample contains the entire set of observed records.

A variant of the original algorithm might seek to counter

this bias by substituting an alternative estimator, thereby

‘stretching’ the boundary of the estimated base model. In the

one-dimensional case, this might be achieved using an ‘average

gap’-type correction [51] or by defining a small quantity, poss-

ibly a fixed fraction of the observed range, and extending the
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range by subtracting this quantity from the minimum and

adding it to the maximum. In the higher-order (d . 1) case,

some principled means of extending the observed range

would be required. Alternatively, extreme value theory might

be used to parametrically put limits on the extrema [52].

Finally, because range bagging is ultimately based on the phys-

iological tolerances of species, experimental data could be

incorporated, perhaps by supplying a prior probability on

the minimum or maximum or even stipulating a lethal con-

ditions at which q(z) ¼ 0 [53]. This would be particularly

useful in cases where a species is suspected of not reaching

the extents of its environmental tolerances for contingent bio-

geographic or ecological reasons (e.g. an invasive species not

at range equilibrium [54]).

Another way in which range bagging needs to be

extended is to allow for categorical environmental variables.

Importantly, categorical variables, particularly unordered

variables, would require that we change our concept of

range. Specifically, a more general concept of connectedness

is required to replace the simple connectedness assumption

that allows us to define range in a multi-dimensional sense.

This is a key issue for further theoretical development.

Besides asking how range bagging may be extended, it is

interesting to consider how it is related to existing methods

for machine learning. Particularly, range bagging is very simi-

lar to the method of random forests [44], particularly random

decision ‘stumps’ (bagged decision trees consisting of a single

binary classification). Indeed, range bagging was itself inspired

by asking how a random forest could be used for one-class

classification. Essentially, a decision stump for a density esti-

mation problem is asking whether or not a test point is

found in the range of a data sample. This idea led to the

one-dimensional range bagging algorithm. The general

approach (convex hulls) evolved naturally from inquiring

what a multi-dimensional ‘range’ might be.

Finally, there are questions about how range bagging will

perform under real-world data sampling scenarios. For illus-

tration, I used range bagging in a case study of G. spinosus,
where data are openly available and include a large number

of covariates. Possibly, the extremely good performance of

both MaxEnt and range bagging attests not only to the flexi-

bility of these models, but also to the high predictability of

this particular dataset. Nonetheless, the example shows that

range bagging may perform comparably to other widely

used methods. An interesting question (both for MaxEnt and

for range bagging) is how well these methods perform in the

presence of irrelevant variables. I expect that range bagging

may result in poorly calibrated models (because lots of boot-

strap samples would contain only irrelevant variables), but

that these would not affect model discrimination, i.e. the rank

ordering of environments by the model ensemble [3]. A related

question is how best to select variables, particularly for range

bagging (MaxEnt has L1 regularization built in, which can be

used for variable selection [29]), and whether or not dimen-

sional reduction through variable selection can yield stabler

or more accurate models, or models that are better suited to

guiding future studies by improving interpretability.
3.3. The goals of niche modelling
The introduction to this paper presented an argument about

the goal of ecological niche modelling. Specifically, I argued

that models of the ecological niche that aim to estimate the
zero net growth isocline should more accurately represent

the potential and actual distributions of a species than

models that are aimed at fitting the central moments of the

distribution of occupied environments. This argument

assumes that the probability of habitat selection is greater

than zero if and only if average individual fitness exceeds

one. The relationship between fitness and habitat selection

is an important area for further conceptual clarification,

theoretical development and empirical testing.

I further argued that if the range of realized environments

is broad with respect to the ecological niche, then boundary

estimation methods for ecological niche modelling may be

robust to sampling biases and awkward data distributions

that are common in occurrence data. This breadth require-

ment does not entail that the niche environments must be a

strict subset of the realized environments, although such a

condition of strict nestedness would be sufficient. Particu-

larly, there are two ways in which niche environments may

not be realized (i) there may be ‘interior’ environments

within the range (convex hull) of realized environments

that simply do not exist and (ii) the niche may include

environments that are outside the range (convex hull) of

any conditions realized in nature. How these two violations

of nestedness differently affect model fitting is an important

problem for further consideration. Particularly, I would

guess range bagging to be more robust to missing data of

the first kind than other common methods, particularly

those that are most flexible like boosted regression trees. It

is expected that missingness of the second kind will affect

the extrapolability of range bagging much more than viola-

tions of the first. In such cases, it is possible that parametric

methods, which tend more to be ‘global fits’ to the data

would be superior. However, in my view, whether or not

any niche modelling methods are robust to missingness of

the second kind is a very interesting question. These

principles for ecological niche modelling are general and

apply regardless of whether range bagging, the approach

introduced here, is generally successful or not.
3.4. Are the niche and the environmental range
equivalent?

I conclude with a new question: are the niche and the

environmental range of a species equivalent? Certainly, all

environments in which a species can persist (all the environ-

ments in its niche) are elements of its environmental range,

by definition. But, are all the environments of a species’

range also environments in which it can persist? This is

true only if the niche is convex and simply connected. The

definition of the environmental range presented here, the

convex hull of the environments tolerable to a species (the

environments in which it can persist), allows this to be an

empirical, rather than merely conceptual, question.
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