
sensors

Article

An Energy-Efficient Redundant Transmission Control
Clustering Approach for Underwater
Acoustic Networks

Gulnaz Ahmed 1 , Xi Zhao 1,*, Mian Muhammad Sadiq Fareed 2 and
Muhammad Zeeshan Fareed 1

1 School of Management, Xi’an Jiaotong University, Xi’an 710049, China; gulnaz@mail.xjtu.edu.cn (G.A.);
zeeshan.fareed@ist.edu.pk (M.Z.F.)

2 School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
sadiqfareed@mail.xjtu.edu.cn

* Correspondence: zhaoxi1@mail.xjtu.edu.cn; Tel.: +86-029-82668382

Received: 25 August 2019; Accepted: 24 September 2019; Published: 30 September 2019
����������
�������

Abstract: Underwater Acoustic Network (UAN) is an emerging technology with attractive
applications. In such type of networks, the control-overhead, redundant inner-network transmissions
management, and data-similarity are still very challenging. The cluster-based frameworks manage
the control-overhead and redundant inner-network transmissions persuasively. However, the current
clustering protocols consume a big part of their energy resources in data-similarity as these protocols
periodically sense and forward the same information. In this paper, we introduce a novel two-level
Redundant Transmission Control (RTC) approach that ensures the data-similarity using some
statistical tests with an appropriate degree of confidence. Later, the Cluster Head (CH) and the
Region Head (RH) remove the data-similarity from the original data before forwarding it to the next
level. We also introduce a new spatiotemporal and dynamic CH role rotation technique which is
capable to adjust the drifted field nodes because of water current movements. The beauty of the
proposed model is that the RH controls the communications and redundant transmission between
the CH and Mobile Sink (MS), while the CH controls the redundant inner-network transmissions and
data-similarity between the cluster members. We conduct simulations to evaluate the performance
of our designed framework under different criteria such as average end-to-end delay, the packet
delivery ratio, and energy consumption of the network with respect to the recent schemes. The
presented results reveal that the proposed model outperforms the current approaches in terms of the
selected metrics.

Keywords: underwater sensor network; data-similarity; control-overhead management; statistical
test; sleep-awake aware

1. Introduction

Underwater Acoustic Networks (UANs) are gaining popularity because of its attractive updated
monitoring applications like acoustic chemical waste monitoring, target tracking and detection
for military applications, assisted navigation purposes, and monitoring the health of rare marine
creatures [1–5]. The oceanic field is very large, deep and in different shapes like square, cylindrical, and
rectangular. The sensor nodes used in the underwater environment are equipped with both acoustic
and radio modems. The radio or light signals are used in terrestrial communication, whereas the
acoustic signals are preferred in the underwater environment for data communication because of
its long transmission range. The acoustic signals are less affected by scattering, signal attenuation,
and absorption loss. While on the other hand, cause more delay in data communication as these
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signals are moving at the speed of 1500 m/s in the underwater environment. Moreover, an acoustic
channel always faces problems like limited bandwidth, low transmission speed, and higher energy
consumption [6–8].

Different models are discussed in [7,9–14] to reduce the energy consumption of Field Nodes (FNs)
in the sensor network. In these schemes, the cluster-based architecture [3,4,15–18] is proved to be
more energy efficient. In UANs, a large number of battery-driven and application-specific wireless
sensor nodes are deployed in the sensing field [6]. Some of the FNs are deployed closer to the Surface
Sink (SS) while others are deployed away from the SS for complete coverage of the sensing field [19].
These FNs sense the information from underwater environments. Then, this sensed information is
conveyed towards the SS. A FN, which is actively and constantly participating in the data relaying of
other FNs will drain its battery earlier as compared to the fellow FNs [19–23]. The FNs deplete their
batteries earlier can affect the network lifetime. Whereas, cooperative communication does not affect
the SS as it is a powerful and more capable node than other FNs in term of storage, bandwidth, and
battery lifetime.

Currently, Mobile Sink (MS) and Autonomous Underwater Vehicle (AUV) based schemes are
designed [9,24–27] for data aggregation. In these schemes, the AUV moves in a fixed path to collect
data and stops at different places to collect the data. Some other approaches [10,11,24,26,28] are
designed to alleviate the energy consumption UANs. However, for large underwater sensor networks,
these defined approaches do not perform persuasively due to the long AUV path as it may add latency
in data collection. Furthermore, due to the limitation on the battery capacity of AUVs the relative
long trajectories could not be completed. The latency problem is handled in [21,29,30] by increasing
the number of AUVs. Where each AUV moves in a different path and assists with other AUVs for
complete network coverage. on the other hand, this may increase the operation cost and the mobility of
AUVs further increase the water current movements that severely affects the communication between
neighboring AUVs and the FNs.

