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Abstract: The compound 5’-deoxy-5-fluorouridine (5’-DFUR) is a prodrug of the anti-tumor drug
5-fluorouracil (5-FU). Thymidine phosphorylase (TP) is an enzyme that can convert 5’-DFUR to
its active form 5-FU and the expression of TP is upregulated in various cancer cells. In this study,
5’-DFUR associated with amphiphilic copolymer poly(ε-caprolactone)-methoxy poly(ethylene glycol)
(5’-DFUR-PCL-MPEG) was synthesized, characterized, and self-assembled into functional polymeric
micelles. To demonstrate that the prodrug 5’-DFUR could convert into cytotoxic 5-fluorouracil
(5-FU) by endogenous TP, HT-29 colorectal cancer cells were treated with 5’-DFUR-PCL-MPEG
polymeric micelles for various time periods. Chemotherapeutic drugs doxorubicin (DOX) and
7-ethyl-10-hydroxycamptothecin (SN-38) were also encapsulated separately into 5’-DFUR-PCL-MPEG
polymeric micelles to create a dual drug-loaded system. HT-29 cells were treated with DOX or SN-38
encapsulated 5’-DFUR-PCL-MPEG polymeric micelles to examine the efficacy of dual drug-loaded
micelles. As a result, HT-29 cells treated with 5’-DFUR-PCL-MPEG polymeric micelles showed up to
40% cell death rate after a 72-h treatment. In contrast, HT-29 cells challenged with DOX or SN-38
encapsulated 5’-DFUR-incorporated polymeric micelles showed 36% and 31% in cell viability after a
72-h treatment, respectively.

Keywords: 5’-DFUR; 5-fluorouracil; thymidine phosphorylase; prodrug; polymeric micelle; doxorubicin;
SN-38

1. Introduction

The compound 5-Fluorouracil (5-FU) is one of the main anti-tumor agents used to treat colon,
breast and gastric cancers. Due to the short plasma half-life of 5-FU, it is often administered to patients
through continuous infusion [1]. However, 5-FU is poorly tumor targeted and its treatment results
in several severe adverse side effects in patients including intestinal discomfort, granulocytopenia,
neuropathy, and cardiotoxicity [2–4]. Although some oral administrable 5-FU drugs have been
developed [5], side effects such as mucositis and febrile neutropenia still remain. To circumvent toxicity,
5’-deoxy-5-fluorouridine (5’-DFUR), a prodrug of 5-FU, is commonly administered to patients [6].
5’-DFUR is converted to its active and toxic form 5-FU through metabolic conversion by thymidine
phosphorylase (TP), a gene overexpressed in many cancer types [7].

TP, also known as platelet-derived endothelial cell growth factor (PD-ECGF), is an angiogenic
enzyme involved in pyrimidine nucleoside metabolism [8]. The reversible phosphorolytic cleavage of
thymidine to thymine can be catalyzed by TP [9]. TP overexpressed in various tumors [10] significantly
inhibits apoptosis of tumor cells [11]. The efficacy of 5’-DFUR is closely related to the level of TP
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expression and activity in tumor sites [12]. Several groups have exploited the enzyme-prodrug
activation model of TP and 5’-DFUR and shown that the killing rate of cancer cell lines transfected
with TP gene was augmented by the overexpressed TP level [13,14].

Clinically, 5’-DFUR has been used for the treatment of various tumor types [15–17]. Moreover,
several studies have evaluated combination therapies of 5’-DFUR with other chemotherapy drugs
such as tamoxifen, medroxyprogesterone acetate, and docetaxel with successful results [18–20]. While
5’-DFUR itself is slightly hydrophilic, intrinsic issues that are associated with other “free drugs”,
such as poor solubility, unwanted toxicity, and short circulation times have propelled research into
alternative drug delivery systems. There are several factors which contribute to the success of a
synthesized therapeutic carrier. One must first address the physiochemical limitations of the drugs;
second, one needs to address the biological hurdles in reaching the targeted tumorous tissue. Polymeric
nanocarriers for drug delivery are being developed for a wide variety of cancers and chemotherapeutic
drugs [21–23]. Specifically, several polymeric micellar carriers which house hydrophobic chemotherapy
drugs doxorubicin (DOX), paclitaxel or 7-ethyl-10-hydroxycamptothecrin (SN-38) in their core are
advancing into clinical trials with great success [24–26].

SN-38 is a biological metabolite of irinotecan hydrochloride (CPT-11). While CPT-11 is a prodrug
which can be converted to SN-38 by carboxylesterases, SN-38 has shown to have 1000-fold more potent
toxicity towards various cancer cells in vitro [27]. Moreover, metabolic conversion of CPT-11 to SN-38
in the liver and tumor has shown to be less than 10% of its original volume [28,29]. Therefore, direct
use of SN-38 is advantageous for cancer therapy. Similarly, DOX is another widely used antitumor
drug effective in the treatment of carcinomas of the breast, colon, thyroid and lung. However, due to
the ensuing toxicity and low water solubility of free SN-38 and DOX, use of a drug carrier is warranted.

