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The past is never dead. It’s not even past

William Faulkner (1951)

Bacteria can acquire heritable immunity to viral (phage) enemies by incorporating phage DNA into their

own genome. This mechanism of anti-viral defence, known by the acronym CRISPR, simultaneously

stores detailed information about current and past enemies and the evolved resistance to them. As a

high-resolution genetic marker that is intimately tied with the host–pathogen interaction, the CRISPR

system offers a unique, and relatively untapped, opportunity to study epidemiological and coevolutionary

dynamics in microbial communities that were previously neglected because they could not be cultured in

the laboratory. We briefly review the molecular mechanisms of CRISPR-mediated host–pathogen

resistance, before assessing their potential importance for coevolution in nature, and their utility as a

means of studying coevolutionary dynamics through metagenomics and laboratory experimentation.
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1. INTRODUCTION
Evolution is explicitly about change over generations, and

that can make it difficult to study when generation times

are long, or when organisms are difficult to routinely

assay. It is therefore convenient when evolution leaves

behind traces of its activity. Fossils record the past, but

offer a poor record of evolution at the molecular level.

Fortunately, evidence of the past is often imprinted

upon DNA sequences. For example, sequence compari-

sons can be used to estimate the proportion of

differences between species that are driven by natural

selection (as opposed to random walks of neutral vari-

ation), and even to estimate the speed at which

adaptation has proceeded (Nielsen 2005). Such analyses

have indicated that, perhaps more than any other class

of genes, those of immune systems tend to evolve adap-

tively and rapidly (Bustamante et al. 2005). This

suggests that host–parasite coevolution plays a central role

in the maintenance of biological diversity (Buckling &

Rainey 2002a; Laine & Tellier 2008). Still, most studies

focus on the past evolutionary record of host defence

genes, or, separately, of parasite infectivity genes, and

thus address coevolution indirectly. Recently, a remark-

able mechanism has been described that may provide,

in the DNA sequence of a single organism, a detailed

molecular record of coevolution. Clustered regularly

interspaced short palindromic repeats (CRISPRs) are

arrays of prokaryotic DNA sequences that mediate a

form of acquired immunity to specific viral pathogens

(Sorek et al. 2008; van der Oost et al. 2009)—something
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usually associated with vertebrate defence systems—and

in the process provide a record of coevolution past. The

study of this defence mechanism has already revealed

some fascinating molecular biology, but relatively untapped

is the potential to explore the ongoing warfare between

hosts and their phage pathogens in natural environments.
2. ACQUIRED, SPECIFIC AND HERITABLE
BACTERIAL RESISTANCE TO VIRAL PATHOGENS
Viruses that infect bacteria (bacteriophages) are ubiqui-

tous in natural bacterial communities (Abedon 2008),

and in some environments outnumber their bacterial

hosts nearly tenfold (Suttle 2005). Bacteria have evolved

a number of phage-resistance mechanisms, such as

adsorption blocking, restricting the injection of phage

genetic material and some abortive infection mechanisms

(Sturino & Klaenhammer 2006). An additional mechan-

ism has recently been added to this list: CRISPRs are

present in bacterial and archaeal genomes, and are

made up of arrays of highly conserved 24- to 47-bp

repeats, separated by variable, often unique spacer

sequences, derived from foreign replicons such as phage

or plasmids (figure 1; Sorek et al. 2008). In a series of ele-

gant experiments (Barrangou et al. 2007; Brouns et al.

2008; Deveau et al. 2008), it was recently shown that:

(i) bacterial cells incorporate phage genetic material into

CRISPRs as spacers; (ii) acquiring these spacers renders

bacterial hosts resistant towards phage that carry the

incorporated sequence; (iii) removal of these spacers

results in the loss of this resistance; and (iv) single

mutations at specific short motifs in the phage genome

are sufficient to evolve counter-resistance (figure 1).

