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Abstract

Background: In evolutionary theory, divergence and speciation can arise from long periods of reproductive
isolation, genetic mutation, selection and environmental adaptation. After divergence, alleles can either persist in
their initial state (ancestral allele - AA), co-exist or be replaced by a mutated state (derived alleles -DA). In this studly,
we aligned whole genome sequences of individuals from the Bovinae subfamily to the cattle reference genome
(ARS.UCD-1.2) for defining ancestral alleles necessary for selection signatures study.

Results: Accommodating independent divergent of each lineage from the initial ancestral state, AA were defined
based on fixed alleles on at least two groups of yak, bison and gayal-gaur-banteng resulting in ~ 32.4 million
variants. Using non-overlapping scanning windows of 10 Kb, we counted the AA observed within taurine and zebu
cattle. We focused on the extreme points, regions with top 0. 1% (high count) and regions without any occurrence
of AA (null count). High count regions preserved gene functions from ancestral states that are still beneficial in the
current condition, while null counts regions were linked to mutated ones. For both cattle, high count regions were

immune response domain for zebu.

associated with basal lipid metabolism, essential for survival of various environmental pressures. Mutated regions
were associated to productive traits in taurine, i.e. higher metabolism, cell development and behaviors and in

Conclusions: Our findings suggest that retaining and losing AA in some regions are varied and made it species-
specific with possibility of overlapping as it depends on the selective pressure they had to experience.
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Background

Divergence and speciation result from long periods of
adaptation, selection, and genetic drift after separation
of subpopulations. Separation forces individuals to adapt
within the current isolated environment and gradually
differ from the initial population. Various methodologies
and theories have been proposed in efforts for decipher-
ing this process since nineteenth century [1].

Recently, the availability of whole genome sequences
(WGS) has become of increasing importance in genetic
studies [2]. In cattle studies for example, WGS data of
various breeds have been used for inference of
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demographic history, identification of production traits,
calculation of effective population size, estimation of
genetic relationships, and population structure analysis
[3-5].

In evolutionary analysis, synteny blocks can be inferred
as conserved relationships of genomic regions in differ-
ent species anchored by sets of orthologues genes. With
varying size, these blocks can be co-localized in different
karyotypes of modern species’ respective genomes.
Moreover, synteny blocks can be clustered into lineage-
specific ones, such as to primates, Rodentia, Felidae,
Camelidae, Chiroptera and Bovidae as suggested in a
study of syntenic analysis using 87 mammalian genomes
[6]. However, orthologous genes within these lineage-
specific synteny blocks may present allele variations due
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to independent evolutionary event after the speciation
[7].

Alleles having diverged through mutation are called
derived alleles (DA), while alleles that persist in their ini-
tial state are termed ancestral alleles (AA) [8]. A reason-
able method to assess AA is by comparing shared
polymorphic sites of closely related species. Alleles that
are still intact and shared by all the related species are
most likely the ancestral allele [9]. Another method con-
sists of verifying the allelic state of the last common an-
cestor (LCA) or the allele within current populations
that least differs from the LCA [10].

In a study of autosomal single nucleotide polymor-
phisms (SNP) in pig, ancestral and derived allelic states
of SNP were inferred using four Sus species (Sus cele-
bensis, Sus barbatus, Sus cebifrons, and Sus verrucosus)
and one outgroup species of African warthog for focal
species of Sus scrofa [11]. In human studies, the out-
group species for inferring AA are primates, namely
orangutan (Pongo sp.), macaques (Macaca sp.), gorilla
(Gorilla sp.), and bonobos (Pan paniscus) [12]. In a cat-
tle study of Utsunomiya et al. (2013) using HD-SNP,
Gaur (Bos gaurus), water buffalo (Bubalus bubalis) and
Yak (Bos grunniens) were utilized as focal species for
cattle.

Defining the ancestral and derived states at poly-
morphic nucleotide sites is required to test proposed hy-
potheses regarding molecular evolution processes, such
as estimation of allele ages, formation of linkage disequi-
librium (LD) patterns and genomic signatures as a result
of selection pressures [13, 14]. Human WGS studies
benefit from AA database for population analysis, but
such a database is lacking in cattle. Consequently, each
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study repeatedly generates its own putative AA list [5,
12, 15].