It has been shown previously that the hydroxyl groups on 5’-DFUR can be used for initiation in the
ring-opening polymerization of ε-caprolactone to form 5’-DFUR-polycaprolactone (5’-DFUR-PCL) [30].
Poly(ε-caprolactone) (PCL) is commonly used for biomedical applications because of its excellent
biodegradability and biocompatibility [31]. In this study, we further grafted hydrophobic 5’-DFUR-PCL
with hydrophilic biodegradable methoxypolyethylene glycol (MPEG), widely used for drug delivery to
form amphiphilic copolymers for micelle preparation [32–34]. Moreover, because camptothecin-based
drugs are often used in conjunction with 5-FU as a first therapy [35], and the anticancer effectiveness of
DOX, we encapsulated SN-38 and DOX respectively into our prodrug-incorporated polymeric micelles
for an additive anticancer therapy.

To evaluate anticancer effectiveness of our synthesized polymeric micellar carriers, HT-29
colorectal cancer cells, which express endogenous TP, were treated with our micellar carrier. Moreover,
SN-38 and DOX chemotherapeutic drugs were encapsulated individually into our synthesized micellar
carriers and the additive effect of both 5’-DFUR and the chemotherapeutic drugs on HT-29 cell death
was examined. Our results indicate that 5’-DFUR-PCL-MPEG micellar carriers are an effective and
efficient means to deliver 5’-DFUR and chemotherapeutic drugs to tumor cells.

2. Materials and Methods

2.1. Materials

Epsilon-caprolactone (ε-CL), N,N’-dicyclohexyl carbodiimide (DCC), succinic anhydride, and
pyrene were purchased from Acros Organics (Geel, Belgium). 5’-DFUR was obtained from TCI
(Tokyo, Japan). Tetrahydrofuran (THF), toluene, dichloromethane (DCM), dimethyl sulfoxide
(DMSO), deuterated dimethyl sulfoxide (DMSO-d6), CDCl3 with 1% tetramethylsilane (TMS), Sn(Oct)2,
hexane, N-Hydroxysuccinimide (NHS), acetone, pyridine, magnesium sulfate, 2-propanol, methanol,
hydrochloric acid (HCl), SN-38, DOX, methoxypolyethylene glycol amine (MPEG-NH2; MW = 5000),
MPEG (MW = 350), penicillin-streptomycin, 0.25% trypsin/EDTA, RIPA lysis and extraction buffer,
protease inhibitor, thymidine, thymine and 5-fluorouracil were all purchased from Sigma-Aldrich
(St. Louis, MO, USA). HT-29 colorectal cell line was purchased from ATCC (HTB-38, Manassas, VA,
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USA). Fetal bovine serum (FBS) was purchased from Atlanta Biologicals (Flowery Branch, GA, USA).
Dulbecco’s modified Eagles’ medium (DMEM) was purchased from Corning Cellgro (Manassas, VA,
USA). Potassium phosphate and sodium hydroxide were purchased from Fisher Scientific (Fair Lawn,
NJ, USA).

2.2. Characterization Methods

Gel permeation chromatography (GPC) was performed on a Waters binary HPLC pump equipped
with a refractive index detector (Milford, MA, USA). Waters columns (styragel HR 3 (MW = 500–30,000)
and HR 4E (MW = 50–100,000)) were installed in series. Molecular weight calibration was performed
with polystyrene standards with MW ranged from 400 to 43,000. GPC analysis was performed by
injecting 50 µL THF at a flow rate of 1 mL per min. Proton NMR spectra were obtained from a 400 MHz
Varian Unity/Inova 400 (Sparta, NJ, USA). To gather FT-IR spectra by a FT-IR spectrometer (Jasco
4200, Tokyo, Japan), polymeric sample was first loaded onto a silicon wafer and THF was then added
dropwise to dissolve the sample and evaporated afterwards to form a film for measurement.

