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Abstract

This study evaluated the effects of maternal fish oil supplementation rich in n-3 PUFA on the

performance and bone health of offspring broilers at embryonic development stage and at

market age. Ross 708 broiler breeder hens were fed standard diets containing either 2.3%

soybean oil (SO) or fish oil (FO) for 28 days. Their fertilized eggs were collected and

hatched. For a pre-hatch study, left tibia samples were collected at 18 days of incubation.

For a post-hatch study, a total of 240 male chicks from each maternal treatment were ran-

domly selected and assigned to 12 floor pens and provided with the same broiler diets. At 42

days of age, growth performance, body composition, bone microstructure, and expression

of key bone marrow osteogenic and adipogenic genes were evaluated. One-way ANOVA

was performed, and means were compared by student’s t-test. Maternal use of FO in

breeder hen diet increased bone mineral content (p < 0.01), bone tissue volume (p < 0.05),

and bone surface area (p < 0.05), but decreased total porosity volume (p < 0.01) during the

embryonic development period. The FO group showed higher body weight gain and feed

intake at the finisher stage than the SO group. Body composition analyses by dual-energy

X-ray absorptiometry showed that the FO group had higher fat percentage and higher fat

mass at day 1, but higher lean mass and total body mass at market age. The decreased

expression of key adipogenic genes in the FO group suggested that prenatal FO supple-

mentation in breeder hen diet suppressed adipogenesis in offspring bone marrow. Further-

more, no major differences were observed in expression of osteogenesis marker genes,

microstructure change in trabecular bone, or bone mineral density. However, a significant

higher close pores/open pores ratio suggested an improvement on bone health of the FO

group. Thus, this study indicates that maternal fish oil diet rich in n-3 PUFA could have a

favorable impact on fat mass and skeletal integrity in broiler offspring.
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Introduction

With the interest in good quality and high meat yield, the growth rate of broilers has been sig-

nificantly improved to meet the product demand in the modern poultry industry [1]. Due to

inadvertent consequences of selection for rapid growth, the body fat portion of broiler chick-

ens has decreased [2], however, the genetic tendency for broilers to accumulate more adipose

tissue that is physiologically necessary has increased [2, 3]. Moreover, the selection programs

pose many challenges particularly those related to bone health. Broiler skeletal abnormalities,

including rickets and bacterial chondronecrosis with osteomyelitis caused lameness, elevated

not only production costs, but also the public’s concern for animal welfare [4–6]. Thus, it sug-

gests that progress should be made in improving bone health in the modern broilers.

In recent years, the health benefits of polyunsaturated fatty acids, the long-chain omega-3

polyunsaturated fatty acids (LC n-3 PUFA) in particular, have drawn a lot of attention from

both the public and researchers. Metabolic benefits of LC n-3 PUFA are commonly attributed

to eicosapentaenoic acid (EPA; 20–5 n-3) and docosahexaenoic acid (DHA; 22:6 n-3) [7]. Fish

oil is not only the best resource of DHA and EPA, but also one of the most extensively

researched nutritional supplements. It benefits a variety of metabolic aspects including devel-

opment and growth [8–11]. Dietary lipids play an important role in the development and

remodeling of long bones in broiler chicks [12, 13]. Several studies have suggested the positive

effects of dietary fish oil on bone health in the broiler production [14–16]. Bone content of

EPA and DHA, which can be enriched by the diet, has been shown to correlate directly with

bone mineral content, bone density, and resistance to force in rat [17–19]. Compared to vege-

table oil, dietary fish oil supplementation increased cortical thickness and bone ash content in

Japanese quail [18, 20]. Dietary LC n-3 PUFA can exert additional benefits for bone strength

through their effects on development and metabolic activities of osteoblasts and osteoclasts,

shown to promote osteoblastogenesis and suppress the formation of osteoclasts when compa-

rable to LC n-6 PUFA [21–23]. Other than promoting bone quality, n-3 PUFA also decrease

adipose tissue in part due to the shared developmental origin of adipocytes and osteoblasts,

both of which originate during embryonic development from mesenchymal stem cells [24].

Dietary EPA and DHA supplementation suppressed the differentiation and maturation of adi-

pocytes, resulting in lower fat accretion in humans, mammals, and broilers [25–28].

Studies indicate that energy metabolism and adiposity are especially sensitive to develop-

mental programming by the maternal diet in mammals and avian species [29–31]. Develop-

mental programming refers to the embryonic environment encounter of persistent effects that

affected the physiology, metabolism and epigenome of offspring after birth [32, 33]. Develop-

mental programming is a particularly attractive tool for use in broiler production because

manipulations would be applied at the level of the broiler breeder hen or the in ovo environ-

ment. Maternal consumption of fish oil is well-documented in rodents and humans but lim-

ited in avian species [29–31, 34–36]. The hen diet is a practical way to manipulate the

embryonic fatty acids profile, because fatty acids are required for chick embryo development,

and fatty acid profile of the yolk could be affected by hen diet [37, 38]. Thus, fish oil supple-