This potential for reciprocal adaptation to host resistance
This journal is q 2010 The Royal Society
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Figure 1. A schematic representation of CRISPR-mediated phage resistance. CRISPR-associated (Cas) proteins play an impor-
tant role in the initial recognition of phage genetic material and incorporating these proto-spacers in the CRISPR array (1).
Once incorporated, these spacers are then transcribed (2) and used as templates to target homologous phage sequences

within the bacterial cell, again mediated by Cas protein complexes (3). The bottom left of the figure illustrates the specificity
of CRISPR-mediated resistance. While resistance to a specific phage genotype can be acquired by incorporating a spacer
derived from that genotype, point mutations in the phage (represented by the black squares) are sufficient to evade resistance.
Hosts are only able to resist this mutant by incorporating a phage-derived spacer containing the new mutation. This could

lead to an ongoing ‘arms race’, with hosts incorporating more spacers in response to increasing phage mutation accumulation.
The order in which these spacers are incorporated also provides a sequential record of past phage infections.
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and pathogen infectivity marks CRISPRs as a potential

molecular mechanism for coevolution.

An integral part of this anti-phage defence mechanism

is the action of CRISPR-associated (Cas) proteins. Cas

proteins are usually found adjacent and upstream of

CRISPR arrays, and show high sequence and structural

similarity to proteins with endonuclease, and DNA- and

RNA-binding functions (Jansen et al. 2002; Wiedenheft

et al. 2009). Because of this feature, they have been

thought to function similarly to RNA-interference

(RNAi) genes (reviewed in Marraffini & Sontheimer

2010a), which themselves mediate a rapidly evolving anti-

viral defence in eukaryotes (Ding et al. 2004; Obbard et al.

2009). However, despite some similarities, their protein

machineries are distinct (Makarova et al. 2006) and,

unlike RNAi, CRISPR–Cas complexes appear to bind

almost exclusively to DNA, suggesting that RNAi and

Cas proteins share little phylogenetic relation (Mojica

et al. 2009).

The molecular details are still being unravelled, but the

anti-viral action of the CRISPR–Cas complex appears to

proceed in three distinct stages (figure 1; reviewed in
Proc. R. Soc. B (2010)
Marraffini & Sontheimer 2010a). In the initial stage of

viral invasion, complexes of Cas proteins target and

cleave short recognition motifs in the phage genome

(Deveau et al. 2008; Mojica et al. 2009), and incorporate

these ‘proto-spacers’ into the host genome at the 50 end of

the CRISPR locus (Barrangou et al. 2007). These short

(23–30 bp) incorporated ‘spacers’ are then transcribed

(stage 2) as CRISPR RNAs (CrRNAs) that contain the

spacer sequence flanked on either side by partial repeat

sequences (Brouns et al. 2008), resulting in large-scale

amplification of that specific sequence. It is still unclear

whether all spacers (e.g. Lillestol et al. 2009) or only the

most recently incorporated (e.g. Brouns et al. 2008) are

transcribed during this step. The final stage involves inter-

ference with phage-derived sequences, again mediated by

Cas-protein complexes, whereby CrRNAs serve as tem-

plates to target conserved viral motifs in subsequent

infections (Brouns et al. 2008). How do CRISPRs

avoid targeting and degrading their own phage-derived

CRISPR spacer? Viral targets are identified by direct

Watson–Crick pairing, and viral degradation seems to

be triggered by mismatches at specific positions between
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the viral sequence and the repeat sequences flanking the

phage-derived spacer (Marraffini & Sontheimer 2010b).

Therefore, CRISPRs are truly a microbial immune

system (Horvath & Barrangou 2010), allowing strain-

specific resistance to be acquired, a memory of past infec-

tions that permits resistance against future encounters,

while assuring host integrity through self/non-self

discrimination.

How common is CRISPR-mediated defence in nature?