2.3. Synthesis of 5’-DFUR-Incorporated Amphiphilic Polymers

A total of 50 mg of 5’-DFUR was weighed and mixed with 2.25 mL of ε-CL (2.25 mL) under a bath
sonication for 5 min. The mixture was then added with 10 mg of Sn(Oct)2. The entire mixture was
transferred into a 3-necked round bottom flask. The flask was purged with pure nitrogen and immersed
in an oil bath for 24-h reaction at 140 ◦C. The final product was cooled to ambient temperature,
dissolved in DCM, and precipitated by methanol at 4 ◦C. The precipitated product (i.e., 5’-DFUR-PCL)
was further vacuum dried by a rotary evaporator at 40 ◦C. 0.5 mmol of 5’-DFUR-PCL and 1 mmol
of succinic anhydride were weighed and dissolved in toluene in a 3-necked round bottom flask.
After adding 1 mmol of pyridine, the solution was reacted at 70 ◦C for 48 h. The product was then
precipitated by cold hexane and spun down. The pellet was re-dissolved in DCM and washed with 10%
(v/v) HCl and saturated NaCl solution. The organic phase was isolated, dried with magnesium sulfate,
and then filtered. The 5’-DFUR-PCL tagged with carboxylate group was recovered by precipitation in
cold hexane, and then vacuum dried by rotovap. 0.54 mmol of 5’-DFUR-PCL-COOH and 2.7 mmol
of NHS were mixed with 15 mL DCM. After adding 2.7 mmol of DCC, the reaction was run for 24 h
at ambient temperature under nitrogen purging. After vacuum filtration, the filtrate was loaded
with 35 mL cooled diethyl ether to get precipitate. After centrifugation, the collected pellet was
washed with 2-propanol and then vacuum dried by rotovap to obtain 5’-DFUR-PCL-NHS. 10 mg
of 5’-DFUR-PCL-NHS and 10 mg of MPEG-NH2 were weighed and dissolved by 20 mL DCM in a
flask. The solution was reacted for 24 h under nitrogen environment. The solution was then dialyzed
(molecular weight cutoff = 6–8 kD, Spectra/Por, Rancho Dominguez, CA, USA) to remove residual
MPEG-NH2. The solution remained in the dialysis bag was vacuum dried by rotovap to obtain
5’-DFUR-PCL-MPEG.

2.4. Preparation of Polymeric Prodrug Micelles

A total of 10 mg of 5’-DFUR-incorporated amphiphilic polymer, with or without 0.2 mg DOX
or 0.1 mg SN-38, were dissolved in 2 mL acetone under a sonication bath. The mixture was added
dropwise into 10 mL deionized (DI) water to form polymeric prodrug micelles with or without the
chemotherapeutic drug used. Acetone in the water phase was removed by rotovap and the final
solution containing micellar particles was collected by flowing through a 0.45-µm filter.

2.5. CMC Determination

The critical micelle concentration (CMC) was determined by using fluorescent pyrene [36]. Briefly,
1 mg/mL of polymeric prodrug micelle was formed. Various amounts of DI water and polymeric
prodrug micelle solutions were added respectively to glass vials to obtain micellar concentrations
ranging from 5 × 10−7 to 1 mg/mL. Pyrene in acetone was then added separately to the prepared
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glass vials to obtain 6.0 × 10−7 mg/mL of pyrene in water, which is slightly lower than the saturation
solubility [37]. The solutions were then kept for 8 h to reach equilibrium. Fluorescent spectra were
measured by a Synergy MX spectrofluorometer (BioTek Instruments Inc., Winooski, VT, USA) with an
excitation wavelength of 334 nm.

2.6. Size and Morphology of 5’-DFUR-Incorporated Polymeric Micelles

The average particle size of polymeric prodrug micelles was determined by a dynamic light
scattering (DLS) instrument (Zetasizer Nano ZS, Malvern Instruments, Worcestershire, UK). The zeta
potential of polymeric prodrug micelles dispersed in DI water was determined with a zeta potential
analyzer (Zetasizer Nano ZS). Transmission electron microscopy (TEM) image of polymeric prodrug
micelles was taken by JEM-4000FX (JEOL, Tokyo, Japan) at 80 kV. The TEM samples were prepared by
adding 10 µL of polymeric prodrug micelle solution (1 mg/mL) onto a Formvar grid for 5 min and
wicking away solution in excess. The samples were negatively stained with 10 µL phosphotungstic
acid solution (2 wt%).

2.7. Drug Loading Content and Entrapment Efficiency

To determine the drug loading content of 5’-DFUR per mg of polymeric prodrug micelle, the
absorbance of 5’-DFUR-PCL-MPEG micelles at t = 0 and t = 72 h was examined (λ = 269 nm) and
used to calculate the amount based on a standard calibration curve of 5’-DFUR ranging from 0.002 to
1.0 mg/mL. To obtain drug-loading content and entrapment efficiency of DOX or SN-38 encapsulated
in polymeric micelles, the obtained polymeric micellar solutions were frozen and lyophilized by
a freezer dryer (Freezone, Labconco, Kansas City, MO, USA) to obtain dried nanoparticle product.
The weighed nanoparticles were dissolved in DMSO/chloroform (1:1, v/v) and the absorbance of
the solutions read at 485 nm (DOX) or 366 nm (SN-38) by a Synergy MX spectrofluorometer (BioTek
Instruments Inc., Winooski, VT, USA). The weight of the entrapped drug was calculated by a calibration
curve from 0.01 to 1 mg mL−1. Drug-loading content and entrapment efficiency were determined by
Equations (1) and (2), respectively:

