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Abstract: We used Neuromolecular Imaging (NMI) and trademarked BRODERICK 
PROBE® mini-implantable biosensors, to selectively and separately detect neuro-
transmitters in vivo, on line, within seconds in the dorsal striatal brain of the Parkinson’s 
Disease (PD) animal model. We directly compared our results derived from PD to the 
normal striatal brain of the non-Parkinson’s Disease (non-PD) animal. This advanced 
biotechnology enabled the imaging of dopamine (DA), serotonin (5-HT), homovanillic 
acid (HVA) a metabolite of DA, L-tryptophan (L-TP) a precursor to 5-HT and peptides, 
dynorphin A 1-17 (Dyn A) and somatostatin (somatostatin releasing inhibitory factor) 
(SRIF). Each neurotransmitter and neurochemical was imaged at a signature electroactive 
oxidation/half-wave potential in dorsal striatum of the PD as compared with the non-PD 
animal. Both endogenous and bromocriptine-treated neurochemical profiles in PD and non-
PD were imaged using the same experimental paradigm and detection sensitivities. Results 
showed that we have found significant neurotransmitter peptide biomarkers in the dorsal 
striatal brain of endogenous and bromocriptine-treated PD animals. The peptide 
biomarkers were not imaged in dorsal striatal brain of non-PD animals, either 
endogenously or bromocriptine-treated. These findings provide new pharmacotherapeutic 
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strategies for PD patients. Thus, our findings are highly applicable to the clinical treatment 
of PD. 
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disorders; substantia nigra; nigrostriatal pathways 

 

1. Introduction 

1.1. Background 

Parkinson's Disease (PD) is prevalent, not only in the American population, but it also affects 
people all over the world, e.g., in Europe [1]. In fact, PD is becoming increasingly documented in 
developing countries that are undergoing rapid demographic changes [2]. PD exhibits multifaceted and 
debilitating symptoms; conventionally, though, we speak of PD as a neurodegenerative disease 
wherein there is a progressive impairment of movement. Some of these movement disorders are 
described as: (a) tremors (hands shaking while at rest), (b) rigidity (stiff, abrupt muscle movement) and 
(c) bradykinesia (being unable to start a particular movement, like walking). PD is caused by the loss 
of dopamine (DA) neurons in substantia nigra, the site for DA cell bodies in the basal ganglia, which 
are the motor neurons of the brain. One neuronal efferent terminal for the substantia nigra is the 
caudate putamen. In humans, the caudate putamen consists of two separate structures; in animals, the 
caudate and putamen are connected in one structure, dorsal striatum. 

Research studies in animals continue to provide additional critical knowledge about PD and its 
ensuing pharmacologic therapies. However, surprisingly, despite all the excellent research that has 
been performed to-date to help ameliorate or reduce the symptoms of PD, previous experimental 
approaches have been unable to elucidate the precise mechanism of action of PD on DA neurons in 
nigrostriatal pathways. One of the limitations that previous approaches has encountered in human 
studies, is that brain material from early or untreated PD patients is not available and when available, 
there is some nigral cell death already present with the appearance of incidental Lewy bodies as well. 
Insofar as previous animal studies are concerned, there are little or no published studies to date that 
image the in vivo dynamic factors involved in the release of DA directly into the neuronal synapses of 
the brain in PD. In fact, there are little or no reports published to date, to image dynamic release of any 
other neurotransmitters or neurochemicals into the neuronal synapses in PD animals.  

Importantly then, real time imaging of DA in dorsal striatum is needed and indeed, 
neurotransmitters, other than DA, need to be imaged because other neurochemicals may play a 
significant role in the therapeutics of PD. The hypothesis is that DA is not the sole arbiter for the 
treatment of PD. The hypothesis then is two-fold: (A) that the cause and treatment of PD may involve 
neurotransmitters and neuromolecules other than DA and (B) that the neurochemical, biologic 
response to current drug therapies for PD, such as bromocriptine (Parlodel®) may differ in PD 
compared with non-PD. Therefore, in this paper, we used neuromolecular imaging (NMI) with the 
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BRODERICK PROBE® laurate biosensors to image endogenous neurochemicals in dorsal striatum of 
PD versus non-PD animals (Part A). We then administered the pharmaceutical, bromocriptine, 
intraperitoneally (ip) to PD and non-PD animals to compare neurochemical, biologic responses in 
dorsal striata of PD versus non-PD animals (Part B). 