Recently, identifying and characterizing the diversity of

CRISPR–Cas complexes in the wild has been made poss-

ible by high-throughput next-generation sequencing

technologies (Mardis 2008). Using a metagenomic

approach (Hugenholtz & Tyson 2008), environmental

samples can be entirely sequenced and screened with

recently developed CRISPR- and Cas-finding algorithms

(Haft et al. 2005; Bland et al. 2007; Edgar 2007; Grissa

et al. 2007, 2008a), which are now freely available

through web-based resources (Grissa et al. 2008b; also

see CRISPR databases at http://crispr.u-psud.fr and

http://crispi.genouest.org). These ever-growing interactive

databases find CRISPR–Cas complexes in roughly 40 per

cent of bacterial and nearly 90 per cent of archaeal

genomes tested so far. Up to 45 Cas protein families

have been described based on amino acid sequences

(Haft et al. 2005). Two of these proteins, Cas 1 and

Cas 2, seem to be present among all CRISPR systems

described to date, and so offer potential universal markers

of CRISPR-mediated defence systems in microbes

(Makarova et al. 2006; Sorek et al. 2008). The crystal

structure of Cas 1 indicates that it has a metal-dependent

DNase activity, so it is thought to be involved in the initial

recognition and acquisition of viral motifs (Wiedenheft

et al. 2009), whereas Cas 2 has been shown to cleave

single-stranded RNA within U-rich regions.

Beyond mechanisms, CRISPRs offer a unique window

into the history of bacteria–phage warfare, as exposure to

a specific combination of phage strains leaves behind a

unique set of spacers in the host bacterial genome that

simultaneously represents both infective phage strains

that have been prevalent in the environment and the

specific resistance bacteria have acquired. Because

phage-derived spacers are incorporated at the CRISPR

50 leader sequence (Barrangou et al. 2007), the ordered

sequence of spacers essentially gives a temporal record

of the infection history in that bacterial population.

Hence, CRISPRs offer a high-resolution method for mol-

ecular typing of bacterial hosts and their pathogens based

on the unique CRISPR signature. Such record-keeping of

both host and pathogen genetic variation over time is

unparalleled in any other host–pathogen system. There-

fore, CRISPRs might be especially informative in

determining the history of phage host ranges, which

would be impossible to determine from other resistance

mechanisms. Below we highlight how CRISPRs offer

a valuable tool for studies of coevolution, both in the

laboratory and, importantly, in the wild.
3. PATTERNS OF ADAPTATION IN SPACE AND TIME
Bacterial CRISPRs offer a unique opportunity to address

questions of coevolutionary dynamics in natural popu-

lations, because only bacteria, which contain a record of

both their evolution and phage evolution in their
Proc. R. Soc. B (2010)
CRISPR signatures, need to be sampled. Crucially, meta-

genomic analyses can be carried out without the need to

culture bacteria in the laboratory, which means that

CRISPR-mediated coevolution can be studied in non-

cultivable bacteria. This approach potentially permits

coevolutionary dynamics to be studied in detail, either

by geographic sampling to identify patterns of local adap-

tation, or by temporal sampling where hosts and phage

are directly and simultaneously tracked over time.

One of the tenets of host–parasite coevolution is that

antagonistic selection proceeds through local adaptation

of pathogens to common host genotypes, followed by

counter-adaptation of hosts (Hamilton 1993; Woolhouse

et al. 2002). Accordingly, the most common method for

inferring coevolution in wild populations is to sample

over geographic space and test whether hosts and para-

sites are locally adapted (Greischar & Koskella 2007).

Recently, this approach has been extended to analyses

of CRISPR sequences from environmental samples. For

example, Kunin et al. (2008) examined samples from

two geographically distant (USA and Australia) sludge

bioreactors. Focusing on the dominant, and as yet uncul-

tured, microbial species (Candidatus Accumulibacter

phosphatis or CAP), analysis of CRISPR arrays gave

strikingly different results from a thorough analysis of

the rest of the bacterial genome. Specifically, analysis of

CRISPR arrays revealed that there were no common

spacer sequences between the two populations, while

there was very little divergence at 48 other loci. To recon-

cile these differences, the authors hypothesized that CAP

strains disperse widely to become genetically homo-

geneous (hence to very low divergence found in most of

the genome), but differences in exposure to local phage

populations lead to rapid divergence of CRISPR loci.