Drug loading content (%) =
weight of drug in nanoparticles

weight of nanoparticles
× 100 (1)

Entrapment efficiency (%) =
weight of drug in nanoparticles

weight of drug fed initially
× 100 (2)

2.8. Drug Release Profiles

Polymeric prodrug micelles at a concentration of 1 mg/mL were prepared in phosphate buffered
saline (PBS) 37 ◦C. Two mL of solution was placed in a dialysis tube (Float-A-Lyzer, molecular
weight cutoff = 3.5–5 kD, Spectra/Por). The dialysis tube was then immersed in 50 mL PBS at
ambient temperature and 37 ◦C with and without esterase (3 units/2 mL) to mimic cellular conditions.
At specified time intervals, 5 µL of sample was removed and replaced with fresh PBS. The amount of
5’-DFUR released was analyzed by a Synergy MX spectrofluorometer at λ = 269 nm.

2.9. TP Activity Assay

HT-29 cells were cultured in DMEM supplemented with 10% FBS and 1% penicillin-streptomycin
and incubated at 5% CO2 balanced chamber controlled at 37 ◦C with humidified air. 5 × 105 cells
were suspended by treating the cells with 0.25% trypsin/EDTA and collected by centrifugation at
400× g for 5 min. The cell pellet was washed by 1× PBS, and cells were re-suspended in 100 µL RIPA
buffer supplemented with 1% protease inhibitor. The cell suspension was placed on ice for 5 min,
followed by tip sonication for 10 s 3 times with 30 s interval on ice using a tip sonicator (Misonix
XL-2000, Farmingdale, NY, USA). The cell suspension was kept on ice for additional 15 min, and then
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centrifuged at 14,000× g for 15 min to collect cell lysate. 15 µL of HT-29 cell lysate were added to a
40-µL reaction mixture containing 25 mM potassium phosphate buffer (pH 7.4) and 10 mM thymidine
or 5’-DFUR. The mixture was incubated at 37 ◦C for 4 h. The reaction was terminated by the addition
of 200 µL of ice-cold 500 mM NaOH. The absorbance readings at 300 nm for thymine (converted from
thymidine) and 305 nm for 5-FU (converted from 5’-DFUR) were measured respectively [13] by a
SpectraMax M2e Microplate Reader (Molecular Devices, Sunnyvale, CA, USA). The amount of thymine
or 5-FU generated in the reaction mixture was calculated using the thymine or 5-FU calibration curve.
The total protein amount of the cell lysate was determined by the Bradford assay. The TP activity was
expressed as the amount of thymine or 5-FU (µmol) converted/mg protein/h.

2.10. Cytotoxicity Studies

Human colorectal HT-29 cells were seeded in 24-well plates containing 0.5 mL DMEM
supplemented with 10% FBS and 1% penicillin-streptomycin and cultivated for 24 h at 37 ◦C incubator
maintained at 5% CO2 balanced with humidified air. In one well, 1 mL of 2 mg mL−1 of polymeric
micelle solution was added. Serial dilutions were preformed to a final concentration of 0.25 mg/mL.
After 72-h incubation, cell viability was assessed using the MTT assay; 200 µL of 4 mg/mL MTT solution
was loaded into the culture wells and incubated for 4 h. The medium containing unreacted MTT was
disposed and 300 µL DMSO was added to dissolve the insoluble purple formazan crystals formed.
The absorbance at 590 nm was measured by a Synergy MX spectrofluorometer. The percentage of cell
viability calculated against the control group without polymeric micellar challenge will be determined.

3. Results and Discussion

3.1. Synthesis and Characterization of Amphiphilic Prodrug Polymers

Figure 1A–D illustrates the preparation of 5’-DFUR-PCL-MPEG copolymer. First, 5’-DFUR-PCL
was synthesized directly via the ring-opening polymerization of ε-CL initiated by 5’-DFUR as
previously reported [30]. 1H NMR spectra of prodrug 5’-DFUR and 5’-DFUR-PCL post-synthesis are
shown respectively in Figure 2 (i) and (ii). Characteristic resonance peaks associated with 5’-DFUR
including δ = 1.43 (g-CH3), 4.20 (f-CH), 5.02 (e-CH), 5.25 (d-CH), 5.95 (c-CH), and 7.97 (b-CH) ppm
were seen in synthesized 5’-DFUR-PCL. Chemical shifts associated with PCL were seen at 1.40 (3-CH2),
1.65 (2-CH2), 2.34 (1-CH2), 3.62 (4’-CH2), and 4.05 (4-CH2) ppm. These spectra demonstrated evidence
of 5’-DFUR acting as initiator for the ring-opening polymerization of ε-CL. GPC data concerning the
polymerization of PCL by 5’-DFUR is given in Table 1, accordingly, the number average molecular
weight (Mn) of 5’-DFUR-PCL was approximately 15 kDa with a polydispersity index (PDI) of 1.24.