To overcome the issues of recent schemes [4,9,15,24,27,29], we introduce a novel region-based
scheme to collect data in the harsh underwater environment through the MS, which does not involve
long transmission delay due to the very long trajectory for a complete network tour. We divide the
Network Sensing Field (NSF) into regions for complete coverage based on the geographical nature
of the water. In each region, a Region Head (RH) is assigned to control the communication between
the Cluster Head (CH) and the MS. The data from RHs is collected through the MS which can free
to move inside the sensing area, but for simplicity, we make Data Collection Points (DCPs) near the
RH. The MS moves from top to the bottom and stops at DCP to collect information on each tour. The
contributions of our designed framework are given as:

1. We introduced a new spatiotemporal multi-cast and dynamic CH role rotation technique, which
is capable of adjusting the floated FNs due to water current movements. While the drifted FNs
during the transmission phase can request the new CHs for conveying their data to the SS.

2. We proposed a novel redundancy control cluster-based approach to eliminate the data-similarity
through some statistical tests from the application-specific UANs. The attractiveness of the
proposed model is that the RH and CH control the data-similarity between the regions and
clusters, respectively. This two-level data-redundancy ensures that only the original data flow
toward the final sink to save the overall network resources.

3. In AUV-based schemes [9,24,25], the optimal routes for AUV are not defined and AUV stays a long
time on DCPs for data gathering which introduces latency in data-gathering and operational costs.
On the other hand, in the proposed model the defined routes for the MS are optimal and it stays
at DCPs for a specific time to collect information which does not cause any transmission delay.

The rest of the paper is organized as follows: Section 2 illustrates the related work and motivations.
The preliminaries are defined in Section 3. We discussed the network architecture of our proposed
model in detail in Section 4. Evaluation measures and simulation results for the lifetime of the network,
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the packet delivery rate, and the average end-to-end delay are discussed in Section 5. Finally, the
conclusion is drawn in Section 6.

2. Related Work and Motivations

This section provides a brief overview of the existing data routing approaches designed to
investigate the underwater environment [31,32]. Different techniques like probabilistic scheme [19],
depth-based scheme [22], and AUV-based scheme [21,28,30] are designed to collect data in the literature
of UAN. A few of them bring up the idea of a courier FN [9] to decrease the data load on-forwarder FNs.
A localization-based data gathering technique is investigated in [17] to decrease the network energy
load for UANs. They divided the network into different depth levels. The FNs with a higher depth level
send their data packets to the FNs belong to the lower depth level in the form of a chain. FN residual
energy is taken as a routing constraint for the data forwarding procedure.

In [21], the authors introduced a depth-based data gathering approach. In this model, they
minimized the end-to-end data delay by reducing network throughput. Moreover, the forwarder
FN selection is also based on a maximum number of neighbor FNs to avoid the data error, the data
loss, and the energy hole in the network. The authors in [5] discussed a directional flood-based data
gathering approach. The focus of this method is to check the quality of the links between the FNs that
are taking part in the data flooding process [30]. If the quality of the link between participating FNs is
poor, authors involve some other FNs to participate in the flooding process. This approach achieves
reliability in data delivery at the cost of additional energy.

Redundant data consumes the network resources and deteriorate the network performance by
increasing the congestion. Due to the rapid increase of internet data, many data redundancy techniques
have been introduced in recent years [12–14]. Many current techniques provided suitable solutions
to improve the network performance by removing the data redundancy in the network. It has been
broadly agreed that data redundancy eradication offers great benefits in practice. Generally, the benefit
of removing the data redundancy is the improved network performance in terms of higher network
throughput and lower end to end delay [12–14]. However, the currently provided solutions are not so
effective and remove a part of the original data with redundant data.

Domingo and prior in [18,20], investigated and analyzed the effect of deep and shallow wavy
water on the energy consumption of the network. They engaged three types of data transmission links
to observe energy consumption. These are direct transmission link, cooperative transmission link,
and the cluster-based transmission link. From their experimental results, they found that the direct
transmission link achieves very poor outputs in the underwater scenario. As the distance between two
communicating FNs increases, data drop rate also increases due to the interference in the acoustical
channel which badly affects the overall network throughput [18]. Cooperative transmission overcomes
this issue and outperforms in deep wavy water. Relaying is effective to save the network energy
resources, however, the cooperative communication increases the complexity level of the network.
While, in the cluster-based transmission, both cooperative and direct transmission is involved. Firstly,
direct transmission is utilized between member FNs and the head node to collect data. After that,
the cooperative transmission link is employed for forwarding the data from the head node towards
the sink. The cluster-based transmission reduces the energy consumption for member FNs [4,15,16].
However, the cluster-based transmission creates the problem of the rapid battery drainage for cluster
heads, which can be solved by using the MS or the AUV. The AUVs alleviate the energy burden by
forwarding the data of the cluster heads.

In AUV-based approaches [21,24–26], the authors consider a 3D UAN, where they keep the depth
level of all the FNs same as the FNs are anchored to the floor of the ocean. By supposing such strategy
they simplified the case and performed all the simulations in the 2D sensing field. At the start of the
network, AUV divides the field into several clusters via Voronoi generator point strategy and transmits
this information throughout the network [21,24,25]. On receiving this information, FNs decide the
cluster they will join for the current round. After cluster formation and association phase, a FN is
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selected as a cluster head on some predefined grounds. This selected head further splits the clusters
into small groups of FNs called sub-clusters [26]. However, in each round, AUV travels twice in the
network for network division and data collection which increase the operational costs. Additionally,
the network pays energy cost twice for the head selection in each round and then further divided
into sub-clusters.