mentation in breeder hen diet potentially alleviates excess fat deposition and bone weakness in

offspring broilers [3]. Work by Liu et al. [18] using quail supports the potential to developmen-

tally program bone quality through fish oil in the hen diet, and extensive evidence from several

studies in other species indicated the maternal dietary EPA and DHA are not only associated

with lower fat accretion but also better bone quality in offspring [14, 25–28, 39–42]. Maternal

supplementation of fish oil in broiler breeder hens decreased adiposity in offspring broiler

chicks compared to those hatched from hens fed fatty acids from corn oil (an n-6 PUFA-rich

oil) [43]. With conservation of osteogenic development between avian and other mammal
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species, it is reasonable to hypothesize that developmental programming with LC n-3 PUFA

may have similar benefits for bone quality. The objective of the current study was to evaluate

the effect of maternal fish oil on offspring broilers body composition and bone quality. The

understanding of the interaction between prenatal nutrition and offspring growth may provide

a new insight for avian bone development and novel nutritional means to enhance bone health

in broilers.

Materials and methods

Ethics statement

All experiments followed the guidelines of the Institutional Animal Care and Use Committee

and was conducted at the Poultry Research Farm, University of Georgia, Athens, GA. The pro-

tocol was approved by the Institutional Animal Care and Use Committee at the University of

Georgia.

Experimental design

Ross 708 broiler breeder hens (N = 40/diet) were fed standard diets containing 2.3% of either

soybean oil (SO; Conagra Brands; Chicago, IL) or fish oil (FO; Jedwards International, Brain-

tree MA) for 28 days. The FO contained 18% EPA and 12% DHA. Management and diet for-

mulation were as previously described [43]. Fertilized eggs were collected over a period of two

weeks and placed in an egg cooler that was held between 65–68˚F and 55–65% relative humid-

ity. Later eggs were incubated under standard conditions with 99.5˚F and 60% relative humid-

ity. Chicks from the SO-fed hens were named the SO group, and chicks from the FO-fed hens

were named the FO group. For a pre-hatch bone development study, 10 embryos from each

group were randomly chosen at embryonic day 18 and euthanized by cervical dislocation. For

a post-hatch study, a total of 120 one-day-old male chicks from each treatment were randomly

selected and distributed to 6 floor pens (240 chicks in total, six replicate floor pens per treat-

ment with 20 birds per pen). Each pen was equipped with a hanging feeder, a nipple drinker

line, and fresh wood shavings litter. All chicks were raised to 42 days of age in the same room.

Feeding and environmental management conditions were based on broiler recommendations

for the Ross 708 [44]. Chicks were allowed to consume feed and water on an ad libitum basis.

In each experiment, all chicks were fed the same corn-based diet after hatch, ensuring the

changes in body composition were due to the maternal hen diet. A three phase feeding pro-

gram with starter (1–14 days of age), grower (15–28 days of age), and finisher (29–42 days of

age) diets in mash form were used based on the nutritional requirements of Ross broilers

(Table 1) [45].

Growth performance

Body weight (BW) and feed intake (FI) per pen were recorded at 1, 14, 28, and 42 days of

growth. The body weight gain (BWG) and feed conversion ratio were calculated in each feed-

ing phase and overall period. Birds were monitored more than twice a day, and any mortalities

were weighted to adjust feed conversion ratio.

Body composition

Dual energy x-ray absorptiometry (DEXA; GE Healthcare, Chicago, IL) was used to determine

the effect of maternal fish oil intake on body composition in offspring broilers. Three birds per

pen were randomly selected for body composition measurement at day 1 and day 42. After

euthanasia, the birds were placed face-up on the DEXA scanner and scanned using a small
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animal software module (Lunar Prodigy from GE, encore software version 12.20.023). Defin-

ing the whole bird as a region of interest (ROI), the DEXA provided measurements in bone

mineral content (BMC), bone mineral density (BMD), fat mass, lean mass, fat percentage, lean

percentage, and total tissue mass for each bird.

Micro-computed tomography (μCT)

For the pre-hatch study, left tibias were collected from day 18 embryos. Microstructure of tibia

metaphysis section was measured by Micro-Computed Tomography (μCT) according to a

standard protocol at 82 kV, 121 μA, and a 0.5 mm aluminum filter, and analyses were per-

formed with a SkyScan 1172 (SkyScan, Kontich, Belgium) [46, 47]. For the post-hatch study to

evaluate bone morphologic changes in the broiler, 36 samples (18 samples per treatment

group) were randomly chosen at day 42. In order to fit the test space and specifications, the

right femurs were scanned at 75 kV, 126 μA, and a 0.5 mm aluminum filter. The pixel size was

fixed at 26 μm, and a 0.25˚ rotation angle was applied at each step. 2-D images were transferred

Table 1. Composition and calculated contents of the experimental diets.