Therefore, the goal of this study is to fill this gap and
to determine a fixed set of AA in cattle by using out-
group species in the Bovinae subfamily, namely gaur,
yak, bison, wisent, banteng, and gayal sequences. In
addition, we scanned the list of AA for physical regions
linked to conserved and mutated traits in taurine and
zebu cattle.

Results

Read alignments and principal component analysis

We evaluated alignment results of different species
within the Bovinae subfamily against the latest cattle ref-
erence sequence ARS-UCD1.2 [16]. On average, the gen-
ome was covered by ~5x for banteng, taurine cattle,
European bison, gayal, and yak, ~4x for American bison
and zebu cattle, and ~ 3x for aurochs. Principle compo-
nent analysis (PCA) formed clusters and separation of
individuals among these nine groups (Fig. 1). Four prin-
cipal components (PC) explained 36.7, 24.9, 20.5, and
17.7% of the variance for first, second, third, and fourth
PC, respectively. Projected by the PC1 and PC2, these
Bovinae individuals are clustered together with its clos-
est relatives evidencing genetic relatedness within its
sub-species. PC1 explains divergence of cattle (aurochs,
zebu, and taurine), from the rest. PC2 gives divergence
between cluster containing gayal-gaur-banteng (gagaba)
from clusters containing yak and bison. Thus, we can
group these individuals into four, namely cattle-aurochs
cluster, gagaba cluster, bison cluster, and yak cluster.
Outlier individuals, i.e. two gayals and the American
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Fig. 1 Principle component analysis
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bison, may indicate individuals carrying introgression
from cattle.

Phylogenetic trees

Maximum Likelihood phylogenetic trees were con-
structed for each chromosome [see Additional file 1]. In-
ferred trees were all similar with Fig. 2 below displaying
the tree from chromosome one. In concordance with the
principal component analysis, 13 yak individuals are sit-
uated together in the top clade of the tree. European
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bison and American bison have the same node of ances-
tor, with American bison perceived to be more ancestral.
This is in line with a previous study where sister rela-
tionships were indicated between American bison and
European bison and also between bison clade and yak
[17]. Banteng-gaur-gayal share a clade together, however,
variations in the order within these three species exist in
trees inferred from different chromosomes [see Add-
itional file 1]. Zebu cattle reside on the same upper node
with the taurine cattle group. Each breed of taurine
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Fig. 2 Phylogenetic tree based on chromosome 1
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cattle is well clustered together except for several Hol-
stein individuals. Based on all trees, we defined yak as
the most distant relative as it is positioned on the fur-
thest node from cattle.

Inferring ancestral allelic states

The main output of this paper is a list of defined ances-
tral alleles for cattle, available at https://tinyurl.com/
cattle-aa . This list is necessary for several tools used for
studying selection signature such as iSAFE, iHS, xp-
EHH, EHHST, and hapFLK [18-23] which were built
for human population genetics study. We provide this
dataset as a foundation for future comparisons of selec-
tion signatures in various cattle breeds. It is stored in a
simple format of .txt and comprised of 6 columns of
chromosome, position, number of alleles, defined ances-
tral allele, frequency, and which groups agree on the de-
fined ancestral allele. AA were determined as alleles that
are fixed in two of three outgroup lineages. Using allele
frequency over all individuals in outgroup, we defined ~
32.4 million variants that are fixed across 29 chromo-
somes as AA corresponding to 1.2% of the total genome.
As shown in Figs. 3, 3.75 million alleles were defined as
ancestral from all three lineages of bison, yak, and gayal-
gaur-banteng (gagaba). GC content percentage of ances-
tral alleles is 58%, which is higher than the GC content
of the reference genome (~42%). Yet, it is worth noting
that 22% of these AA are within active transcript
regions.