Hydrophobic 5’-DFUR-PCL was further grafted with MPEG (MW = 5000) as shown in
Figure 1B–D. GPC analysis revealed that 5’-DFUR-PCL-MPEG amphiphilic copolymer had a Mn

of 28 kDa and PDI of 1.19 (Table 1). Figure 3 (iii) and (iv), shows the 1H NMR of MPEG-NH2 and
5’-DFUR-PCL-MPEG. The peaks at 3.63 (A-OCH2) belonged to MPEG can be observed in Figure 3 (iv).
Since conjugation of MPEG to 5’-DFUR-PCL is through the amide linkage (Figure 1D), the change of
the peak at 1.79 (B-NH2) from a singlet in Figure 3 (iii) to a multiplet in Figure 3(iv) confirms MPEG
was bound to 5’-DFUR-PCL. Further verification of MPEG grafted to 5’-DFUR-PCL was done by
FT-IR analysis.

FT-IR was used to show the grafting of MPEG to 5’-DFUR-PCL-NHS (Figure 1D). FT-IR spectra of
5’-DFUR-PCL (A), MPEG-NH2 (B) and 5’-DFUR-PCL-MPEG (C) are shown in Figure 4. C-H stretching
vibrations are observed from 2957–2839 cm−1 for all samples. FT-IR absorption peaks of PCL and
MPEG at 1721 cm−1 attributed to the C=O stretching and at 1103 cm−1 of the C-O-C, respectively, were
seen in the FT-IR spectra. These peaks, as well as characteristic peaks contributed from 5’-DFUR such
as C-F stretching at 1049 cm−1, C-N stretching of the primary and secondary aromatic amine at 1627
and 1237 cm−1 were all found in Figure 4A,C, showing successful initiation of polymerization of ε-CL
by 5’-DFUR.
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and (D) 5’-DFUR-PCL-MPEG.

Table 1. Characterization of 5’-DFUR-PCL-MPEG and MPEG350-PCL-MPEG amphiphilic copolymer.

Sample Mw (Da) Mn (Da) Polydispersity (Mw/Mn)

5’-DFUR-PCL 18,796 15,158 1.24
5’-DFUR-PCL-MPEG 33,927 28,510 1.19

MPEG350-PCL 24,600 17,053 1.44
MPEG350-PCL-MPEG 19,415 21,624 1.36
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3.2. Formation and Characterization of 5’-DFUR-Incorporated Polymeric Micelles

It is known that amphiphilic polymers can self-assemble into micelles in selected solvents.
The amphiphilic 5’-DFUR-PCL-MPEG copolymer used in this study, could self-assemble into micelles
in aqueous solution by the solvent-evaporation method. Here, despite 5’-DFUR being slightly water
soluble, 5’-DFUR-PCL was the hydrophobic core segment and MPEG was the hydrophilic outside
shell. In control polymeric micelles, MPEG350-PCL was the hydrophobic core segment and MPEG was
the hydrophilic segment. The reason of selecting MPEG350 as the initiator for control studies was due
to the fact that MPEG350 has a molecular weight close to 5’-DFUR’s (MW = 246.19 g/mol). The average
size of 5’-DFUR-incorporated polymeric micelles and control micelles with and without encapsulating
DOX or SN-38 and zeta potential as determined by dynamic light scattering (DLS) and zetasizer are
shown in Table 2. The size of 5’-DFUR-PCL-MPEG micelles was around 220.5 nm with a standard
deviation of 41.7 and a zeta potential of 1.2 mV due to MPEG’s neutral change (Figure 5A). Based
on dynamic light scattering, the micelles have a polydispersity index (PDI) of 0.22. The PDI was not
surprising as a PDI of 0.3 and below is considered acceptable for lipid-based carriers and indicates a
relatively monodisperse sample [37]. Micelles were also characterized by TEM analysis as shown in
the Figure 5 insert. The TEM images showed the polymeric prodrug micelles have an average size of
~150 nm which is slightly lower than the results from DLS, due to the hydrodynamic radius of particles
determined by the dynamic light scattering. As shown in Table 2, encapsulation of DOX or SN-38 did
not affect the particle size substantially with an average size of 167.5 and 267.5 nm, respectively.

Table 2. Characteristics and drug loading of 5’-DFUR-incorporated polymeric micelles.