Item 0–14 d 15–28 d 29–42 d

Ingredients, %

Corn, Grain 62.85 67.34 68.84

Soybean meal -48% 33.32 28.52 26.36

Dicalcium Phosphate 1.80 1.66 1.46

Corn oil 0.41 0.93 1.93

Limestone 0.52 0.51 0.50

Common salt 0.23 0.21 0.20

DL-methionine 0.28 0.24 0.20

Vitamin Premix1 0.25 0.25 0.25

L-lysine-HCL 0.17 0.16 0.11

Threonine 0.05 0.04 0.03

Mineral premix2 0.08 0.08 0.08

Antiprotozoal agent3 0.05 0.05 0.05

Energy and nutrient composition

ME, kcal/kg 3008 3086 3167

Crude protein % 21.00 19.00 18.00

Lysine % 1.18 1.05 0.95

Methionine % 0.45 0.42 0.39

Arginine % 1.24 1.10 1.03

Threonine % 0.77 0.69 0.65

Valine % 0.89 0.81 0.73

Tryptophan % 0.18 0.17 0.17

Total sulfur amino acid % 0.88 0.80 0.74

Ca % 0.90 0.84 0.76

Available P % 0.45 0.42 0.38

1Vitamin premix include provides the following per kg of diet: Vitamin A 2,204,586 IU, Vitamin D3 200,000 ICU,

Vitamin E 2,000 IU, Vitamin B12 2 mg, Biotin 20 mg, Menadione 200 mg, Thiamine 400 mg, Riboflavin 800 mg, d-

Pantothenic Acid 2,000 mg, Vitamine B6 400 mg, Niacin 8,000 mg, Folic Acid 100 mg, Choline 34,720 mg.
2Mineral premix provides the following per kg of diet: Ca 0.72 g, Mn 3.04 g, Zn 2.43 g, Mg 0.61 g, Fe 0.59 g, Cu 22.68

g, I 22.68 g, Se 9.07 g.
3 Coban-90 (Elanco Animal Health, Indianapolis, IN): Monensin was included at 99 mg per kg of diet.

https://doi.org/10.1371/journal.pone.0273025.t001
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to CTAn software (CTAn, SkyScan) for structure construction and quantification. Cortical

bone and trabecular bone structures were reconstructed respectively by CTAn software and

separated for various bone parameter analyses. The following parameters were quantified: Tis-

sue Volume (TV), Bone Volume (BV), Bone Volume per Tissue Volume (BV/ TV), Trabecular

Number (Tb. N), Trabecular Thickness (Tb. Th), Trabecular Separation (Tb. Sp), Connectivity

Density, Structure Model Index (SMI), Total surface area (TS), Bone surface area (BS), Total

Porosity (Po (tot)), Volume of Pores (Po. V (tot)), Open Pore Percentage (Po. (op)), Close

Pore Percentage (Po. (cl)), Number of Closed Pores (Po. N (cl)), Number of Open Pores (Po.

N (op)), Volume of Open Pores (Po. V (op)) and Closed Pores Surface (Po. S(cl)).

Real-time quantitative PCR analysis of gene expression in bone marrow

Left femurs were collected at day 42. After bones were opened, whole bone marrow was

extracted and stored immediately at -80˚C until RNA isolation (n = 6). Total RNA from bone

marrow was extracted using Qiazol reagents (Qiagen, USA) according to the manufacturer’s

instructions. A Nano-Drop 1000 Spectrophotometer (ThermoFisher Scientific, Pittsburgh,

PA) was used to determine the quantity of extracted RNA. The cDNA was synthesized from

total RNA (2,000 ng) using high-capacity cDNA reverse transcription kits (Thermo Fisher Sci-

entific, Waltham, MA).

Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) was

used to measure mRNA expression. Primers were designed using the Primer-BLAST program

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/). The specificity of primers was validated

by melting curve analysis and PCR product sequencing. qRT-PCR was performed on an

Applied Biosystems StepOnePlus™ (Thermo Fisher Scientific, Waltham, MA) with iTaq™ Uni-

versal SYBR Green Supermix (BioRad, Hercules, CA) using the following conditions for all

genes: 95˚C for 10 minutes followed 40 cycles at 95˚C for 15 seconds, annealing temperature

for 20 seconds, and extending at 72˚C for one minute.

The geometric mean of mRNA expression of glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) and actin beta (β-actin) has been used as housekeeping genes confirmed by their

consistent Ct values among the treatments (P> 0.1). Details of primer sequences used for the

experiment are presented in Table 2. mRNA expression levels of early markers of adipocyte

differentiation, such as peroxisome proliferator-activated receptor gamma (PPARγ), fatty acid

synthase (FASN), CCAAT/enhancer-binding protein alpha (C/EBPα), CCAAT/enhancer-

binding protein beta (C/EBPβ), fatty acid binding protein 4 (FABP4), and sterol regulatory ele-

ment-binding transcription factor 1 (SREBP1) were measured, while mRNA expression of

secreted phosphoprotein 1 (Osteopontin; SPP1), bone morphogenetic protein 2 (BMP2), and

bone gamma-carboxyglutamic acid-containing protein (Osteocalcin; BGLAP) were used to

evaluate bone metabolism in marrow tissue. Samples were run in triplicate, and relative gene

expression data were analyzed using the 2-ΔΔCt. The mean ΔCt of each marker gene from the

SO group was used to calculate the ΔΔCt value, and 2-ΔΔCt expression levels were normalized

to 1 for the SO group and the FO group expression level presented as fold change.