An AUV-aided underwater routing algorithm for UANs is introduced in [21]. This protocol
utilized multiple numbers of AUVs with considering limited mobility in the heterogeneous acoustical
channels. Authors supposed a 3D network by keeping the same depth level of all the deployed FNs.
The AUV moves on a specified trajectory and stops on some fixed points to collect the data from all the
FNs. Due to underwater severe conditions, deployed FNs are mobile and constantly changing their
positions. These mobile FNs are considered as neighbors of the stop points. The AUV stops at the fixed
points for a short time interval called the probe interval, to discover these mobile neighbors [21,24–26].
After recognizing these mobile neighbors, the AUV generates a transmission scheduled for them. The
AUV stays for a specific time at every stop to collect the data from all the neighbor FNs. However, this
probe interval of recognizing and discovering the neighbor FNs introduce the data latency.

In Hop-by-Hop Dynamic Addressing Based (H2-DAB) routing algorithm [22], the authors tried to
handle the issues related to the mobility of FNs. The deployed FNs are considered at different depths,
where these FNs can freely move in the horizontal directions, but the movements in vertical directions
are negligible. The whole network is divided into different layers from the bottom of the ocean to the
surface. The numbers of layers are depending on the transmission range of FNs and the field depth
level. By taking into account the average depth of the ocean, they consider 5 to 7 layers to send data
towards the surface sink. This data is forwarded from the bottom to the top in the form of a chain.
However, the FNs closer to the surface sink are continuously forwarding the data of their predecessors
and also sensing their fields. Because of which, theses forwarder FNs deplete their batteries earlier
and this may lead to end the network lifetime [33].

The proposed model has some unique characteristics to deal with such problems and perform well
in the harsh underwater requirements. In our designed model, data is forwarded to the SS according
to the number of layers during a complete network tour. We engage the RHs to collect the frequently
occurring data from the ocean bottom without causing the end-to-end delay. These deliberate RHs
only collect the data from the Selected Member Nodes (SMNs) and forward the received data towards
the MS after compressing it. The MS moves to a pre-defined trajectory such as from the ocean surface
to the bottom and stops for a short period at each DCP to collect the data as described in Figure 1.
According to the harsh underwater environment and necessities, the RTC scheme has some different
features in comparison with previously designed approaches as follows:

1. In previously designed cooperative communication models [5,21,22], the FNs closer to the SS
deplete their batteries earlier than expected time duration due to continuous forwarding the data
of their predecessors. In our designed scheme, the FNs closer to the SS directly communicate with
it. However, the remainders of the FNs forward their data through the RH and the MS.

2. The network is divided into equal size regions according to the geographical nature of the sea for
load balancing and equal energy distribution among all the FNs in the network.

3. The designed model is scalable because if we add more and more layers in our model the
data forwarding hierarchy remains constant and the performance of our model remains almost
the same.
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Figure 1. An overview of two-layer hierarchy of the proposed model.

Problems Statement

UANs are generally facing a series of problems like the network coverage [6,34], surface sinks
positioning [35–37], vulnerability and data security [7,38,39], data latency [33], and energy management
of deployed nodes [6]. In relation to the battery-driven underwater sensors, many AUV-based
schemes [21,24,29], cluster-based schemes [15–17,19] and MS-based approaches [9,18] have been
proposed in the literature. Even though, these developed schemes are well-organized, but not as
efficient as required for the harsh underwater environment due to these subsequent reasons:

1. The previously designed schemes used the cooperative communication links to forward the data
from the root FNs to the SS. However, the FNs closer to the SS always take part in relaying the
data of their predecessors and also sense their NSF. This extra duty of relaying data consumes an
additional amount of energy and become a root cause to deplete forwarder FN’s battery earlier as
compared to the distant nodes [28,33].

2. These approaches [4,15,16,18] utilized the clustering method for forwarding the data towards the
SS. However, due to poor CH selection measure and cluster size control criterion increases the
burden on the large size network. That makes the network unstable and may lead to end the
network lifetime earlier.

3. The multi-AUVs based approaches perform persuasively for a large network, but not perform
well on few-layer networks and also increase the overall cost of the network. Sometimes,
the movements of multiple AUVs increase the water current movements and badly affect the
communications of neighbor AUVs and FNs.

3. Preliminaries

In the preliminaries section, we had given the details of the energy, and end-to-end delay models.

3.1. The Energy Model

To calculate the energy consumption for transmitting a k bit data packet at a distance d can be
calculated through the energy model given in [2] as:

ETx(k, d) =

{
Eeleck + kE f sd2 i f d < d0.
Eeleck + kEmpd4 i f d ≥ d0.