Sample Size (nm) Zeta (mV) Drug Loading
Content (%)

Entrapment
Efficiency (%)

5’-DFUR-PCL-MPEG 220.5 1.23 – –
5’-DFUR-PCL-MPEG (DOX) 167.5 −0.11 10.8 68.8
5’-DFUR-PCL-MPEG (SN-38) 267.5 1.01 3.4 86.3

MPEG350-PCL-MPEG 202.5 0.74 – –
MPEG350-PCL-MPEG (DOX) 222 2.15 10.4 65.6
MPEG350-PCL-MPEG (SN-38) 148 1.21 3.9 97.6
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The CMC of 5’-DFUR-PCL-MPEG was determined using pyrene as a hydrophobic florescent
probe to confirm the formation of micellar structures [38]. Figure 5B reveals the CMC value of
5’-DFUR-incorporated polymeric micelles in aqueous solution. The intensity ratio of the first and third
vibrational bands (I338/I335) against polymer concentration (Log(concentration)) in pyrene excitation
spectra was plotted. A flat region in the low concentration extreme and sigmoidal region in the
crossover region was determined, and the CMC of 5’-DFUR-incorporated micelles was 56 mg L−1.

3.3. Evaluation of Drug Loading Content and Entrapment Efficiency

Table 2 summarizes the drug loading content and entrapment efficiency of 5’-DFUR, DOX,
and SN-38 in both 5’-DFUR-incorporated polymeric micelles and control micelles. To determine
the percentage of drug loading of 5’-DFUR per mg of micelle formulation, the absorbance of
5’-DFUR before (t = 0 h) and after drug release (t = 72 h) was investigated and the amount was
calculated from a standard calibration curve of 5’-DFUR. It was found that 5’-DFUR comprised 9.8% of
5’-DFUR-PCL-MPEG micelles. Due to the hydrophobic nature of SN-38, it was surmised that the extent
of drug loading and entrapment would be high. As can be seen in Table 2, our results showed that the
drug loading content and entrapment efficiency of SN-38 in 5’-DFUR-PCL-MPEG and control micelles
was 3.4% and 86.3% and 3.9% and 97.6%, respectively. In contrast, DOX which is slightly hydrophilic
had a lower encapsulation efficiency at 68.8% and 65.6% in prodrug-incorporated polymeric micelles
and control micelles, respectively. However, due to the fact that more DOX was used for encapsulation,
the drug loading content was higher at 10.8% and 10.4% Drug encapsulation efficiency is an important
design parameter in the development of therapeutic nanocarriers. An ideal nanocarrier should have
a high drug encapsulation efficiency and small size to evade the mononuclear phagocyte system.
The synthesized 5’-DFUR-incorporated micelles developed here exhibit both of these qualities.

3.4. TP Activity Assay

The expression level of TP is closely related to the efficiency of 5-FU conversion. High TP
expression levels has been found in some tumor tissues like stomach, colon and ovary tumor sites [39].
The expression of TP has been confirmed in various cancer cell lines such as HT-29 [40,41], SKBR3 [42],
A431 [43] and A549 [43]. On the other hand, the level of TP expression may vary from different colon
cancer cell lines [44]. For example, no endogenous TP is found in COLO320, and the expression level on
RT112 is low [45]. In the current study, TP-containing HT-29 cell lysate was used to convert thymidine
to thymine, and the thymine formed was around 2.89 µmol/mg protein/h (Table 3). This data suggests
a high level of TP enzyme activity in HT-29 cells, compared to wild type breast cancer cell MCF-7
with low enzyme activity of 38 nmol/mg protein/h [13]. Furthermore, cytotoxic 5-FU converted from
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prodrug 5’-DFUR reacted with HT-29 cell lysate revealed TP activity of ~2.21 µmol/mg protein/h
(Table 3) which is in line with the enzyme activity aforementioned by the conversion of thymidine
to thymine. Our results indicated that TP expression and activity in HT-29 cells are high enough to
convert 5-FU from loaded 5’-DFUR, thereby resulting in eradication of cancer cells.

Table 3. TP activity of HT-29 cell lysate, with regard to thymidine and 5’-DFUR phosphorolytic
cleavage.

Cell Line Thymine Released (µmol/mg protein/h) 5-FU Released (µmol/mg protein/h)

HT-29 2.89 ± 0.27 2.21 ± 0.12

3.5. In Vitro Drug Release

The in vitro release behavior of 5’-DFUR both at 37 ◦C with and without esterase was studied
and the results are shown in Figure 6A,B, respectively. To mimic cellular conditions, esterase at a
concentration of 3 units/2 mL was chosen [46]. A two-phase release profile was observed in all
conditions with a 2-h initial burst release followed by continuous release pattern up to 72 h. It was
found that it required 2 h before esterase was able to increase the release of 5’-DFUR. This observation
is in line with other researchers due to the fact that esterase has to take time to diffuse into the micelle
and to activate [47,48]. The release of 5’-DFUR in samples without esterase was caused by hydrolysis of
ester linkage between 5’-DFUR and PCL. It is surmised that the sustained release of 5’-DFUR compared
to previously reported acyclovir prodrug release is due to that fact that polymerization can be initiated
at two hydroxyl points rather than one from acyclovir [49]. Accumulative release of each sample
reached a maximum between 78–86%.