Statistical analysis

All experimental data were expressed as means with standard error of the means (SEM). The

differences among the maternal treatment groups were analyzed by one-way ANOVA,

whereas the means were analyzed statistically by student’s t-test using JMP Pro14 (SAS Insti-

tute, Inc., Cary, NC). p� 0.05 was considered statistically significant.
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Results

Maternal dietary EPA and DHA supplementation for breeder hens

improve growth performance of offspring at market age by increasing lean

mass and total tissue mass

The mortality rate in this experiment was less than 1.0% and was not related to dietary treat-

ments. At the beginning of the experiment, 1-day-old chicks from the FO group had 1.1%

lower body weight compared with the SO group (p< 0.001) (Table 3). There were no statisti-

cally significant differences in body weight gain (BWG) and feed intake (FI) between the two

groups at the starter and grower stages. At the finisher stage, BWG and FI increased by 11.57%

(p< 0.05) and 4.8% (p< 0.01) in the FO group, respectively, when compared with the SO

group. For the overall period, maternal fish oil supplementation increased BWG by 4.8%

(p< 0.05) at market age, but it did not affect feed conversion ratio (p> 0.05) at any period of

the experiment (Table 3).

Body composition analysis by DEXA indicated that offspring chicks from the FO group

had significantly higher body fat percent in 1-day-old chicks (Table 4), where the FO group

had a 10.08% higher bone surface area (p< 0.05), a 6.85% higher fat mass (p< 0.05), and

6.90% higher fat ratio (p< 0.01) coupled with a 4.08% lower lean mass when compared with

the SO group (p< 0.01). There was no difference in total body mass between two groups at 1

day of age. Conversely, at 42 days of age, broilers from the FO group had a 6.70% higher lean

mass (p< 0.05), and an 11.02% higher total tissue mass (p< 0.05) that coupled with a 4.76%

Table 2. Nucleotide sequences of the primers used for quantitative real-time RT-PCR.

Gene1 Primer sequence (5’-3’) Product length (bp) Annealing temperature (˚C) Accession #

GAPDH F-GCTAAGGCTGTGGGGAAAGT
R-TCAGCAGCAGCCTTCACTAC

161 55 NM_204305.1

β-actin F-CAACACAGTGCTGTCTGGTGGTA
R-ATCGTACTCCTGCTTGCTGATCC

205 61 NM_205518.1

C/EBPα F-CCTACGGCTACAGAGAGGCT
R-GAAATCGAAATCCCCGGCCA

206 60 NM_001031459.1

C/EBPβ F-CCGCTCCATGACCGAACTTA
R-GCCGCTGCCTTTATAGTCCT

205 60 NM_205253.2

PPARγ F-GAGCCCAAGTTTGAGTTTGC
R-TCTTCAATGGGCTTCACATTT

131 58 XM_025154400.1

FASN F-AGAGGCTTTGAAGCTCGGAC
R-GGTGCCTGAATACTTGGGCT

127 60 NM_205155.3

FABP4 F-GCAGAAGTGGGATGGCAAAG
R-GTTCGCCTTCGGATCAGTCC

153 60 NM_204290.1

SREBP1 F-TTCTCAGGGCTGTTCGATGC
R-AACACATTGCCGGTAGGGGG

119 60 XM_046927256.1

BGLAP F-GGATGCTCGCAGTGCTAAAG
R-CTCACACACCTCTCGTTGGG

142 57 NM_205387.3

SPP1 F-GCCCAACATCAGAGCGTAGA
R-ACGGGTGACCTCGTTGTTTT

204 57 NM_204535.4

BMP2 F-TCAGCTCAGGCCGTTGTTAG
R-GTCATTCCACCCCACGTCAT

163 57 XM_025148488.1

1GAPDH: glyceraldehyde-3-phosphate dehydrogenase; β-actin: actin beta; PPARγ: peroxisome proliferator-activated receptor gamma; FASN: fatty acid synthase;

C/EBPα: CCAAT/enhancer-binding protein alpha; C/EBPβ: CCAAT/enhancer-binding protein beta; FABP4: fatty acid binding protein 4; SREBP1: sterol regulatory

element-binding transcription factor 1; SPP1: secreted phosphoprotein, osteopontin; BMP2: bone morphogenetic protein 2; BGLAP: bone gamma-

carboxyglutamic acid-containing protein (osteocalcin).

https://doi.org/10.1371/journal.pone.0273025.t002
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higher total body mass (p< 0.05) compared to the SO group, but neither fat mass nor bone

parameters differed significantly between the groups (p> 0.05; Table 4).