(1)
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where Eelec is the energy consumed per bit to run the transmitter or the receiver circuit, Eampd4 and
E f sd2 symbolize the coefficient of transmit amplifier for free space model, while d signify the distance
between sender and receiver. Furthermore, the coefficient of transmit amplifier for multi-path model is
Eampd4. When a FN receives a k bit data packet, the energy consumed by the FN is computed using
the following expression:

ERx(k) = kEelec. (2)

In underwater, the attenuation of the signal depends on both the frequency f and the distance
d. Therefore, SNR for a low bandwidth signal with the frequency and unit transmission power can
be represented through ρ(d, f ). An acoustic channel with a distance d, frequency f (KHz) and the
spreading factor F can be computed using [3,9,40–44] through following expression as:

A(d, f ) = Ao[a( f )d]dF. (3)

where Ao and A represent the normalization constant and signal attenuation function, respectively. F
is a spreading factor, its value depends upon the environment as:

1. F = 1 for shallow water environment.
2. F = 1.5 for practical environment.
3. F = 3 for the deep water environment.

The co-efficient of absorption a( f ) can be computed by employing the Thorp formula as:

10loga( f ) = (0.11 f 2)× 1
1 + f 2 + (44 f 2)× 1

4200 + f
+ 2.75 f 2 × 10−4 + 0.003 i f ( f > 0.4). (4)

Here the a( f ) is considered in dB/Km for the calculation purpose.

10loga( f ) = 0.002 + (0.11 f )× 1
1 + f

+ 0.0011 f i f ( f < 0.4). (5)

Now the energy consumption between a transmitter and receiver FN for transmitting a k bit data
packet at a distance d with the transmitting frequency f is computing using [3] as:

ETx(k, d) =

{
Eeleck + ka( f )dd2 i f d < d0.
Eeleck + ka( f )dd4 i f d ≥ d0.

(6)

3.2. The End-to-End Delay Model

Signal propagation delay is calculated by using end-to-end delay model used in [42–45] as:

Dp =
d
v

. (7)

where d is the distance between the source and destination nodes and v is the speed at which signal
moves in the acoustic channel given as:

v = 1449.05 + 45.7(
t

10
)− 5.21(

t
10

)2 + 0.23(
t

10
)3 +

(
1.333− 0.126(

t
10

) + 0.009(
t

10
)2
)(

s− 35
)
+ 16.3z + 0.18z2. (8)

where t denotes the temperature in Co, z denotes the water depth in materials, and s is water salinity
given in PPT.
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4. Redundant Transmission Control Clustering Approach

To explain RTC clustering approach, we divided its function into time steps (rounds). Then each
of the round is further divided into four steps such as; (1) initialization phase, (2) cluster head selection
phase, (3) data collection at cluster heads and (4) network data collection. The detail information about
RTC approach is explained in the next subsections.

4.1. Network Architecture and Methodology

Our designed framework is application specific for the purpose of gas or oil fields monitoring,
and hence sensor nodes are installed in the whole sensing field to collect the information periodically.
The proposed model is very robust and has a very good delivery ratio due to the continuous field tours
and good data forwarding management of the MS. It saves energy by avoiding the redundant data and
repeated transmission over the link, minimizing the control packets, and sleep-awake awareness of the
FNs. The SS and MS are enriched with high bandwidths and unlimited power resources. The depth
of deployed FNs is considered different with the control of surface buoys [33,35–37]. These FNs can
freely move in the horizontal direction, but the movements in the vertical direction are negligible [17].
In this way, FNs set themselves into layers from the bottom to the ocean surface. Transmission range
of FNs is kept 150m by considering the average ocean depth as defined in [6,40]. In some special
cases, this range can be increased, however, it is not necessary to increase this range for normal cases.
We supposed an UAN which can be looked as a directional graph G = (N, L), where N belongs to
a set of deployed nodes such as |N| = n, while n is the number of FNs, and L represents the set of
links between the FNs. Furthermore, a three-dimensional rectangular cuboid area with dimensions
(500 m) × (500 m) × (500 m) is taken in which the FNs are divided into four regions and each region
is further divided into sub-regions as shown in Figure 2. The reason for dividing the region into cubes
is that, we are not engaging all the nodes every time for sensing. So, we select some nodes from each
cube for sensing and to cover the entire sensing field. The communication inside each of the region is
controlled by a RH, while the CH organizes and manages the FNs entering or leaving from its cluster
due to the frequent horizontal movements.

Figure 2. FNs and region heads deployment strategy of designed framework.

UANs communication is not similar to the terrestrial wireless communication in many aspects
like low communication bandwidth due to the effect of ocean current. The designed scheme pursues
the following steps:
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4.2. Initialization Phase

In our designed model, the sensing area is partitioned into the regions and then each of the regions
is partitioned into cubes. The length of the region is taken as R while the length of the cube is taken
as r for further calculations. Here, we take each cube as a cluster and we adjusted r according to the
communication range of FNs. The FNs are expressed through their location L(i, j, k) and their cluster
number N(x, y, z). Whereas x, y, and z are computed using the following equations:

x =
r− i mod r + i

r
. (9)

y =
r− j mod r + j

r
. (10)

z =
r− |k| mod r + |k|

r
. (11)

when the network configuration is complete, each RH transmits the initialization message to
their corresponding clusters which contains RH location information for future correspondences.
On receiving this initialization message, each of the FN computes its distance from the RH di,RH and
other FNs di,j through this equation:

di,j =
√
(i1 − i2)2 + (j1 − j2)2 + (k1 − k2)2. (12)

where (i1, i2), (j1, j2) and (k1, k2) are points between FN and RH.