Nanomaterials 2018, 8, x FOR PEER REVIEW  11 of 18 

 

found that it required 2 h before esterase was able to increase the release of 5’-DFUR. This observation 
is in line with other researchers due to the fact that esterase has to take time to diffuse into the micelle 
and to activate [47,48]. The release of 5’-DFUR in samples without esterase was caused by hydrolysis 
of ester linkage between 5’-DFUR and PCL. It is surmised that the sustained release of 5’-DFUR 
compared to previously reported acyclovir prodrug release is due to that fact that polymerization 
can be initiated at two hydroxyl points rather than one from acyclovir [49]. Accumulative release of 
each sample reached a maximum between 78–86%. 

 
Figure 6. In vitro drug release profile of 5’-DFUR from 5’-DFUR-PCL-MPEG micelles in PBS at 37 °C 
(A) with esterase, (B) without esterase (mean ± SD, n = 3). 

The release of 5’-DFUR from 5’-DFUR-PCL-MPEG was modeled using both Power Law and 
Langmuir models as shown in Figure 6A,B. The Power Law model was not a good fit for the release 
of 5’-DFUR from polymeric prodrug micelles. Here, we obtained an exponent, n, value equal to 0.24 
and 0.30 with and without esterase, respectively. If n is 0.43, for a sphere, this would indicate Fickian 
diffusion [50]. Due to the fact that our release is not solely though diffusion (i.e., 5’-DFUR is 
chemically bound to PCL though ester bond), our release is reaction diffusion. Here, the prodrug 5’-
DFUR, is released through hydrolysis (Figure 6B) or a combination of hydrolysis and esterase (Figure 
6A). Therefore, we chose to also model our data with the Langmuir model. The Langmuir model is 
an enzyme kinetics model, and as can be seen in Figure 6, a good fit for the release of 5’-DFUR from 
polymeric prodrug micelles. The dissociation constant (Kd) for the release of 5’-DFUR from 5’-DFUR-
PCL-MPEG was found to be 1.48 and 3.07 with and without esterase, respectively. 

The release of DOX and SN-38 at 37 °C in 5’-DFUR-PCL-MPEG is shown in Figure 7. The release 
profiles showed that a cumulative release of DOX and SN-38 from 5’-DFUR-incorporated micelles in 
PBS at 37 °C was up to 87% and 62%, respectively, after 48 h. Moreover, we modeled the data using 
the Power Law and it was found to be a good fit for both of the encapsulated chemotherapeutic drugs. 
For the release of DOX and SN-38, we obtained n values of 0.41 and 0.43. These values are very close 
to the exponent value n (0.43) for the Fickian diffusion of a sphere, indicating that Fickian diffusion 
is most likely the release mechanism for encapsulated chemotherapy drugs DOX and SN-38. 

Figure 6. In vitro drug release profile of 5’-DFUR from 5’-DFUR-PCL-MPEG micelles in PBS at 37 ◦C
(A) with esterase, (B) without esterase (mean ± SD, n = 3).

The release of 5’-DFUR from 5’-DFUR-PCL-MPEG was modeled using both Power Law and
Langmuir models as shown in Figure 6A,B. The Power Law model was not a good fit for the release
of 5’-DFUR from polymeric prodrug micelles. Here, we obtained an exponent, n, value equal to
0.24 and 0.30 with and without esterase, respectively. If n is 0.43, for a sphere, this would indicate
Fickian diffusion [50]. Due to the fact that our release is not solely though diffusion (i.e., 5’-DFUR
is chemically bound to PCL though ester bond), our release is reaction diffusion. Here, the prodrug
5’-DFUR, is released through hydrolysis (Figure 6B) or a combination of hydrolysis and esterase
(Figure 6A). Therefore, we chose to also model our data with the Langmuir model. The Langmuir
model is an enzyme kinetics model, and as can be seen in Figure 6, a good fit for the release of 5’-DFUR
from polymeric prodrug micelles. The dissociation constant (Kd) for the release of 5’-DFUR from
5’-DFUR-PCL-MPEG was found to be 1.48 and 3.07 with and without esterase, respectively.
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The release of DOX and SN-38 at 37 ◦C in 5’-DFUR-PCL-MPEG is shown in Figure 7. The release
profiles showed that a cumulative release of DOX and SN-38 from 5’-DFUR-incorporated micelles in
PBS at 37 ◦C was up to 87% and 62%, respectively, after 48 h. Moreover, we modeled the data using
the Power Law and it was found to be a good fit for both of the encapsulated chemotherapeutic drugs.
For the release of DOX and SN-38, we obtained n values of 0.41 and 0.43. These values are very close
to the exponent value n (0.43) for the Fickian diffusion of a sphere, indicating that Fickian diffusion is
most likely the release mechanism for encapsulated chemotherapy drugs DOX and SN-38.Nanomaterials 2018, 8, x FOR PEER REVIEW  12 of 18 
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3.6. Cytotoxicity of Polymeric Prodrug Micelles Loaded with Chemotherapeutic Drugs