19'6‘]

Bison 497 Gagaba

Fig. 3 Intersection of defined ancestral alleles (in millions) from
three lineages; bison, yak, and gayal-gaur-banteng (Gagaba)
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Windows with high ancestral allele counts in taurine and
zebu cattle

We counted AA by non-overlapping windows of 10 Kb
in taurine and zebu cattle separately. Figures 4 and 5
present the distribution of AA on chromosome 27 for
taurine and zebu, respectively (The distribution of AA
for all chromosomes can be found in Additional file 2).
For taurine cattle, ancestral allele counts arguably tend
to decrease towards the end of chromosome, as demon-
strated by the fitted red trend lines. In zebu cattle, an-
cestral counts are relatively flat throughout the
chromosome. Yet, the amplitude pattern is stable for
taurine, but more variable for zebu cattle (blue trend
line). Peaks of high ancestral alleles count regions in
contrast with background averages number of ancestral
alleles are clearly distinguished in chromosome 1, 4, 5, 7,
10, 12, 13, 14, 15, 18, 27, 29 in taurine cattle and 1, 2, 3,
4, 6, 10, 12, 13, 14, 15, 18, 23, 27 in zebu cattle [see Add-
itional file 2].

Ancestral counts for the top 0.1% are beyond the mean
plus three standard deviations. For taurine cattle, the
lowest chromosome specific threshold for ancestral
count was 122 on chromosome 25 while the highest was
302 on chromosome 14, while for zebu cattle, it was 102
in chromosome 1 while the highest 200 on chromosome
12. The trends for both groups were similar as shown in
Fig. 6. Taurine cattle has mostly higher thresholds im-
plying there are more windows with higher counts of
AA compared to zebu cattle.

Windows without the occurrence of ancestral alleles

We found 3306 windows without AA in taurine and
2189 windows in zebu. The highest ratio of windows
with null AA counts to total windows was 2.9% on
chromosome 29 in taurine and the lowest is 0.14% in
chromosome 25 of zebu cattle (Fig. 7). Overall, taurine
has more windows without AA except for chromosome
1, 8, 10, and 27. Windows without AA could be ex-
plained by a lack of defined AA from outgroups, mean-
ing, there were no fixed alleles that can be found in at
least two lineages. Another reason could be that derived
alleles are now the major alleles on polymorphic sites,
therefore we could not find AA within these windows.
In taurine cattle, 65% of windows without AA are due to
the latter reason, while in zebu it is 46%.

Annotation of scanning windows with high number of
ancestral alleles

We annotated each scanning window passing the re-
spective threshold of top 0.1%, corresponding to 255 re-
gions in taurine and 258 regions in zebu across 29
chromosomes. These regions contained 20 genes in tau-
rine and 40 genes in Zebu. Both groups retained genes
functioning in arachidonic acid secretion (GO:0050482),
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phospholipid metabolic process (GO:0006644), and lipid
catabolic ~ process  (GO:0016042)  indicated by
LOC100125947 and PLAG2A, as shown in Table 1.
These three terms are mainly functioning in primary
metabolic process of lipid. Function of defense response
to bacterium (GO:0042742) was exclusive to taurine.
DEFB genes family in GO:004742 were secreted by leu-
kocytes and epithelial tissues. It is known for its function
similar to antimicrobial defense by penetration to micro-
bial’s cell membrane and cause microbial death [24].
While calcium ion imports (GO:0070509), represented
by SLC8A1 and CACNAILD, was exclusive to zebu

defined as function of maintaining and transporting cel-
lular entity in a specific location.

Annotation of scanning windows without ancestral alleles
There were 713 windows in taurine with protein coding
genes, while in zebu 121 windows were found. GO terms
of regions within scanning windows without AA are at-
tached [see Additional file 3]. There are 42 GO terms
defined for taurine and 7 GO terms for zebu. Among
those, three terms were found in both, i.e. two antigen
processing terms (GO: GO:0002474 and GO:0019882)
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and negative regulation of endopeptidase activity (GO:
0010951).