4.3. Cluster Head Selection Phase

If the basic measure of CHs selection should not be taken into account for head node selection
the network lifetime may end earlier. The balanced CH selection also leads towards the less frequent
re-clustering process. In our CHs selection phase, only those measures are taken into consideration
that equally divide the energy and data load over the network. The CHs selection process of our model
is discussed as follows:

• Each FN resets it’s timer during in the beginning of the CHs selection phase Then, FN i can
compute it’s timer Ti value through the following equation:

Ti = Tmax ×
REN
IEN
× dF,RH − di,RH

dF,RH
. (13)

dF,RH = r
√
(x2 + y2 + z2). (14)

where REN and IEN are used to express the remaining and the preliminary energies of the FN,
respectively. While, dF,RH is used to express the maximum distance between the cluster and RH.
The Tmax is the maximum timer value.

• After computing the timer values, each of the FN in each of the cluster transmit a CHs
advertisement message ADV_CH_SELECT at the communication range r. This message
ADV_CH_SELECT enclose the FN’s information: FN cluster identification (x, y, z), FN location
(i, j, k), distance of FN from the RH di,RH , REN and IEN energies of the FN.

• Upon receiving the CHs advertisement message ADV_CH_SELECT, each of the FN analyzes the
ADV_CH_SELECT and checks it’s possibility as a CH through the given expression:

CHi =
REN
di,RH

. (15)
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Each node has already computed its CH possibility through the above equation. So, it compares
the possibility of that FN CHj with own CHi. If the CHj is greater then CHi the FN update the
information its table in a descending order in comparison with other ADV_CH_SELECT.

• If a FN receives ADV_CH_SELECT message after the defined time slot and the CH is not chosen
yet. If so and if the Ti of the information equals to 1, the tag Ti of this FN is set to 0. Meanwhile,
the FN who sends the ADV_CH_SELECT message is set as a CH node. Otherwise, the received
message is abandoned.

• At the end of timer values, each FN is well aware with the CH possibility of all the other FNs.
The FN with maximum possibility is chosen as a CH and each FN send the joint request to that
FN according to their cluster table.

4.4. Data Collection at Cluster Heads

The CH each time selects member nodes from different directions in it’s cluster and assigns
the Time Division Multiple Access (TDMA) slots to the selected member nodes. The remainders of
the member nodes which do not receive TDMA slots do not take part in the sensing activity and
stay in sleep-mode to save energy resources of the network. Each of the data packets received from
the member nodes contains a unique packet ID, if a data packet with the same ID or containing the
same information received at the CH, the CH will discards this information. On fusing the gathered
information, CH checks the similarity of IDs and data packets with the previously received data
packets to take any decision. If any similarity is found, then the CH will discard all those similar
packets. The similarity of the received data is checked through the following tests.

4.4.1. Variance Study

We perform some statistical tests to find the similarity in between the collected data. To perform
these statistical tests, we assume that the variance is not substantial in all the correlated data sets.
Consequently, the Sout is calculated using the statistical tests, while Sout is a ratio in variances which is
dependent on the computed measurements. The correlated data sets are replicated each time if the
value of Sout is found lesser than the threshold TDOF values.

Assumption and Definitions for Variance Test

• Presume N = {N1, N2, ..., Nn} express a set of FN generating a data set S = {S1, S2, ..., Sn} in
each slot.

• Presume CHs = {CH1, CH2, ..., CHl} express a set of CHs, where l ≤ n and the RH gathers n
number of data sets from the MNs in its specified region.

• Every time the collected data comprehends T number of measures.
• We similarly assume that the collected data sets |Sj| are independent of number of measures the

mean Xi though σ2
n = σ.

Definition 1. When two functions having the same measures are found in a set of FN generating a data set
S = {S1, S2, ..., Sn} can be defined as similar function and expressed as:

Similar(si, sj) =

{
1 i f ‖si, sj‖ ≤ δ.
0 Otherwise.

(16)

where si, sj ∈ S and δ are threshold values.

Definition 2. The measurement weight si is co-occurrence of an alike function in a similar set.

Definition 3. The cardinality of a data set Sn is equal to the number of elements in that data set.
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Definition 4. Weighted cardinality Wcard of set Sn is equivalent to the measure’s weight in the set Wcard(Sn)

and the measure’s variable can be expressed [9,18] as:

sji = Xi + εji; j = 1, ..., n and i = 1, ...., |Si|. (17)

where, εji is a residual, which follows the Normal distribution N(0, σ2). For the collected data sets |Sj|, we
symbolize Xi as its mean, σ2

j as its variance, and X as its mean of the available data sets, respectively.