1.2. NMI and the BRODERICK PROBE® 

Figure 1 shows a schematic design of the mini-implantable biosensor, the BRODERICK PROBE®. 
Several formulations of the carbon-based biosensors, patented by CUNY and NYU, have been tested 
in controlled studies. Details for the manufacture of these biosensors, which include description of 
specific components of each formulation, in addition to the use, design and applications for these 
biosensors, are published. The NMI biotechnology, such as detector/potentiostat electrical circuits, are 
also published [3–12]. Patents and pending patents listed in the references herein depict novel 
inventive constructions and formulations of biosensors. Biosensors use electron transfer kinetics to 
select an image for a specific neurochemical at an electroactive oxidation/half wave potential. An 
electroactive signature for each neurochemical is detected in subunits of volts, amperes, dependent on 
the electronic circuitry chosen for use in the detector/potentiostat. In the studies presented here, a 
semidifferential electrical circuit was chosen because several neurotransmitters and neurochemicals 
can be separately imaged within one minute, each neurochemical within seconds and recordings can be 
repeated continuously for hours and longer periods of time, e.g., weeks and months. Using the 
semidifferential electrical circuit, millivolts are shown on the x axis and current in nano and 
picoamperes is shown on the y axis. Current is derived from electron transfer kinetics which are 
determined by specific biosensor properties, such as hydrophobicity and hydrophilicity of biosensor 
formulation within the context of interaction with specific neurotransmitters and neuromolecules. 
Synaptic release mechanisms are primarily studied with NMI [13]. 

Figure 1. A schematic diagram of the BRODERICK PROBE® biosensor. Some of the 
formulations are comprised of fatty acids and lipids, normal constituents of brain. 

 
 
 

 

 

 

 

 

 
 
 
 

The following formulas describe this relationship in terms of charge, electron transfer, current, 
diffusion layer, time, Faraday's constant, size of the indicator electrode and concentration (mass) of 
electroactive species:  
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Q = nFVCo
R     i = dQ/dt    i = nFV dCR,t / dt 

where V is the volume of the diffusion layer on the electrode where the measurement is being made, n 
is the number of electrons transferred, F is the Faraday Constant, and Co denotes initial concentration. 
The Cottrell equation is derived from the formulas written above and demonstrates that current i.e., 
charge and mass, i.e., concentration, are proportional. The Cottrell equation is: 

it = nFACoDo
1/2/3.14 ½ t½ 

where: 
i = current at time, t 
n = number of electron transfers, eq/mol 
F = Faraday’s constant, 96486 C/eq 
A = electrode area, cm 2 
C = concentration of O, mol/cm3 
D = Diffusion coefficient of O, cm3/s 

NMI has made several advances in the field of electrochemistry. One of these significant advances 
is the fact that NMI biosensors do not form gliosis, i.e., scar tissue which impedes detection of 
neurotransmitters, causing electroactive signals to decay. This property improves the sensitivity, 
selectivity and operational stability of the biosensors, allowing the detection of reliable electroactive 
signals for long periods of time, enabling their use not only for diagnosis and treatment for PD, which 
we discuss here, but also for cardiac disease, e.g., acute ischemic stroke [14] and hypoxia [15,16] as 
well as for peripheral body disorders such as human uterine cervical cancer [4,6,7,10]. In contrast, 
body imaging technologies for cancer specifically that image flourescent cells also deserve mention 
[17–21]. Nonetheless, the present manuscript shows a distinct advantage over fluorescent protein 
imaging because unlike previous methods, The BRODERICK PROBE® biosensors, have made the 
critical advance to clinical use, successfully, imaging neurotransmitters, neurochemicals and peptides 
in neocortex of epilepsy patients on line, in real time and in vivo during patients’ intraoperative 
surgery. It is important to note that the pathology reports from epilepsy patients implanted with our 
biosensors do not exhibit gliosis/sclerosis/scar tissue, nor do the biosensors produce bacterial  
growth [22,23]. 