In taurine cattle, apart from terms related to immune
system process and cellular function, there are GO terms
exclusive to taurine cattle that are related to production
traits. For example, GO:0008654, GO:0043410, GO:
0045725, GO:0060048, GO:0008016, are related to meta-
bolic process of phospholipid, protein, glycogen, and
regulation of muscle and heart contraction. GO:0007613
and GO:0035176 are related to mental information

processing systems and is part of learning or memory
abilities which can affect cognition and behavior as indi-
cated by CRTC1, TH, ITPR3, DBH, SORCS3 genes.
ITPR3 is known as well for process of sensory percep-
tion of taste. CRTC1 gene in human has highest tran-
script expression in brain compared to other tissues and
is known for affecting eating behavior [25].

GO:0009611, GO:0071364, GO:0071560 and GO:
0008286 are related to response of stimulus such as
stress from wounding and transforming growth factor.
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Table 1 GO terms of genes indicated by high count ancestral alleles

GOTerm Function Count PValue Genes Fold Enrichment Bonferroni

Taurine
GO:0050482 Arachidonic acid secretion 3 5.0E-04 LOC100125947, PLA2G2A 84.12 0.02
GO:0006644 Phospholipid metabolic process 3 7.7E-04 LOC100125947, PLA2G2A 67.76 0.03
GO:0016042 Lipid catabolic process 3 2.9E-03 LOC100125947, PLA2G2A 34.85 0.10
GO:0042742 Defense response to bacterium 2 9.0E-02 DEFB7, DEFB3 20.08 097

Zebu
GO:0050482 Arachidonic acid secretion 3 8.7E-04 LOC100125947, PLA2G2A 65.00 0.06
GO:0006644 Phospholipid metabolic process 3 1.3E-03 LOC100125947, PLA2G2A 5236 0.10
GO:0016042 Lipid catabolic process 3 5.0E-03 LOC100125947, PLA2G2A 26.93 032
GO:0070509 Calcium ion import 2 24E-02 SLC8A1, CACNATD 78.55 0.85

GO0:0048469, GO:0010976, GO:0060425, GO:0002062,
are terms related to development of cell, neuron, lung
morphogenesis and chondrocyte differentiation in cartil-
age outgrowth as part of skeletal system and animal
organ development as pointed by PTHIR, COL2AIl,
COL11A2, WNT7A, RUNX3, SOX10, GATA2, PTHIR,
and SOX18 genes.

Regions without AA in zebu were mainly related to 5
GO terms in domain of immune response and one term
related to cellular process of transmembrane transport.
Figure 8 represented distribution of terms found in re-
gions without AA. It is dominated by metabolism terms
in taurine and immune response in zebu.

Discussion

We forced mapping short read sequences of different
species within Bovinae subfamily into the latest cattle
RefSeq ARS-UCD1.2 irrespective of their actual genome
structure. Phylogenetic trees were built based on the
SNP variants in autosomes. We used subsets of all vari-
ants per chromosome to comply with maximum 50,000
markers/sequences per output of the analysis as directed

by the software [26]. Despite an unequal number of indi-
viduals representing each group, we could infer relation-
ships based on variant similarity and defined four
lineages of yak, bison, gagaba and cattle. Even though
still related, none of outgroups were in ancestor-
descendant relationships apparently.

Defining AA by only a single lineage was not an option
since any of the current lineages could have undergone
independent evolutionary events and might have di-
verged from the initial ancestral state. Alleles were set to
be ancestral strictly if they are fixed and shared by at
least two lineages of yak, bison and gagaba, complying
with other similar studies [9, 15]. Using the same data-
set, we infered the ancestral alleles several times result-
ing in the same list of alleles as we strictly considered
only variants with fixed allele (100% frequency) in each
species. Although, we used the best dataset available in
terms size, sequence read quality, and coverage for the
outgroup species, additional re-sequencing data of the
outgroup species might have slightly modified the de-
fined ancestral alleles as the frequency for those fixed al-
leles might be changed by new individuals. However, as

-

Fig. 8 GO terms for regions without ancestral alleles (taurine-left; zebu-right)
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a rigid solution, we defined fixed alleles as ancestral only
if they are fixed and shared by at least two different
lineages.