In vitro toxicity of polymeric prodrug micelles to parental HT-29 cells was evaluated. Due to the
fact that HT-29 cells express endogenous TP levels [39], 5’-DFUR released from micelles would be
converted to its active and toxic form 5-FU. As discussed with respect the drug release profile, 5’DFUR
is released by reaction diffusion. Therefore, it is surmised that 5’-DFUR is released from the micellar
carriers through both diffusion at the surface of the cell as well as through endocytosis of the micellar
carriers. The internalized drug-loaded micellar carriers upon reaching the lysosome will be degraded
which will release more of the prodrug. The internalized prodrug is then converted via endogenous
TP to the toxic drug 5-FU. Figure 8 compares the viability of MPEG350-PCL-MPEG control micelles
and 5’-DFUR-PCL-MPEG prodrug micelles. Here, it can be seen that micelles without prodrug are
nontoxic up to a concentration of 2 mg mL−1 (Figure 8A). In contrast, the viability of HT-29 cells was
decreased to 60% when challenged with 2 mg mL−1 5’-DFUR-PCL-MPEG micelles for 72 h (Figure 8B).
In prior work, it has been shown that HT-29 cells treated with polymeric micelles tagged with acyclovir
(ACV) [49] or ganciclovir (GCV) [51] did not exhibit apparent toxicity. This is because ACV and GCV
prodrugs are not converted to their active and toxic form by TP. Cell viability results clearly show that
cell death occurs due to the conversion of 5’-DFUR to its active and toxic form 5-FU by endogenous
TP within the HT-29 cells. Moreover, results indicated that a concentration of 5’-DFUR-incorporated
micelle greater than or equal to 0.5 mg mL−1 is needed for cell death to occur.
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As can be seen from Figures 9 and 10, HT-29 cell viability was decreased in both control (A) and
prodrug-incorporated micelles with encapsulated chemotherapy drug (B). Control micelles without
chemotherapy drug showed little to no toxicity (Figure 8A). after the encapsulation of DOX or SN-38
into MPEG350-PCL-MPEG micelles, viability was reduced to 53% and 43%, respectively, with the
highest dose for 72 h (Figures 9A and 10A). Toxicity of HT-29 cells treated with 5’-DFUR-PCL-MPEG
micelles with encapsulated DOX showed an increased cell death from 60% viability without DOX to
36.6% viability (Figure 9B). This corresponds to an additive effect from both 5’-DFUR enzymatically
catalyzed to 5-FU by TP endogenously expressed in HT-29 cells and DOX chemotherapy drug.
The toxicity of 5’-DFUR-incorporated polymeric micelles which encapsulated SN-38 was also increased
from 60% cell viability to 31%; again, showing an additive effect between 5’-DFUR and chemotherapy
drug SN-38 in cancer cell treatment. Wang et al. have loaded poly(lactide-co-glycolide) (PLGA)
nanoparticles with 5-FU [52]. In their study, ~70% of HT-29 cells were killed when cells were treated
with PLGA nanoparticles loaded with 50 µg/mL 5-FU. The efficacy of 5’-DFUR-incorporated polymeric
micelles encapsulated with SN-38 was comparable to 5-FU loaded PLGA nanoparticles. In another
study, HT-29 cells were treated with magnetic particles loaded with cathelicidin LL-37 [53]. As a result,
LL-37 loaded magnetic particles caused 50% drop in cell viability. In short, the results of cell viability
show that delivery of 5’-DFUR-incorporated polymeric micelles can decrease viability of HT-29 cells,
and that encapsulation of chemotherapy drugs can substantially increase cell death.
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4. Conclusions

The results of this study show that amphiphilic copolymer 5’-DFUR-PCL-MPEG was successfully
synthesized and characterized, and its polymeric micelles were fabricated and analyzed. Our results
further demonstrated that the formed polymeric prodrug micelles could successfully deliver and
release prodrug 5’-DFUR into HT-29 colorectal cancer cells via the hydrolysis of ester linkage between
5’-DFUR and PCL. Moreover, it was clearly shown that the amount of endogenous TP expressed in
HT-29 colorectal cancer cells is sufficient enough to convert prodrug 5’-DFUR into cytotoxic 5-FU,
thereby killing HT-29 cells. In addition, co-delivery of 5’-DFUR and DOX or SN-38 greatly enhanced
malignant cell death.
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