By sequencing the phage meta-genome from the USA

bioreactor, they found 11 CRISPR spacers with matches

to sympatric phage genome fragments. Thus, the

CRISPR record of interaction with phage, coupled with

geographical sampling, suggests a coevolutionary mosaic

that overpowers the effects of dispersal. A similar result

was found in a comparative genomic analysis of Sulfolobus

islandicus CRISPR arrays and spindle-shaped virus (SSV)

sequences, where viruses exhibited clear biogeographic

structure apparently driven by ongoing adaptation to

local host strains (Held & Whitaker 2009).

The importance for coevolution of ecological factors,

such as productivity (Lopez-Pascua & Buckling 2008),

migration (Morgan et al. 2005) and spatial structuring

(Morgan et al. 2007), has been addressed with exper-

imental evolution in controlled laboratory environments.

CRISPR studies such as those described above, which

employ structured sampling strategies, potentially allow

analogous coevolutionary dynamics to be studied in

natural populations. However, a key limitation of

this approach is that inferring local adaptation from the

presence of spacers and the corresponding phage

sequence could be misleading if not all spacers are

always expressed (e.g. Brouns et al. 2008), or if the

CRISPR system is not functional. Metagenomic studies

in conjunction with phenotypic assays of phage infectivity

on local bacterial hosts would unequivocally determine

the level of local adaptation, but in many cases laboratory

cultures of microbes are difficult to establish (but see Vos

et al. 2009).

http://crispr.u-psud.fr
http://crispr.u-psud.fr
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CRISPR studies have shown that our inability to cul-

ture the vast majority of bacteria does not necessarily

stop us from accurately inferring coevolutionary

dynamics. This is certainly the case for microbial biofilms

of thermophilic (Synechcoccus thermophilus) or acidophilic

(Leptospirillum) bacteria and their natural phage patho-

gens (Tyson & Banfield 2008; Heidelberg et al. 2009).

Comparative genomics of CRISPR arrays with the viral

meta-genomes from these environments demonstrated a

history of selective sweeps at a CRISPR locus (Tyson &

Banfield 2008) and an abundance of single-nucleotide

polymorphisms in the viral sequence corresponding to

all but the most recently incorporated spacers (Heidelberg

et al. 2009). This suggests a scenario of rapid coevolution-

ary interactions between the microbial hosts and phage

that maintains population-wide genetic diversity. It

appears that such records of coevolution past may run

extremely deep. For example, CRISPR from Leptospirillum

populations found in acid mine drainage and subaerial

biofilms (398C, pH approx. 1; Andersson & Banfield

2008) were found to contain 37 distinct CRISPR arrays

containing a total of 6044 spacer sequences (of which

2348 were unique). Most of these were of viral origin

(up to 40 per cent at a single CRISPR locus), although

some came from extrachromosomal elements such as plas-

mids and transposons, indicating that CRISPR loci may,

for reasons that are not yet clear, contain records of other

types of partnership (Marraffini & Sontheimer 2008).

The studies described above used a spatial sampling

strategy to test for local adaptation. Such spatial patterns

of local adaptation can indirectly indicate the action of

coevolution, but regular and frequent sampling through

time offers a more direct window on the process. As

with spatial sampling, it would add value to confirm

field patterns of phage adaptation with laboratory exper-

imentation, specifically via time-shift experiments,

where antagonists are sampled at different time points

and controlled infections carried out between them

(Gaba & Ebert 2009). By observing the patterns of infec-

tivity among these combinations, one may infer the

underlying coevolutionary dynamics (Gandon et al.

2008). Time-shift experiments have been achieved, for

example, in laboratory studies of Pseudomonas bacteria

and phage (Buckling & Rainey 2002b; Brockhurst et al.