Scanning windows of 10Kb were chosen after a pre-
liminary comparison between 1Kb, 10Kb, and 50 Kb
windows and considering the average gap between high
density markers of 4Kb in identifying different types of
selection in a previous study [27]. Ancestral allele counts
within scanning windows in taurine and zebu cattle var-
ied in the genome. We took two extreme ends of the oc-
currence distribution; one is windows with the top 0.1%
highest count and second is windows without ancestral
allele count. Based on the knowledge that mutation oc-
curs across autosomes with different rates on different
scales [28], we expected ancestral allele frequency to be
changing as the mutations emerge. Thus, we assumed
windows with highest count of AA are the conserved
ones while windows without AA are the ones containing
relevant mutations, considering important traits or genes
that were retained along evolutionary process [7, 8].

Regions with high ancestral counts have GO terms re-
lated to primary metabolic process of lipid in both cattle.
Genes within these GO terms are likely retained in an-
cestral states because their basic function are still benefi-
cial. Despite different environments, both cattle need to
store energy efficiently in form of lipids. Although cattle
diet usually contains two to 4 % lipid, it contributes up
to 50% of fat in milk and the most concentrated source
of energy. In contrast to human, where liver is the pri-
mary site, fatty acid synthesis occurs at adipose tissue in
ruminants [29, 30]. Adipose tissue acts as reservoir for
efficient energy storage in allowing cattle and mammals
in general for surviving adversities such as food short-
ages during severe winter for taurine or drought for zebu
[31]. Defense response to bacteria (GO:0042742) was de-
tected from regions with high ancestral counts in tau-
rine, but found in regions without AA in zebu. In
taurine high count regions, DEFB7 and DEFB3 are
within this term, while regions without AA in zebu are
DEFB6, LOC781146, DEFB1, DEFB3.

For regions without AA where expected mutation oc-
curs, GO terms may have correlated and not necessarily
independent from each other as pointed by its function.
For grouping, we used the prevalent terms within ances-
tor charts in quickGO. In taurine, terms are related to
behavior, cellular functions, tissue development, immune
system, metabolism, and stimulus response. These are in
line with suggestion from previous study for likelihood
of genes function without AA and positive selection
[32]. Within this scope, more GO terms found in taurine
cattle compared to zebu possibly due to more intensive
selection for production traits. Aiming for higher growth
rate, carcass quality, feed efficiency, calving interval, milk
production and body conformity has directed animals to
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be more efficient with higher metabolism rates [33—35].
These selection events might not only be affecting a
narrow-region of genome. Instead, it altered several re-
gions simultaneously as production traits are complex
involving many QTLs or regions across chromosome
with small contribution by each for the expression [36,
37].

In zebu, mutated regions were mainly linked to GO
terms of immune response and little to cellular functions
and metabolism. Concordance to suggested previously
where zebu has been bred to adapt with more marginal
production environments compared to taurine [38, 39].
Evidences showed different in relative importance on in-
nate and adaptive immune response towards cattle tick
Rhipicephalus microplus infestation between zebu and
taurine. Skin inflammatory response by high secretion of
granulocytes and T-lymphocytes in taurine is not neces-
sary could cease tick invasion. But, an earlier inflamma-
tory response and secretion of an alternate non-volatile
T-cell in zebu were more efficient in repel this tick inva-
sion [40, 41].

Nevertheless, not all genes within previously men-
tioned GO terms can be linked directly to positive selec-
tion. As mentioned in previous study, BOLA gene
families, which we found also in regions without AA, are
a result of balancing selection aiming for preserving gen-
etic diversity as heterozygous animals have more advan-
tage than the homozygous ones [27]. Similarly, we
cannot confirm whether genes here are main targets of
selection or as hitchhiking effect from genes of interests.
For example, genes within GO:0007613, related to be-
havior memory and taste preferences, could be intended
for selection because breeder preferences of tame, good
mothering ability and non-picky animals in terms of feed
and housing. Alternatively, it could be indirectly selected
because animals have to cope with commercial environ-
ment as suggested that behavioral patterns were altered
for animals in pasture and confinement cases [42, 43].