1.3. The PD paradigm 

A classical animal model of PD was used. In this animal model, a depletion of DA is produced by 
injecting a well-known neurotoxin, 6-hydroxydopamine (6-OHDA) into DA cell bodies, substantia 
nigra, during which time, DA neurons are lesioned, die, resulting in disruption of DA efferents to 
neuronal terminals, dorsal striatum. The end result is DA depletion in dorsal striatum. This animal 
model simulates what occurs in the brain of the PD patient.  

Endogenous neurochemical profiles for PD compared with non-PD were studied in Part A. In Part 
B, bromocriptine was administered in one study at a dose of 5 mg/kg ip (low dose) and in a second 
study, bromocriptine was administered at a dose of 5 mg/kg ip followed by a dose of 10 mg/kg ip  
(high dose). 
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2. Results and Discussion 

2.1. In vivo comparison of endogenous neurochemicals in PD versus non-PD striatal brain 

Figure 2 show the results of NMI detecting endogenous neurochemicals in the PD versus the non-
PD animals. Neurochemical profiles are drawn from original in vivo data. This is the first report of an 
in vivo neurochemical comparison between PD and non-PD in motor neurons in dorsal striatal brain. 
This is the first in vivo neurochemical profile study of PD in any neuroanatomic substrate of animal. 
The present data are derived from 10 NMI studies in dorsal striatum of PD versus another 10 studies in 
non-PD animals.  

Figure 2. Representative NMI endogenous (baseline, control) neurochemical signature 
profiles in dorsal striatum of (left) the PD and (right) the non-PD animal in vivo, on line 
and in real time. Neurochemical profiles are drawn from original recordings.   

 
 

The results showed that DA and its metabolite HVA were not imaged in striatal brain of PD. What 
was readily apparent in striatal brain of PD, was the selective imaging of the neurotransmitter, 5-HT 
and its precursor, L-TP. Moreover, two neurotransmitter peptides, Dyn A and SRIF were also 
separately imaged in striatal brain of PD. Repeatedly imaged to a significant degree, was a peptide at 
an oxidation/half-wave potential of about 0.83 V, which this laboratory is in the process of defining. 
These peptide neurotransmitters were not imaged in dorsal striatal brain of non-PD animals. In the 
non-PD dorsal striatum, selective electroactive signals for DA, 5-HT, HVA and L-TP were repeatedly 
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imaged. Another observation from the data in Figure 2 is that the non-PD striatal brain endogenously 
exhibits higher concentrations of 5-HT and L-TP than the PD striatal brain; this interpretation derives 
from the Cottrell Equation which calculates that concentration of each neurochemical is directly 
proportional to its resultant current.  

2.2. In vivo Bromocriptine Studies in dorsal striatal brain of PD versus non-PD animals 

Current therapies for PD, for the most part, depend on strategies to replace the depleted DA in the 
basal ganglia of PD patients. Such therapies focus on the drugs that become DA, i.e., precursors such 
as L-DOPA, other DA medications such as DA receptor agonists at the DA1, DA2 and DA3 sites, 
decarboxylase inhibitors, enzyme inhibitors, and DA releasers. All of these drug therapies are 
strategized for use in the PD patient to increase DA in dorsal striatum and substantia nigra, the motor 
neurons of the brain. However, whereas the appearance of movement disorders in Huntington's 
Disease and hemballismus may involve the amino acid neurotransmitters [25], it is unclear what neural 
mechanisms are associated with or cause conditions like dyskinesia (abnormal movement dysfunction) 
in PD.  