2003), and on larger organisms in the field by collecting

resting eggs of Daphnia and long-living parasite trans-

mission spores from dated lake sediment cores

(Decaestecker et al. 2007). What has never been achieved

is a union of field observation, phenotypic assays and

documentation of their molecular underpinnings. One

test of parasite local adaptation in a plant–pathogen

system (Laine 2007) reported discordant results when

measuring parasite fitness in either a field-transplant exper-

iment or a laboratory cross-infection experiment. If

CRISPRs are employed to investigate patterns of coevolu-

tion across time or space in a bacterial system that is also

amenable to laboratory culture, the intersection between

laboratory and field-based investigations would provide

clear benefits to our understanding of local adaptation

and coevolutionary dynamics (Nuismer & Gandon 2008).

Work in some host–pathogen systems has sought to

infer the nature of coevolutionary dynamics from the

underlying genetics of infection. Most notably, workers

have compared the propensity of the ‘gene-for-gene’ and
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‘matching allele’ infection models to promote and main-

tain genetic polymorphism (Agrawal & Lively 2002).

However, in conventional models, resistant phenotypes

are derived by mutations on the host genome, whereas

CRISPR-mediated resistance is explicitly linked to gen-

etic variance in the prevailing pathogen population. It is

therefore difficult to predict CRISPR-mediated coevolu-

tionary dynamics without some knowledge of the

infection genetics particular to this mechanism. For

example, CRISPR-mediated systems suggest exquisite

specificity: hosts are no longer protected from phage that

acquires a single mutation in spacer-derived sequences.

These phages are thus universally infective and should

quickly sweep to high frequency. Will this happen so fast

that the new phage mutants quickly fix in populations,

eroding genetic variation in the process? Or will acquisition

of a phage-derived spacer into a CRISPR locus occur

quickly enough to halt the march to fixation? It is presently

unclear how rapidly populations can acquire resistance via

CRISPR; that is, what proportion of infected host cells

incorporate viral spacers before lysis occurs.

One may also speculate on the relative importance

of CRISPR-based resistance relative to other phage-

resistance mechanisms, such as cell-surface receptor

modification. Receptor modification offers a first line of

defence that impedes the entry of most phages, but

mutations at these receptors often come at some meta-

bolic cost to the host, as they are the same receptors

involved in nutrient uptake (e.g. Ferenci et al. 1980). In

addition, viral population sizes and mutation rates are

much higher than for their bacterial hosts (Drake et al.

1998), so such resistance can in principle be easily

evaded. Depending on how efficient spacer acquisition

by CRISPRs is, such a second line of defence once

phage have entered the host cell could relax the costs

associated with receptor modification, and also provide

an invaluable chance of halting infection once counter-

resistance to receptor modification has occurred. This

interplay between CRISPR and other defence mechan-

isms is yet to be explored, and addressing these issues

will tell us much about the genetic constraints on

CRISPR-mediated resistance evolution (in particular,

the rates at which CRISPRs evolve relative to changes

in pathogen-imposed selection over time).
4. MEASURING THE COSTS OF CRISPR-MEDIATED
RESISTANCE
Coevolutionary dynamics and levels of polymorphism in

resistance are tightly linked with the costs associated

with resisting infection (Antonovics & Thrall 1994).

Costs of resistance are a common feature of most host–

parasite systems (Sheldon & Verhulst 1996), and reveal

a trade-off (a negative co-variance) between resistance

and other life-history traits (e.g. Kraaijeveld & Godfray

1997). If CRISPR-mediated resistance were not costly,

we would expect an indefinite accumulation of phage-

derived spacers in the host genome. There may be costs

associated with CRISPR length, or with the number of

CRISPRs on the genome, and such costs may maintain

polymorphism in the number and identity of spacers

present in the bacterial population. So far, measurements

of costs of resistance in wild bacteria–phage systems are

limited (Lennon et al. 2007), and whether CRISPR is
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costly owing to acquisition of additional spacers has yet to

be tested.