Our findings suggest that retaining and losing AA in
some genes or regions are varied and made it species-
specific with possibility of overlapping as it depends on
the selective pressure they had to experience. Future
work in finding overlapped domains detected by differ-
ent tools for selection signatures would confirm specific
regions/functions peculiar for each various cattle breeds.

Conclusions

We inferred ancestral alleles by combining fixed alleles
in three lineages of cattle outgroups. Regions conserving
more primitive functions indicated by high count ances-
tral alleles were linked to lipid metabolism in taurine
and zebu. Meanwhile, regions undergone mutation indi-
cated by no preserved ancestral alleles were found more
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on taurine than zebu. These regions were linked to pro-
duction traits in taurine and robustness traits in zebu.

Methods

Dataset

WGS of different (sub)species were obtained from NCBI
BioProject in fastq format as listed in Table 2, please
refer to ‘Availability of Data and Materials’ section for
the accession numbers. Taurine cattle group was repre-
sented by several commercial breeds, ie. Holstein,
Angus, Jersey, and Simmental. Workflow of the ancestral
analysis pipeline is shown in Fig. 9.

Alignment and variant calling

Following Best Practice procedure by Genome Analysis
Tool Kit [49-51], single interleaved data sets of FASTQ
from each individual were not trimmed based on phred
score, because GATK tool takes care of these low quality
reads on later step during recalibration process. Datasets
were mapped against the cattle reference sequence
ARS.UCD-1.2 [16] using BWA-MEM [52] with default
parameters. The raw mapped reads were sorted by
chromosome position using SortSAM function. Sorted
BAM files then underwent duplicates marking using Pic-
ard MarkDuplicates. Base Quality Score Recalibration
(BQSR) was carried out to adjust the base scores to-
wards various possibly systematic errors. BQSR required
supporting files, such as known variant sites in vcf for-
mat [44], index and dict files of reference sequence cre-
ated by using Samtools [53]. Report file in table form
was needed for the next step of ApplyBQSR with an out-
put of analysis ready BAM files. Analysis ready BAM
files were individually called for variants using Haploty-
peCaller with GVCF mode for preparation in cohort
analysis workflow. Individual VCFs then combined using

Table 2 List of whole genome sequences data
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CombineGVCFs and went through joint-call cohort for
GenotypeGVCFs. SplitVCFs tool was used to split SNPs
and Indel variants from cohort VCF file. SNP variants
were filtered out for parameter of mapping quality less
than 40, QUAL less than 30 and quality by depth less
than 30. Header editing of vcf files and splitting by each
chromosome were done using bcftools and vcftools.

Principal component analysis

Multisample VCF file was converted to binary plink for-
mat using VCFtools. The indep algorithm in PLINK [54]
was used with default parameters of 50 variants window
size units shifting for every 5 variants with pairwise r>
threshold of 0.7. This step selected a set of independent
variants for reducing redundancy. Then, we set four
components to reduce dimension of the whole inde-
pendent variants and plotted the species based on the
first two components.

Phylogenetic trees

We constructed phylogenetic trees from autosomes of
our species similar to other studies, so called phylogen-
omes [55, 56]. SNPhylo [26] processed original multi-
sample VCF files of chromosome 1 to 29 separately to
reduce redundant variants based on LD. Parameters
were set to 0.1 Low Coverage Samples (PCLS), depth
coverage of two, 0.9 LD threshold, 0.1 minor allele fre-
quency and 0.1 missing rate. These parameters were set
to meet the maximum variants output by the program
and roughly reduce the variants to 10% in output fasta.
MEGA X built initial tree using Maximum Parsimony
method and inferred final phylogenetic trees for each
chromosome by using Maximum Likelihood method
and Jukes-Cantor model with 200 bootstraps [57, 58].