Xj =
1

Wcard(Sj)

|Sj |

∑
k=1

(
sjk ×W(sjk)

)
. (18)

σ2
j =

1
Wcard(Sj)

|Sj |

∑
k=1

((
sjk − Xj

)2 ×W(sjk)

)
. (19)

X =
n

∑
j=1

|Sj |

∑
k=1

(
sjk ×W(sjk)

)
Wcard(sj)

. (20)

where, sjk ∈ Sj and W(sjk) is measure’s weight. Since, Wcard(S1) = ... = Wcard(Si) = ... = Wcard(Sn) = T.

Xj =
1
T

|Sj |

∑
k=1

(
sjk ×W(sjk)

)
. (21)

σ2
i =

1
T

|Sj |

∑
k=1

((
sjk − Xj

)2 ×W(sjk)

)
. (22)

X =
1
T

n

∑
j=1

|Sj |

∑
k=1

(
sjk ×W(sjk)

)
. (23)

Honestly Significant Difference (HSD) Test

To find the similarity in the available data sets, we perform the HSD test [19] to compute the
variances and means of the available data sets. Then, we are able to choose the similarity in the
available data sets and later which can completely eliminated.

TSOS =
n

∑
j=1

|Sj |

∑
k=1

(
sjk ×W(sjk)

)2

−

(
∑n

j=1 ∑
|Sj |
k=1 sjk ×W(sjk)

)2

n× T
. (24)

SOSbetween =

∑n
j=1

(
∑
|Sj |
k=1

(
sjk ×W(sjk)

)2
)

T
−

(
∑n

j=1 ∑
|Sj |
k=1 sjk ×W(sjk)

)2

n× T
. (25)

SOSinside = TSOS − SOSbetween; DOFbetween = n− 1; DOFinside = n(T − 1). (26)
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MOSbetween =
SOSbetween
DOFbetween

. (27)

MOSinside =
SOSinside
DOFinside

. (28)

Sout =
MOSbetween
MOSinside

. (29)

TDOF = DOF(DOFbetween, DOFinside). (30)

Thus, when we perform HSD test, we make sure the Sout should lies in the probability table
with an appropriate DOF while TDOF = DOF(DOFbetween, DOFinside). This result also depends on Sout

and TDOF:

• If Sout > TDOF, then in this case our assumptions are not valid because of the false rejection
probabilities α, however the variance is significantly valid between the collected data.

• If Sout < TDOF, then in this case our assumption is valid.

4.4.2. Redundancy Elimination at Cluster Heads

To eliminate the data redundancy, our designed algorithm checks the correlated data sets through
the HSD test and yields a logical value. Primarily, this designed Algorithm 1 computes the value of
Sout and the threshold value TDOF by applying the HSD test. Finally, it yields a Boolean value if the
threshold TDOF is greater than the variance between their measures. When the tests are completed the
CH splits up and erases the similar data sets from the existing data sets. Our algorithm 1 intelligently
decides which data is conveyed toward the final destination from the available data sets. Instead
of forwarding all the information, only the selected information is conveyed to the RH with higher
measures to increase the system efficiency and resources.

Algorithm 1 Data-redundancy Elimination Algorithm

Require: set of Cluster Heads CHs = {CH1, CH2, ...., CHl}.
Ensure: list of the selected sets, l.
l ← ∅
for all for each Cluster Head CHi ∈ CHs do

consider the set CHj has the longest cardinality in CHi,
(i.e., |CHj| > |CHj∗|; where CHj∗ ∈ CHi )
l ← l

⋃
CHj

end for
return l

4.5. Network Data Collection

The MS has the location information (Xm, Ym, Zm) of each RH where m is the number of regions
in the trajectory of the MS. After the start of the network, the MS individually visits each of the DCP,
collects data from the RHs and moves toward the next DCP. On the trajectory, the number of DCPs
may increase depending upon the depth levels. The RH collects data from all the CHs in a region.
The CHs in each region have their unique IDs. The RH is also responsible for splitting up and erasing
the similar data sets from the existing data sets. Our algorithm intelligently decides which data is
conveyed toward the final destination from the available data sets. Instead of forwarding all the
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information, only the selected information is conveyed to the MS with higher measures to increase the
system efficiency and resources.

5. Performance Evaluation

In performance evaluation section, we evaluate the performance of RTC by comparing it
with two state-of-the-art schemes: H2-DAB [22] and AUV-PN [24]. The reason to prefer these
schemes for the comparison is that these models are similar in functioning with our proposed
approach. The simulation and comparison is performed using NS-3, we utilized UAN channel::
Uanchannel, CWMAC802.11DCF MAC layer protocol, NS-3 Packet Error Rate (PER) model::
UanphyperGende f ault, and to recognize connection breakage underwater traversing is utilized as
mentioned in [45]. The parameters selected for the simulation are given in Table 1. For a fair
comparison, we take all the parameters same for all methods during the comparison. We kept
the same area dimensions, the number of FNs, the network energy, and the transmission radius of
nodes for all performed simulations. For the simulations, we consider the horizontal node movements
like: 1 m/s to 5 m/s, while the movements in vertical directions are neglected. MS travels on a
pre-defined route to collect data from all the RHs. Hello message size is considered fixed and small in
accordance to one normal data packet as each Hello message consumes 0.1% of energy resources.