Maternal fish oil altered microstructure of offspring broiler long bone

during embryonic development and at market age

Femurs of market-age broilers were analyzed by μCT (Fig 1 and Table 5). For total femur bone

structure assays, there was a significant decrease of BS/TV in the FO group (p< 0.05), whereas

there were no statistically significant differences in BMD, BMC, TV, BV, BS and BV/TV

between two groups (Table 5). Trabecular and cortical bones of the metaphysis were analyzed

after 2-D reconstruction and separating. With maternal fish oil consumption, a numerically

Table 3. Growth performance.

Growth performance Age1 SO FO SEM p-value

Body weight (g) day 1 42.7 42.2 0.3 <0.001�

day 14 374.7 360.9 4.7 0.150

day 28 1270.8 1274.1 10.5 0.887

day 42 2145.4 2249.9 26.0 0.018�

Body weight gain (g) Starter 332.0 318.6 4.7 0.180

Grower 896.1 913.2 7.9 0.303

Finisher 874.6 975.8 29.1 0.049�

Overall 2102.7 2207.7 26.0 0.019�

Feed intake (g) Starter 546.5 537.6 10.2 0.684

Grower 1511.1 1567.4 35.6 0.467

Finisher 2243.2 2351.8 24.2 0.008�

Overall 4300.8 4456.8 49.2 0.119

Feed conversion ratio (Feed intake/Body weight gain) Starter 1.608 1.677 0.054 0.276

Grower 1.688 1.718 0.041 0.370

Finisher 2.616 2.412 0.098 0.829

Overall 2.048 2.020 0.029 0.678

1 Starter, 1–14 days; Grower, 15–28 days; Finisher, 29–42 days; Overall, 1–42 days. SO, soybean oil group; FO, fish oil group.

� a significantly difference between treatments by using student’s t-test, p< 0.05, N = 6.

https://doi.org/10.1371/journal.pone.0273025.t003

Table 4. Body composition of broiler chick at 1 day and 42 days of age.

BMD1 BMC Area Fat percent Lean percent Total tissue Fat mass Lean mass

(g/cm2) (g) (cm2) (%) (%) (g) (g) (g)

SO 0.056 0.68 11.9 36.35 61.84 36.33 13.15 23.04

Day1 FO 0.055 0.72 13.1 38.84 56.67 35.88 13.93 22.00

SEM 0.00004 0.0177 0.3441 0.5022 0.8411 0.2600 0.2100 0.2300

p-value 0.318 0.864 0.041� 0.005� < 0.001 0.197 0.032� 0.009�

SO 0.192 41.13 213.83 19.90 80.10 2506.52 500.92 2005.33

Day 42 FO 0.192 42.09 219.41 19.60 80.39 2662.13 522.35 2139.75

SEM 0.001 0.687 2.891 0.327 0.3181 44.40 13.28 34.59

p-value 0.968 0.492 0.345 0.563 0.335 0.035� 0.430 0.021�

1BMD, bone mineral density; BMC, bone mineral content; Area, bone area; Fat percent (%), fat percentage; Lean percent (%), lean percentage; Total tissue (g), lean mass

plus and fat mass; Fat (g), fat mass; Lean (g), muscle mass; BM(g), total body mass. SO, soybean oil group; FO, fish oil group.

� a significantly difference between treatments by using student’s t-test, p< 0.05, N (Day 1) = 20; N (Day 42) = 18.

https://doi.org/10.1371/journal.pone.0273025.t004
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lower BMD (p = 0.057) was detected in metaphysis trabecular bone, whereas a numerically

higher BMD (p = 0.054) was observed in cortical bone. Quantitative analysis evidenced a net

reduction in the number of open pores (p< 0.05) and an increasing number of closed pores

(p< 0.05) in the FO group. Meanwhile, a smaller pore volume (p< 0.05) and a lower total

number of pores (p< 0.05) were observed in metaphysis cortical bones from the FO group

broilers, but no significant change of TV, BV, or BMC were observed.

Fig 1. Representative reconstructed 2D images of market-age-broiler femur metaphysis (42 days of age). (A) reconstructed images of cortical porosity

(purple) within the cortical bone; (B) lateral view of the reconstructed cortical porosity extracted from bone, indicated the cortical bone pore size, pore volume

and porosity ratio.

https://doi.org/10.1371/journal.pone.0273025.g001
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Based on these findings, we went back to evaluate early effects of maternal fish oil on embryonic

bone development (Fig 2). Maternal fish oil supplement significantly increased BMC (p< 0.01),

TV (p< 0.05), and BS (p< 0.05) and decreased porosity volume (Po. V(tot)) (p< 0.05) on tibia

of 18 days old embryo. However, there were no statistically significant differences in BMD, BV, TS

or percentage of pores on embryonic bone between two groups (Fig 2 and Table 6).

Maternal fish oil treatment suppressed adipogenic gene expression in

offspring broiler bone marrow tissue

Expression of genes involved in adipogenesis and osteogenesis in femur bone marrow tissue of

the SO and FO broilers at 42 days of age. Potential mechanisms for the difference in adiposity

Table 5. Femur metaphysis section 3D structure data at market-age broilers.