Name Species N Avg. Avg. read Mapped reads Clean reads® Coverage BioProject Reference
Mbases length (%) (%)

Taurine Bos taurus 23 18913 248 98.37 7861 5% PRINA238491, [44, 45]

cattle PRINA277147

Banteng Bos javanicus 5 16,59 250 98.36 84.30 5% PRINA427536 [46]

Gaur Bos gaurus 4 18428 300 98.50 7161 5% PRINA427536 [46]

Yak Bos grunniens 13 22177 201 98.51 7947 4x PRINA285834 [47]

American Bison bison 4 13364 200 98.51 82.81 4x PRINA427536 [46]

Bison

European Bison bonasus 5 18113 250 98.51 89.67 5% PRINA427536 [46]

Bison

Gayal Bos frontalis 4 18610 250 98.49 86.71 5% PRINA427536 [46]

Aurochs Bos taurus 17,105 62 98.51 45.17 3X PRINA294709 [32]

primigenius

Zebu cattle  Bos taurus indicus 8 10,863 428 98.60 76.98 4x PRINA507259, [48]

PRINA427256

“Reads remaining after base quality score recalibration process and used for calling variants
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Inferring ancestral allelic states

VCFtool was used to call allele frequency spectrum from
un-prunned VCF files. Considering branches in phylo-
genetic trees and clusters of PCA, we defined three line-
ages of cattle outgroup, i.e. Yak, Bison (American bison
and European bison), and Gagaba (Gayal-Gaur-Banteng).
For each site, frequency of two alleles of A and a repre-
sented by p(A) and q(a) frequency. If p(A) frequency of
1 and found in at least two lineages, we defined “A” al-
lele as ancestral for that site.

We used R [59] to create list of these defined AA for
all autosomes. Following packages in R were used to
support data analysis and visualization: dplyr [60],
ggplot2 [61], and stringr [62]. R functions for calling the
ancestral allele in this study are provided in https://
github.com/mas-agis/ances-al with an example run for
all the scripts provided in [63].

Comparison to cattle groups

A custom script was used to compute summary statistics
of allele frequencies and to compare which AA are still
intact in zebu and taurine cattle. Notation 1 below, de-
fining how we calculated 9, the changing frequency of
ancestral allele compared to cattle group:

(Notation 1) : 9 = x - p(Aaa),

where x is the frequency of same allele A in cattle as
the ancestral p(A44).

Given ancestral allele denotes as p(A4,) with fre-
quency of 1 for A allele, 9 is calculated by subtract
P(Aq4) from x. Where x can be both major p(A 4s.) or
minor q(Ac.e) allele in cattle with condition that x
must represent the same allele A as the ancestral one.
We assigned 9 for each site of SNP data across the auto-
some. For example, if major allele in cattle is A matching
to p(A4), thus

9 = Pearrle = P(Aaa) = 100% - 100% = 0
while if minor allele A in cattle matching p(A44), then
9= G cattle _p(AAA) =30%-100% = -0.7

We filtered 9 with value of 0 meaning ancestral allele
persist in cattle groups. To count how many sites per-
sisting with AA, we assigned f(9) score is 1 for every 9
equal to zero, otherwise we assigned zero to the f(J) as
notation 2 below. We used non-overlapping windows of
10 Kb to sum up sites that have value of 1. By this scan-
ning windows, autosomes were divided into regions and
total counts were reported. We selected two extreme
conditions of windows with highest count and null
count of AA. Indicated regions from both conditions
were used for further analysis.
(Notation 2):

n 10000z 1,9=0
T(9)= Z Z f(si),wheref(g):{ 0,920

t=1 {=10000(z - 1)

Annotation region of interest

Physical regions indicated by previous step were taken
as input for ANNOVAR [64]. We then excluded regions
that are fall in the intergenic, downstream and upstream
of known genes, leaving only regions that overlapping
with functional genes. We filtered out genes defined by
highest count regions if were found also in regions with-
out ancestral counts. We used this list of genes for GO
analysis using DAVID 6.8 [65, 66]. We report GO of
biological process with the Bonferroni corrected P-
values. Definition and supporting information related to
GO were retrieved from database of European Bioinfor-
matics Institute [67].
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