The pharmaceutical, bromocriptine (Parlodel®) was chosen for study because it is a first line 
therapy for PD and it is reported to act similarly to L-DOPA in the PD patient. Sometimes, it is 
administered as an adjunct with L-DOPA. Yet, bromocriptine is an autoreceptor agonist which 
autoreceptors typically are inhibitory and consequently decrease DA at least in the acute or initial 
stages of therapy. The diminution of DA in motor neurons in basal ganglia appears to be, at first 
glance, contradictory to classical pharmacotherapy for PD.  

Thus, the following questions were addressed: 

 Is bromocriptine useful for PD if it may reduce DA in motor neurons?  
 What is the mechanism of action for bromocriptine in PD patients?  
 Can the effects of bromocriptine be biphasically dose dependent?  
 Does bromocriptine act through other neurochemicals, neurotransmitters in PD? 
 Is this study of bromocriptine relevant to the clinical treatment of PD? 

A dose of 5 mg/kg ip was administered to the animal in the first study. In the second study, a dose 
of 5 mg/kg followed by a dose of 10 mg/kg, ip was administered to the animal. For animal studies, 
these doses are considered the low and high dose. The initial clinical dose for bromocriptine can start 
at 1.25 mg and then continue daily at levels of 2.5–7.5 mg daily. Nonetheless, there are reports of daily 
doses of bromocriptine for PD patients between 7.0 and 30 mg daily. Clinically, the low dose for PD 
patients has been reported to be about 30 mg daily [26], whereas the high dose has been reported to be 
about 52 mg daily [27]. Figure 3 show the effects of bromocriptine (5 mg/kg ip; low dose) in striatal 
brain of PD versus non-PD animals.  
 
 
 
 
 
 



Pharmaceuticals 2009, 2  
 

242

Figure 3. Representative NMI neurochemical signature profiles in dorsal striatum of the 
(left) PD and (right) the non-PD animal, after administration of the dopamine agonist, 
bromocriptine (5 mg/kg, ip; low dose) in vivo, on line and in real time. Neurochemical 
profiles in PD versus non-PD are drawn from original recordings. 

 

 
2.3. In vivo studies of low dose bromocriptine effects on dorsal striatum in PD versus non-PD animals 

This is the first report of the study of bromocriptine at any dose in the dorsal striatum or in any 
neuroanatomic substrate in the PD brain in vivo. The results from the bromocriptine administration at 
the low dose, showed that in the dorsal striatal brain of the PD animal, 5-HT increased about 40% 
above baseline, L-TP decreased about 20% from baseline, Dyn A increased about 70% above baseline 
and peptide at 0.83 V increased about 50% above baseline. These percentages are derived from the 
maximum effect of bromocriptine at the 5 mg/kg dose. The L-TP data are derived from an average of 
two PD studies. The Dyn A data are derived from an average of two PD studies. In addition, SRIF 
increased; final percentage is in process. It is important to note that the low dose of bromocriptine did 
not enable an increase in the release of DA and HVA. Moreover, the results from the low dose of 
bromocriptine in the non-PD animal, showed that DA increased about 30%, 5-HT increased about 
30%, HVA increased about 50% and L-TP decreased about 20%. These percentages are derived from 
the maximum effect of bromocriptine at the low dose. The L-TP data are derived from an average of 
two non-PD studies. It is important to note that there were no peptide biomarkers imaged in the dorsal 
striatal brain of the non-PD animals after bromocriptine administration at the low dose.  
 
 
 



Pharmaceuticals 2009, 2  
 

243

2.4. In vivo studies of high dose bromocriptine effects on dorsal striatum in PD versus non-PD animals 

Figure 4 show the results from the administration of bromocriptine (5 mg/kg ip followed by 10 
mg/kg, ip), the high dose, in dorsal striatal brain of PD versus non-PD. The results from the 
administration of bromocriptine, at the high dose, showed that: in PD, 5-HT increased about 75% 
above baseline, L-TP decreased about 10% from baseline, Dyn A increased about 50% above baseline 
and peptide at 0.83 V increased about 100% above baseline.  