There are several potential ways that CRISPRs might

be a costly system. As hosts incorporate more spacers

(figure 1), longer CRISPR arrays may simply take

longer to replicate, resulting in reduced growth rate. A

linked issue is that as CRISPR arrays get longer, the tran-

scription of the repeat sequence separating phage-derived

spacers may cause loss of replication fidelity during cell

division, similar to what occurs in microsatellites

(Bzymek & Lovett 2001). Hence, hosts with long

CRISPR arrays might accumulate a larger number of

deleterious mutations and, consequently, have lower

fitness. Considering how CRISPRs might be costly high-

lights several unknowns about how this mechanism

provides a memory of past infections. How many spacers

are expressed during infection? That is, do CRISPR loci

allow memory against enemies from the distant past, or

are defences maintained only for the most recent patho-

genic encounters? Are there physiological costs of

expressing many spacers? Does variation in CRISPR

array size correlate with the diversity of phage that hosts

are exposed to? A recent theoretical exploration of the

evolution of gene expression in host–parasite systems

(Nuismer & Otto 2005) found that, while coevolution

often favours the co-expression of resistance alleles in

hosts (maximizing the chances of pathogen recognition),

this depends on the underlying infection genetics and

on the costs of resistance. While measuring costs of resist-

ance is often challenging (Pease & Bull 1988; Mealor &

Boots 2006), if CRISPRs can be incorporated into

a laboratory system then we could exploit the practical

advantages of experimental evolution with microbes

(Jessup et al. 2004; Buckling et al. 2009) to quantify the

mode and strength of selection on CRISPR-mediated

resistance in controlled environments.
5. EXPERIMENTAL EVOLUTIONARY EPIDEMIOLOGY
Evolutionary biology is, in principle, well poised to under-

stand the processes and mechanisms that underpin

changing pathogenicity, with well-established general the-

ories of adaptation (Fisher 1930; Price 1972), invasion

dynamics (May et al. 2001; Schreiber & Lloyd-Smith

2009) and host–pathogen coevolution (Anderson &

May 1982; Best et al. 2009; Gandon & Day 2009). But

how do evolution and epidemics interact to determine

the population burden of disease? A key challenge for

future research is to establish an experimental system

where CRISPRs may directly inform on viral epidemiolo-

gical and evolutionary dynamics in natural populations.

What is required is a host–pathogen system where it is

possible to monitor epidemics regularly and to identify

host and pathogen genotypes present during all stages

of epidemic onset. Microbial systems where seasonal

viral epidemics are known to occur (e.g. Yoshida et al.

2008) would appear to be good candidates for such

studies, and if CRISPRs are added to the equation,

there is the potential for frequent field sampling to

reveal the genetic details of epidemic onset. The

advantage of CRISPRs would be in providing a high-

resolution genetic marker that recapitulates the history

of infections in the host genome and allows individual

phage strains to be tracked by following their presence
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on these same host genomes. With this information in

hand, it is then possible to begin addressing specific ques-

tions about the dynamics of adaptation in the context of

epidemic spread: does pathogen adaptation occur mainly

from standing genetic variation or from novel mutation

(Hermisson & Pennings 2005; Barrett & Schluter 2008)?

What effect do bottlenecks have on the contributions of

selection or drift during pathogen emergence (Dlugosch

& Parker 2008)? Is there clonal interference between invad-

ing strains during epidemic onset (Miralles et al. 1999;

Pepin & Wichman 2008), and how does recombination

between them affect the epidemiological dynamics (Cole-

grave 2002; Cooper 2007)?

While the existence of CRISPR arrays in prokaryotes

was originally recognized in the late 1980s (Ishino et al.

1987), appreciation of their role in mediating resistance

against viral pathogens is very recent. The meta-

genomic-based CRISPR studies described here have

already demonstrated the potential to observe bacteria

and phage coevolution in their natural settings and in

real time, but many opportunities for fieldwork remain.

Characterizing this mechanism in host–pathogen systems

that are known to coevolve and are amenable to labora-

tory life (e.g. Vos et al. 2009) will further expand the

range of questions that can be explored, but the key

opportunity would seem to be the possibility of detailed

analysis of coevolution in the wild. The molecular book-

keeping of the CRISPR system may thus help unravel

the nature of the coevolutionary process under natural

conditions of temporal and spatial environmental

heterogeneity.
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