Parameters1 Unit SO FO SEM p-value

BMC g 238.696 234.575 3.74 0.294

BMD g/mm2 0.267 0.263 0.004 0.614

TV mm3 896.422 898.832 14.882 0.531

Total BV mm3 338.812 328.551 5.749 0.188

BS mm2 2975.650 2749.910 91.264 0.109

BV/TV 1mm 37.804 36.781 0.508 0.162

BS/TV 1mm 3.304 3.057 0.067 0.044�

BMC g 1.125 1.140 0.017 0.670

BMD g/mm2 0.115 0.107 0.002 0.057

TV mm3 546.579 565.075 12.085 0.770

BV mm3 56.513 54.026 1.984 0.269

Trabecular BS mm2 1287.53 1215.94 46.347 0.224

BV/TV 1/mm 10.328 9.578 0.286 0.096

BS/BV 1/mm 22.743 22.612 0.232 0.392

Tb.N 1/mm 0.645 0.588 0.019 0.067

Tb.Th mm 0.161 0.163 0.002 0.708

Tb.Sp mm 1.802 1.954 0.018 0.075

SMI - 1.673 1.697 0.018 0.749

BMC g 172.241 168.017 2.920 0.238

BMD g/mm2 0.521 0.539 0.006 0.054

TV mm3 332.857 312.124 6.959 0.068

BV mm3 278.233 267.363 5.122 0.145

Cortical Po.N(cl) - 83.809 85.733 0.509 0.028�

Po.V(cl) mm3 1.318 1.407 0.074 0.723

Po. S(cl) mm2 66.732 68.688 3.552 0.607

Po (cl) % 0.460 0.523 0.022 0.916

Po (op) % 15.803 13.819 0.514 0.025�

Po.V(op) mm3 53.306 43.353 2.507 0.022�

Po.V(tot) mm3 54.623 44.760 2.527 0.024�

Po (tot) % 16.190 14.271 0.509 0.028�

1BMC, bone mineral content; BMD, bone mineral density; TV, total bone volume; BV, bone volume (TV minus bone marrow volume); BS, bone surface area; BV/TV,

bone volume/total volume; BS/TV, bone surface/total volume; Tb. N, trabecular number; Tb. Th, trabecular bone thickness; Tb. Sp, trabecular spacing; SMI, structural

model index; Po. V(tot), total volume of pore space; Po (tot)%, percentage of pores; Po. N(cl), number of close pore; Po. V(cl), volume of close pore; Po. (cl), close

porosity (percent); Po. S(cl), close pore surface; Po. V(op), volume of open pore; Po. (op), open porosity (percent). SO, soybean oil group; FO, fish oil group.

� a significantly difference between treatments by using student’s t-test, p< 0.05, N = 18.

https://doi.org/10.1371/journal.pone.0273025.t005
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were evaluated based on expression of genes that mediate lipogenesis and adipogenesis. As

shown in Fig 3A, significant downregulation of PPARγ, FABP4, and C/EBPβ was found in the

FO group marrow tissue compared with the SO group (p< 0.05). However, there was no dif-

ference between the two groups for expression of FASN, SREBP1, or C/EBPα.

Potential mechanisms for the difference in bone metabolism and growth were evaluated

based on expression of genes that mediate osteogenesis and bone formation. BGLAP and SPP1
did not differ significantly between the groups (Fig 3B; p> 0.05), whereas the expression of

BMP2 was downregulated in the FO group (p< 0.05).

Fig 2. Reconstructed 2D structure of tibia diaphysis on day 18 embryo. Haversian artery was used as a landmark for region of interest (ROI) selection. The diaphysis

bone traits were scanned and analyzed by μCT.

https://doi.org/10.1371/journal.pone.0273025.g002

Table 6. Metaphysis microstructure of tibia on day 18 embryo.

Unit SO FO SEM p-value

BMC1 g 4.007 4.520 0.139 0.003�

BMD g/mm2 0.269 0.278 0.004 0.155

TV mm3 14.561 16.225 0.427 0.024�

BV mm3 7.040 7.843 0.249 0.055

TS mm2 41.011 42.741 0.632 0.089

BS mm2 61.248 65.887 1.046 0.011�

Po.V(tot) mm3 8.382 7.522 0.221 0.002�

Po (tot) % 51.820 51.681 0.719 0.537

1BMC, bone mineral content; BMD, bone mineral density; TV, total bone volume; BV, bone volume (TV minus bone marrow volume); TS, total surface area; BS, bone

surface area; Po.V(tot), total volume of pore space; Po (tot)%, percentage of pores.

� a significantly difference between treatments by using student’s t-test, p< 0.05, N = 10.

https://doi.org/10.1371/journal.pone.0273025.t006
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Discussion

Both omega-3 and omega-6 fatty acids are essential for health and need to be consumed in

proper balance [48, 49]. In the present study, maternal fish oil diet significantly improved the

growth performance in offspring broilers at market age when compared with soybean oil.