Figure 4. Representative NMI neurochemical signature profiles in dorsal striatum of (left) 
the PD and (right) the non-PD animal, after administration of the dopamine agonist, 
bromocriptine (5 mg/kg ip followed by 10 mg/kg ip) (high dose) in vivo, on line and in real 
time. Neurochemical profiles are drawn from original recordings. 

 

 
 
These percentages are derived from the maximum effect of the high dose of bromocriptine. SRIF 

increased in dorsal striatum of PD; final percentage is in process. It is important to note that 
bromocriptine at the high dose did not enable an increase in the concentration of DA and HVA 
release. The results from the administration of bromocriptine at the high dose in dorsal striatal brain of 
non-PD animals, taken at maximum points, showed that DA decreased about 25% below baseline, as 
expected due to its autoreceptor inhibitory action and in support of microdialysis studies performed in 
dorsal striatal brain of non-PD animals [28]. Serotonin (5-HT) increased about 30% above baseline, 
HVA decreased virtually to baseline, also expectedly because as previously mentioned, HVA is a 
metabolite of DA; these data support those of others as studied in the non-PD animal [29]. LTP  
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decreased about 20% from baseline. It is important to note that the peptide biomarkers were not imaged 
in the dorsal striatal brain of the non-PD animal whether they were bromocriptine treated or not.  

2.5. Line graphs showing the time course of endogenous effects in PD versus non-PD animals 

Interestingly, in Figure 5, the results showed that bromocriptine, at 5 mg/kg ip, low dose, had 
significantly greater effects on 5-HT and L-TP in PD animals than in non-PD animals (ANOVA;  
p < 0.0001), even though endogenously, 5-HT and L-TP were higher in concentration in non-PD than 
in PD.  

Figure 5. These figures show line graphs of the temporal course of neurochemical events 
for the PD animal (left) and the non-PD animal (right) at the 5 mg/kg dose (low dose).  

  
 

 

 

 

 

 

 

 

 

 

 

 

 
 
   
  
 

2.6. Line graphs showing the time course of bromocriptine effects in PD versus non-PD animals 

In Figure 6, bromocriptine, at the high dose, also showed significantly greater effects on 5-HT and 
L-TP in PD animals versus non-PD animals (ANOVA; p<0.0001). It is suggested that 5-HT-ergic 
function may be compensating for the lack of endogenous DA and HVA in dorsal striatal brain of PD, 
in addition to compensating for the decreased DA and HVA biphasic effect of the high dose of 
bromocriptine in dorsal striatal brain of non-PD animals.  
 
 

A B



Pharmaceuticals 2009, 2  
 

245

Figure 6. (A) This figure shows a line graph of the temporal course of neurochemical 
events in dorsal striatum for PD animals after the low dose followed by the high dose of 
bromocriptine. (B) This figure shows a line graph of the temporal course of neurochemical 
events in dorsal striatum of non-PD animals after administration of the high dose of 
bromocriptine. 
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It is important to reiterate that the high dose of bromocriptine exhibits its autoreceptor inhibitory 
action on DA-ergic function in dorsal striatal brain of non-PD. Both DA and HVA are decreased in 
non-PD animals as expected due to the biphasic dose dependent property of bromocriptine. On the 
other hand, the dorsal striatal brain of PD animals did not exhibit DA-ergic function at all, as expected.  

The critical pieces of information provided by these studies is (A) Peptide biomarkers were imaged 
in dorsal striatal brain of PD in vivo. (B) 5-HT-ergic function appears to compensate for the DA-ergic 

B 

A 
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deficiency in PD endogenously and after bromocriptine administration. (C) Bromocriptine did not 
enable the release of DA and/or HVA, i.e., DA-ergic function, at either the low or high doses of this 
pharmaceutical.  

However, given the caveat that the present studies are acute, single dose studies, the noted 
diminution in DA-ergic function, after the high dose of bromocriptine, may not occur during the 
chronic administration of this medication to animals and/or humans. Moreover, DA-ergic function in 
the basal ganglia of the brain of the PD patient may not be as dramatically reduced as was seen after 
substantia nigra of PD animals was lesioned with 6-OHDA. Our studies with NMI and 
pharmaceuticals are continuing; studies using L-DOPA are in progress. 