Table 1. The values of parameters selected for the simulations.

Variable Value

Number of FNs 100–800

Network area 500 m × 500 m × 500 m

Speed of sound 1500 m/s

Transmission range 150 m

Transmit power 50 W

Bandwidth 80 Hz

Width of layer 125 m

Eint 2000 J

Eelec 50 nJ/bit

A( f ) 1.001

d0 80–100 m

Eda 50 nJ/bit/packet

Data rate 5 Kb/s

Data packet size 64 bytes

Header size 13 bytes

Nodes mobility 1 m/s–5 m/s

Acoustic pressure of layer 101 dB

Acoustic pressure of data transmission 103 dB

Total run time 1000 s

5.1. The Performance of Our Approach with Different Values of α and T

The FNs are fixed in sensing area according to the application requirement, so most of the time the
collected information is same. The Figure 3a demonstrates the data forwarded to the SS with and with
no similarity. In few cases with α = 0.01 and T = 200 only a limited amount of without redundancy is
transmitted towards the SS. From Figure 3a, we can also see that by increasing the value of α and T the
amount of similarity in data can be further decrease to 10%. However, this may lost the original data.
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The Figure 3b illustrates the amount of energy consumption with different values of α and T. We
can also note that, the CH and the cluster member’s energy usage is associated with the number of
transmissions. So, as the redundant data increases the number of transmission which affects the life of
all the nodes in the network. This proposed model is designed to reduce the data redundancy with
an appropriate degree of confidence and only selected data can travel toward the SS. As a result, this
model is proved to be energy efficient as shown in Figure 3b.
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(a) Data similarity with different values of α and T.

0.01 0.03 0.05
0

150

300

450

600

750

900

1050

E
ne

rg
y 

co
ns

um
pt

io
n 

in
 (J

)

Threshold 

 Data without redundancy (T-200)
 Data without redundancy (T-500)
 Data without redundancy (T-1000)
 Data with redundancy (T-200)
 Data with redundancy (T-500)
 Data with redundancy (T-1000)

(b) The energy consumption of our model with and with
no data similarity.

Figure 3. The effect of data similarity on the performance of our model.

5.2. Average End-to-End Delay

The average end-to-end delay is related to the transmission distance and the speed of the signal
in an acoustic channel. As Dp = d/s, where, d indicates the maximum distance between the source
and destination points and s represents the speed of the signal which varies depending on the water
depth. Figure 4 represents the end-to-end delay comparison of the proposed model with recent schemes,
the effect of depth levels, the effect of node mobility, and the number of sinks. From Figure 4c,d, it is
quite clear that the end-to-end delay is decreased with the help of multi-sinks and with less mobility.
Because in the case of multi-sinks, data can be forwarded towards any sink without causing a little
delay. Furthermore, as the FN mobility increases, there are chances that the distance between the
forwarder and the sink increase, which also increase the end-to-end delay. Sometimes the connection
break occurs due to the mobility of the FNs, the re-establishment of the connection also takes time and
produces delay. However, there are no special effects of depth level on the average end-to-end delay as
mentioned in Figure 4a. Figure 4b shows a comparison of end-to-end delay of the proposed model,
AUV-PN [24], and H2-DAB [22]. The X-axis is fixed for number of nodes in the network; while on
Y-axis average values for the end-to-end delay in seconds are plotted. H2-DAB has a higher end-to-end
delay due to the involved number of layers for sending data to the sink. Lower layer nodes have to
wait for a longer time until the courier node is reached at the closest DCP. In H2-DAB special FNs are
pushed into the water with the aid of a mechanically designed element to reach the lower layer FNs to
collect the data. Then, these FNs stop for a specific time interval and after that these FNs are pulled
back towards the surface which also increases the end-to-end delay.

In the case of AUV-PN, the end-to-end delay is less as compared to H2-DAB [22]. On the other
hand, AUV-PN has the greater end-to-end delay than RTC because in the beginning of each round
AUV partitioned the sensing area into clusters. Following that the CH selection process, the AUV
collects the list of PNs from the newly chosen CHs. Then AUV visits PN individually, on the arrival
of AUV the PN collects data from the MNs and conveys it to AUV after fusion. The AUV sends the
collected data to the surface sink after a complete network tour. This whole process takes time and
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increases the end-to-end delay. While in the proposed approach, the MS travels in its belonging region
after a regular time intervals without staying longer at DCPs to collect the data from the associated
RHs, which reduces the end-to-end delay as compared to AUV-PN.

(a) The effect of depth on the average end-to-end delay. (b) Comparison of RTC with recent schemes.

(c) The effect of multiple sinks on the average
end-to-end delay.

(d) The effect of nodes mobility on the average
end-to-end delay.