Increased BW was primarily due to an improvement in lean muscle gain. Based on the present

results, we concluded that the prenatal effects of fish oil from the hen diet improved bone qual-

ity and increased lean mass of offspring broilers at market age. In the current study, femur

Fig 3. The relative mRNA expression of adipogenesis and osteogenesis marker genes. Maternal fish oil supplementation suppressed bone marrow adipogenesis but

didn’t change osteogenesis in offspring broiler. Expression of A) adipogenesis marker genes; B) osteogenesis marker genes; The relative mRNA expressions were

detected by qPCR method in SO and FO group. Total RNA from femur bone marrow from 42 day-old-broiler were collect and reversed (N = 6). Fold changes of gene

expression were calculated using the ΔΔCt method by student’s t-test. Each experiment was repeated at least 3 times. The error bars represent SEM. � means there was a

statistically significant difference between treatments, p< 0.05.

https://doi.org/10.1371/journal.pone.0273025.g003
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microstructure of market age broilers was analyzed by μCT. Femur is one of the most mineral-

ized bones in the skeletal system and also a good indicator of overall skeletal mineralization

microstructural properties [50]. Most studies use total bone BMD or BMC as a common

parameter to evaluate bone quality, but morphometry and biomechanical analyses also indi-

cate that impaired cortical bone strength is also a consequence of increased porosity [51, 52],

and greater porosity is associated with higher odds for bone fracture [53–56]. Therefore,

porosity is a substantial determinant of the bone fragility and mechanical competence and can

be a target for bone abnormalities prevention in broilers [50, 57]. In the present study,

although μCT and DEXA showed that there were no significant differences in BMD or BMC

between the two groups, but femur microstructure study illustrated a numeric increase of

BMD in central diaphysis cortical bone area as well as a lower micropore volume that coupled

with higher closed pore ratio, indicating a positive impact of maternal fish oil diet on bone

quality in offspring broilers at 42 days. Meanwhile, at the market age of broilers, bone pore size

and pore number are the key anatomic traits to reflect unbalanced bone homeostasis. As a

dynamic organ, the bone structure depends on not only bone formation but also bone resorp-

tion. Larger pore size is highly associated with increased cortical remodeling that leads to

impairment in elasticity, strength, and toughness of the bone [56]. The major hypothesis for

such bone health studies with fish oil was n-3 PUFA could affect stem cells differentiation, cell

population, and cell activity in bone marrow to enhance bone formation [58, 59]. The long

bones metaphysis contains large amounts of marrow adipose tissue and hematopoietic red

marrow, where marrow composition and adipocyte proportion tend to change in response to

nutrition and environmental stress [60, 61]. It has been reported that lipid profiles in marrow

showed an increase in the proportion of unsaturated fatty acids by fish oil, and dietary fish oils

reduced the amount of lipid in bone marrow [62, 63]. The high level of n-3 PUFA intake could

directly alter the lipid profile in bone marrow by increasing n-3 PUFA concentration in bone

marrow and optimize bone formation by altering the production of bone growth factors [19,

64]. It is also known that bone resorption is accomplished by bone-resorbing cells known as

osteoclasts, and the activity and functions of osteoclasts are regulated by several receptor acti-

vator such as receptor activator of nuclear factor NF-kB ligand (RANKL). In rat, dietary intake

of DHA during early post-weaning could suppresses adipogenesis, enhances bone marrow cell

number [65], and introduces stem cells into the osteoblastic lineage by enhancing bone-spe-

cific transcription factors [66]. Meanwhile, perinatal or dietary n-3 PUFA supplementation

can decrease the number of osteoclast cells via not only modulating mRNA expression of

RANKL in the rat [67, 68] but also mediating osteoclast activity, inhibiting bone resorption

during bone remodeling [23, 68, 69]. The dual effects of n-3 PUFA on both adipose tissue and

bone development are due in part to the shared developmental origin of adipocytes and osteo-

blasts, both of which originate from stem cells during embryonic development [69]. Bone mar-

row mesenchymal stem cells (MSCs) differentiate into either osteoblasts that contribute to

bone density, or adipocytes that comprise the fat fraction of marrow [70]. Bone marrow adi-

pose tissue is a large portion of the bone marrow content and plays an important role in energy

storage, endocrine function, and bone metabolism [71–73]. However, excess adipogenesis in

bone marrow tissue is adversely correlated with bone quality, causing bone disorders such as

osteoporosis [55, 60, 74]. Notably, compared with n-6 PUFA, dietary n-3 PUFA supplementa-

tion can down-regulating PPARγ, the master regulator of adipogenesis, suppressing adipocyte

formation in bone marrow of rodent and broilers [62, 64, 75–78]. Although the previous stud-

ies do not assess the effects of fish oil on bone development between between avian and other

mammal species, it is reasonable to speculate that developmental programming with LC n-3