3. Methods 

3.1. Study design 

In separate studies, PD (lesioned) and non-PD (non-lesioned) animals were implanted with 
BRODERICK PROBE® biosensors in dorsal striatum under sodium pentobarbital anesthesia (50 
mg/kg ip) for NMI studies. Stereotaxic coordinates were chosen according to Pellegrino et al. 1979 
[24]. Surgical 6-OHDA lesions in substantia nigra of male, Sprague-Dawley rattus norvegicus were 
performed in Charles River Laboratories, NC, USA and subsequently to recovery from lesioning, 
animals were tested for expected PD movement defects before shipment to the CCNY Marshak 
Vivarium. PD and non-PD animals were purchased at the same time. Lesioned (PD) and non-lesioned 
(non-PD) animals (weight approximately 300 grams) were housed first in the Marshak Vivarium with 
required light and food requirements (12 hr dark and light cycle and food and water ad libitum). 
Protocols for PD and non-PD studies were performed with approval from the Institutional Animal Care 
and Use Committee (IACUC). NMI enables the same animal to be imaged as its own control; reducing 
animal variability and further reducing the number of animals needed for accurate statistical analysis. 
Recordings were taken every five minutes for a period of approximately 2 hrs. 

3.2. Statistics 

Results from PD and non-PD animals were compared by One-Way Analysis of Variance (ANOVA) 
with alpha level set at P=0.05. Endogenous effects and bromocriptine effects on neurotransmitters and 
neurochemicals in PD as compared with non-PD were statistically significant (p < 0.001). Saline 
effects were not significant. In Figure 5 and Figure 6, asterisks denote significance above baseline at 
95% Confidence Limits (p < 0.05) and above.  

4. Conclusions 

For the first time, neurochemical profiles for dorsal striatal brain of PD versus dorsal striatal brain 
of non-PD animals are reported herein in vivo, on line and in real time, using the advanced NMI 
biotechnology. Moreover, the effects of the pharmaceutical agent, routinely used to treat PD patients, 
bromocriptine (Parlodel®), was studied for its effects on neurochemical profiles for PD compared with 
non-PD. Critical for the treatment of PD are data reported herein that show that peptidergic 
neurochemistry is imaged in endogenous PD and bromocriptine-treated PD and not in endogenous 
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non-PD whether treated with bromocriptine or not. Previous literature has shown that peptides assist 
the positive effects of Brain-Derived Neurotrophic Factor (BDNF) in PD [30]. However, in this paper, 
unique in vivo data show that peptides may actually perform as biomarkers for PD. The data suggest, 
in support of the work of Lu and Stoessel [31] that SRIF may help to treat PD patients. In support of 
the work of Henry and Brotchie [25] the present data show that antagonists of DYN A may assist in 
the pharmacotherapy of PD. The findings show that DA is not the sole arbiter for the treatment of PD! 
Thus, the present findings are highly applicable to the clinical treatment of PD. 

Acknowledgements 

We are grateful to the Lowenstein Foundation, the F.M. Kirby Foundation, The Broderick Brain 
Foundation and the MacKenzie Foundation for partial financial support. We appreciate NYU Langone 
Medical Center, Institutional Review Board for approval for clinical use of our biosensors in epilepsy 
and tumor patients. In the CUNY laboratory, the assistance of Yong-Sheng Li, and medical students, 
Helen Ho and Karyn Wat is also appreciated.  

References  

1. Matthias, C.J. L-dihydroxyphenylserine (Droxidopa) in the treatment of orthostatic hypotension: 
the European experience. Clin. Auton. Res. 2008, 18(Suppl. 1), 25–29. 

2. Matuja, W.B.; Aris, E.A. Motor and non-motor features of Parkinson’s disease. E. Afr. Med. J. 
2008, 85, 3–9. 

3. Broderick, P.A. Distinguishing in vitro electrochemical signatures for norepinephrine and 
dopamine. Neurosci. Lett. 1988, 95, 275–280. 