Figure 4. Performance of RTC by considering the average end-to-end delay.

5.3. Packet Delivery Ratio

Figure 5 represents the comparison of selected schemes for data delivery ratio and the effect
of depth level, the number of sinks, and the mobility of nodes on the data delivery ratio. We can
see in Figure 5a,d, the increasing node mobility and the depth level decrease the data delivery ratio.
While, with the increase in the number of sinks packet delivery ratio also increases as clearly shown
in Figure 5c. The reason is that, as the node mobility increases it increases the disconnections between
the nodes causing the packet loss. On the other hand, the depth level has not serious effects on
the packet delivery ratio. Figure 5b depicts the comparison of the packet delivery ratio among
RTC, H2-DAB [22], and AUV-PN [24] schemes. The packet delivery ratio of the proposed scheme is
greater than the both H2-DAB and AUV-PN. Because in RTC the less numbers of layers are involved
in forwarding the data to the surface sink. Furthermore, if a FN with a data packet drifted into
the neighboring sub-region due to water currents, it can easily convey its packet according to the
TDMA schedule. However, a FN moved into the neighboring region will request the associated CH
for forwarding the data. Then the new CH will assign a time slot and for the next round this FN
will be consider as the SMNs of the new region. The H2-DAB has the lesser delivery ratio, as it
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delivers data towards the sink through many layers. As the more numbers of layers are involved, the
probability of dropping the data packets is also increased. However, the delivery ratio of AUV-PN is
lesser as compared to the RTC. Because AUV-PN has not defined any clear strategy to deal with the
disconnection due to the water current movements.

(a) Packet delivery ratio with different nodes mobility. (b) Evaluation of proposed model against
existing approaches.

(c) Packet delivery ratio with different number of sinks. (d) Packet delivery ratio with different depth levels.

Figure 5. Performance analysis of proposed framework for packet delivery ratio in different scenarios.

5.4. Lifetime of the Network

Figure 6 elaborates the effect of depth level, the number of sinks, and the mobility of nodes on the
energy consumption of the network. We also give a comparison of energy consumption in the form of
the lifetime of RTC and the state-of-the-art approaches. From Figure 6a,c, it is very much clear that
varying the number of sinks and depth do not affect the lifetime of the network. The data forwarding
hierarchy of the proposed scheme is very strong and involved number of sinks and depth levels cause
no effect on the network lifetime. If we add more and more layers in our model, the data forwarding
hierarchy remains the same and only DCPs of the MS will increase which does not affect the network
lifetime. However, as the node mobility increases the network energy consumption also increases on a
little scale due to the exchange of control packets as demonstrated in Figure 6d.
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(a) Impact of depth on the network energy consumption.(b) Assessment of network energy of RTC with
state-of-the-art models.

(c) Impact of multiple sinks on the network
energy consumption.

(d) Impact of nodes mobility on the network
energy consumption.

Figure 6. Performance evaluation of RTC based on total network energy consumption.

Figure 6b elaborates the comparison of energy consumption between RTC, H2-DAB, and AUV-PN
algorithms. The given results reveal that RTC outperforms the counterpart schemes in term of energy
consumption. In RTC, energy load on each FN is balanced in a distributed manner. Firstly, the
FNs are forced to use the single-hop as well as the multi-hop transmission ranges to communicate
with CHs depending on the situation. Secondly, RTC avoids the redundant transmissions and only
selected FN can perform the sensing because nodes in the overlapping region always have the same
data [19,33,35]. Thirdly, the RTC is sleep-awake aware to save the available energy of the network.
The energy consumption of AUV-PN is more than RTC, as most of the network energy portion is
utilized in creating the clusters. Then, in each cluster multiple head nodes are selected for data delivery,
maintaining the routing table, and for correspondence with the AUV. The CH and the PN selection
criteria is also very poor, which creates imbalance situation in the network. All these factors decrease
the network lifetime of AUV-PN as compared to the RTC. According to depicted results, the energy
consumption of H2-DAB is also higher as compared to the RTC, because it floods the control packets
for finding the routes to the SS. Furthermore, it consumes a lot of energy in maintaining the routing
table which leads to the shorter network lifetime.
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6. Conclusions

In this paper, we proposed a novel redundancy control cluster-based approach to eliminate the
data-similarity through some statistical tests from the application-specific UANs. We also proposed a
novel spatiotemporal multi-cast and dynamic CH role rotation technique, which is capable of adjusting
the floated nodes due to water current movements, while the drifted node during the transmission
phase can request the new CH for conveying its data to the SS. The beauty of the proposed model is
that the RH and CH control the data-similarity between the regions and clusters, respectively. In our
designed scheme, the FNs closer to the SS directly communicate with the SS, while the remainders of
the nodes forward their data through the RH and the MS. Furthermore, our two-level data-redundancy
ensures that only the original data flow toward the final sink to save the overall network resources.
We conduct a series of simulations to analyze the performance of RTC with the current schemes. The
presented results reveal that the proposed model outperforms the current approaches in terms of the
selected metrics.
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DCPs Data Collection Points
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