PUFA may have similar benefits for bone strength in broilers. The present study showed that

the expression of the adipogenic transcription factors, including PPARγ, C/EBPβ, and FABP4
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were downregulated in the bone marrow of the FO broilers, with a lower bone porosity. This

finding is in line with the hypothesis that maternal fish oil supplement has inhibitory effect on

adipocyte differentiation of MSCs, that could drive the improvement of bone health in off-

spring broilers [79–82]. Although the present study found that the FO group had significantly

lower BMP2 which plays an important role in the development of cartilage and bone, several

studies have showed that BMP2 is also expressed in adipose tissue and preadipocytes in

human [83], and BMP2 supports both adipogenic and osteogenic differentiation in various

progenitor cells, dependent on treatment, culture condition, and cell types [84–86]. BMP2
treatment on bone marrow MSCs in adipogenic medium increased PPARγ activation [87, 88],

indicating the important role of BMP2 not only in bone metabolism but also in adipogenesis.

Based on the present results, the significant suppression of BMP2 in FO group, therefore, pos-

sibly account for the down-regulation of PPARγ as the results of decreased adipogenesis in

bone marrow. Besides, compared with adipogenesis and osteoclastogenesis, fish oil has rela-

tively mild effects on bone osteoblastogensis, suggesting that osteogenic responses were rela-

tively less sensitive in bone marrow [69, 89]. The bone formation and development can

respond to mechanical stress and environment change [90, 91]; thus, with the increasing body

weight gain, a higher mechanic stress might have been loaded on femurs of the FO group com-

pared to those of the SO group.

We further evaluated the effects of maternal fish oil diet on embryonic bone traits by

using μCT method. Results showed that maternal fish oil supplement significantly improved

the bone traits during later embryonic development when compared with soybean oil group,

by increasing BMC and BV and decreasing porosity volume. These results coincided with a

previous study on Japanese quail, where with maternal fish oil supplementation, thicker corti-

cal bones, higher shear force responses, and higher bone breaking strength were observed in

the tibia diaphysis area [18, 20]. As with many previous studies, we concluded that the increas-

ing of n-3 PUFA ratio in hen diet could optimize progeny bone health and growth perfor-

mance. There are several potential mechanisms related to prenatal n-3 PUFA supplement and

embryonic bone health. Maternal dietary supplement of n-3 PUFA can be incorporated in the

egg yolk to become available for the developing embryo, which directly modify fetal growth

programming and epigenetic regulation [43, 92–94]. The modulation might directly be associ-

ated with the expression of bone-related proteins, or differential methylation profiles, contrib-

uting to superior physical structure and better bone quality [95]. Besides, dietary fish oil

supplementation could increase calcium absorption in the small intestine and improve bone

mineralization and quality in laying hens [15, 96, 97]. In addition, fish oil enriched diet also

improves reproductive performance, organs functionality, immunocompetence, skeletal

health, and gastrointestinal development in breeder hens [14, 16, 93].

Considering the management and cost in large production, fish oil may not be the most

practical option [98]. Therefore, a replacement of fish oil from other sources would be another

option. Recent studies have reported that fish byproducts [99], microalgae [100], and flaxseed

oil [101] are more cost-effective and have been applied in poultry production. Thus, those

products have potential to be used for developmental programming through the hen diet.

Besides, in comparison to mammals, avian species have relatively enhanced ability to synthe-

size long chain n-3 PUFA species from their alpha-linolenic acid (ALA; 18:3 n-3) precursor

due to the unique properties of avian elongases enzymes [102–105]. Plant-based ALA feeding

significantly reduced the cholesterol and fat percentages of meat in broilers [106, 107]. How-

ever, with the inconsistency in the literature, some studies finding no effects or negative effects

of n-3 PUFA inclusion on bone quality in avian or the other species [67, 108–110]. We hypoth-

esize that these variations can likely due to the source and quality of n-3 PUFA. Furthermore,

the impact of n-3 PUFA supplementation depends on the levels of EPA and DHA [42, 111].

PLOS ONE Materal fish oil on offspring broiler growth

PLOS ONE | https://doi.org/10.1371/journal.pone.0273025 August 16, 2022 13 / 20

https://doi.org/10.1371/journal.pone.0273025


Studies pointed out that health benefits of n-3 PUFA are heavily depending on the source,

dose, and duration of n-3 PUFA enrich diets [105, 112–114]. For example, ALA as source of n-

3 PUFA, the conversion ratio of ALA to DHA/EPA might not be efficient to improve growth

with a short period of treatment [115]. Compared with other animal models, broilers have

very short life spans, and the tissue growth is extremely efficient, considering the weight gain

and muscle growth. Thus, the potential beneficial effects of LC n-3 PUFA consumption on

bone health could be limited by the treatment time. Thus, further studies are necessary to max-

imize the beneficial effects of LC n-3 PUFA.

In conclusion, our observations demonstrated that maternal fish oil diet rich in n-3 PUFA

could have a favorable impact on fat mass and skeletal integrity in broiler offspring. Our find-

ings provide a novel nutrition strategy using maternal fish oil to prevent bone disorders and

improve meat yield in offspring broilers.
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