4.   Broderick, P.A. Cathodic Electrochemical Current Arrangement with Telemetric Application. 
U.S. Patent 4, 883,057, 1989. 

5. Broderick, P.A. Characterizing stearate probes in vitro for the electrochemical detection of 
dopamine and serotonin. Brain Res. 1989, 495, 115–121. 

6. Broderick, P.A. Microelectrodes and their use in cathodic electrochemical current arrangement 
with telemetric application. U.S. Pat. 5,433,710, 1995. 

7. Broderick, P.A. Microelectrodes and their use in an electrochemical arrangement with telemetric 
application. U.S. Pat. 5, 938, 903, 1999. 

8. Broderick, P.A.; Pacia, S.V.; Doyle, W.K.; Devinsky, O. Monoamine neurotransmitters in 
resected hippocampal subparcellations from neocortical and mesial temporal lobe epilepsy 
patients: in situ microvoltammetric studies. Brain Res. 2000, 878, 49–63. 

9. Broderick, P.A.; Pacia, S.V. Imaging white matter signals in epilepsy patients: A unique sensor 
technology. In Bioimaging in Neurodegeneration; Broderick, P.A., Rahni, D.N., Kolodny, E.H., 
Eds.; Humana Press Inc., Springer: Totowa, NJ, USA, 2005; pp. 199–206. 

10. Broderick, P.A.; Pacia, S.V. Identification, diagnosis, and treatment of neuropathologies, 
neurotoxicities, tumors and brain and spinal cord injuries using microelectrodes with 
microvoltammetry. U.S. Pat. 7,112,319 2006, Continuation in Part, 2009, Pending. 

11. Broderick, P.A. Studies of oxidative stress mechanism using a morphine/ascorbate animal model 
and novel N-stearoyl cerebroside and laurate sensors. J. Neural Transm. 2008, 115, 7–17. 



Pharmaceuticals 2009, 2  
 

248

12. Broderick, P.A.; Ho, H.; Wat, K.; Murthy, V. Laurate biosensors image brain neurotransmitters in 
vivo: Can an antihypertensive medication alter psychostimulant behavior? Sensors 2008, 8, 4033–
4061. 

13. Broderick, P.A. In vivo voltammetric studies on release mechanisms for cocaine with gamma-
butyrolactone. Pharmacol. Biochem. Behav. 1991, 40, 969–975. 

14. Broderick, P.A.; Ho, H,; Li, Y-S; Kolodny, E.H. Lovenox® affects striatal neurotransmitters on 
line with laser Doppler flowmetry: Neuromolecular imaging (NMI) in an animal model of acute 
ischemic stroke. Oral Presentation in Society for Neuroscence, Chicago, IL, USA, 18 October, 
2009.  

15. Haile, M.M.; Broderick, P.A.; Li, Y.-S.; Quartermain, D.; Blanck, T.J.J.; Bekker, A.Y. 
Nimodipine reverses the hypoxia-induced elevation of dopamine and serotonin in striatum of 
adult rats. Poster Presentation at American Society of Anesthesiologists, Orlando, FL, USA, 17 
October 2008. 

16. Haile, M.M.; Broderick, P.A.; Li, Y.-S.; Quartermain, D.; Blanck, J.J.; Bekker, A.Y. Nimodipine 
reverses the hypoxic elevation of tryptophan and serotonin in the striatum of adult rats. Poster 
Presentation at the International Anesthesia Research Society, San Diego, CA, USA, March  
13–17, 2009. 

17. Hoffman, R.M.; Yang, M. Whole-body imaging with fluorescent proteins Nat. Protoc. 1 2006, 
1429–1438. 

18. Hoffman, R.M. The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat. Rev. 
Cancer 2006, 5, 796–866. 

19. Hasegawa, S.; Yang, M.; Chishima, T.; Miyagi, Y.; Shimada, H.; Moossa, A.R.; Hoffman, R.M. 
In vivo tumor delivery of the green fluorescent protein gene to report future occurrence of 
metastasis. Cancer Gene Ther. 2000, 7, 1336–1340. 

20. Castano, A. P.; Liu, Q.; Hamblin, M. R. A green fluorescent protein-expressing murine tumour 
but not its wild-type counterpart is cured by photodynamic therapy. Br. J. Cancer 2006, 94,  
391–397. 

21. Wack, S.; Hajri, A.; Heisel, F.; Sowinska, M.; Berger, C.; Whelan, M.; Marescaux, J.; 
Aprahamian, M. Feasibility, Sensitivity, and Reliability of Laser-Induced Fluorescence Imaging 
of Green Fluorescent Protein-expressing Tumors in vivo. Mol. Ther. 2003, 7, 765–773. 

22. Broderick, P.A.; Doyle, W.K.; Pacia S.V.; Kuzniecky, R.I.; Devinsky, O.; Kolodny, E.H. A 
clinical trial of an advanced diagnostic biomedical device for epilepsy patients. J. Long-Term Eff. 
Med. Implants. 2009, 18, 50. 

23. Broderick, P.A.; Doyle, W.K.; Pacia S.V.; Kuzniecky, R.I.; Devinsky, O.; Kolodny, E.H. Intra-
operative Neuromolecular (NMI) in neocortex of epilepsy patients: Comparison with resected 
neocortical epileptogenic tissue. Poster Presentation at The American Epilepsy Society, Boston, 
MA, USA, December 4–8, 2009. 

24. Pellegrino, L.J.; Pellegrino, A.S.; Cushman, A.J. A Stereotaxic Atlas of the Rat Brain, Plenum 
Press: New York, NY, USA, 1979. 

25. Henry, B.; Brotchie, J.M. Potential of opioid antagonists in the treatment of levo-dopa-induced 
dyskinesias in Parkinson’s Disease. Drugs Aging 1996, 9, 149–158. 



Pharmaceuticals 2009, 2  
 

249

26. Hely, M.A.; Morris, J.G.; Reid, W.G.; O'Sullivan, D.J.; Williamson, P.M.; Rail, D.; Broe, G.A.; 
Margrie, S. The Sydney Multicentre Study of Parkinson’s disease: a randomized, prospective five 
year study comparing low dose bromocriptine with low dose levodsopa-carbidopa. J. Neuro. 
Neurosurg. Psychiatry 1994, 57, 903–910. 

27. Montastruc, J.L.; Rascol, O.; Senard, J.M.; Rascol, A. A randomised controlled study comparing 
bromocriptine to which levodopa was later added, with levodopa alone in previously untreated 
patients with Parkinson’s disease: a five year follow up. J. Neuro. Neurosurg. Psychiatry 1994, 
57, 1034–1038. 

28. Brannan, T.; Martinez-Tica, J.; DiRocco, A.; Yahr, M.D. Low and high dose bromocriptine have 
different effects on striatal dopamine release: An in vivo study. J. Neural Transm. 1993, 6,  
81–87.  

29. Jackson, D.M.; Mohell, N.; Georgiev, J.; Bengtsson, A.; Larsson, L.G.; Magnusson, O.; Ross, 
S.B. Time course of bromocriptine induced excitation in the rat: Behavioral and biochemical 
studies. Naunyn Schmiedebergs Arch. Pharmacol. 1995, 351, 146–155.  

30, Wang, Z.H.; Ji, Y.; Shan, W.; Zeng, B.; Raksadawan, N.; Pastores, G.M.; Wisnewski, T.; 
Kolodny, E.H. Therapeutic effects of astrocytes expressing both tyrosine hydroxylase and brain-
derived neurotrophic factor on a rat mouse model of Parkinson’s disease. Neuroscience 2002, 
113, 629–640.  

31. Lu, J.Q.; Stoessel, A.J. Somatostatin modulates the behavioral effects of dopamine receptor 
activation in parkinsonian rats. Neuroscience 2002, 112, 261–266. 

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. 
This article is an open-access article distributed under the terms and conditions of the Creative 
Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 
 


