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Abstract: Joint models of longitudinal and survival outcomes have gained much popularity in recent
years, both in applications and in methodological development. This type of modelling is usually
characterised by two submodels, one longitudinal (e.g., mixed-effects model) and one survival
(e.g., Cox model), which are connected by some common term. Naturally, sharing information
makes the inferential process highly time-consuming. In particular, the Bayesian framework requires
even more time for Markov chains to reach stationarity. Hence, in order to reduce the modelling
complexity while maintaining the accuracy of the estimates, we propose a two-stage strategy that
first fits the longitudinal submodel and then plug the shared information into the survival submodel.
Unlike a standard two-stage approach, we apply a correction by incorporating an individual and
multiplicative fixed-effect with informative prior into the survival submodel. Based on simulation
studies and sensitivity analyses, we empirically compare our proposal with joint specification and
standard two-stage approaches. The results show that our methodology is very promising, since it
reduces the estimation bias compared to the other two-stage method and requires less processing
time than the joint specification approach.

Keywords: Bayesian inference; bias reduction; individual fixed-effect; Stan

1. Introduction

Joint models of longitudinal and survival data have been an essential statistical tool in
medical research [1,2]. This class of models became popular due to its ability to provide
complete inference (longitudinal, survival, and association between both of them), reduce
estimation bias, increase statistical efficiency, and conveniently make predictions of out-
comes [3–5]. However, there ain’t no such thing as a free lunch. The complexity of these
models makes the computational process quite demanding and sometimes impractical.

In this paper, we focus on general contexts in which longitudinal measurements
are observed strictly before the survival time [6]. This framework has been analysed in
several applications, see References [7–9] for a review on joint models up to date, and
it has at least two drawbacks: (i) identifiability problems due to the large number of
parameters [7,10–13] and (ii) requirement for numerical integrations that can make the
inferential process time-consuming [14–18].

Two-stage approaches alleviate both problems that arise with simultaneous inference
for joint models [19,20]. Typically, the two-stage approach fits the longitudinal submodel
first and then uses the estimated parameters to approximate the longitudinal trajectory,
as an endogenous time-varying covariate, within the survival submodel. This strategy is
usually simple to implement and allows us to use flexible models available in standard
longitudinal and survival analyses packages (separately). In the current literature of joint
models, there are different proposals for two-stage methods in both frequentist [20–24]
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and Bayesian [25–27] approaches. These two-stage procedures speed up processing time
by estimating two less complex submodels than the joint model. However, the main
weakness of this methodology is that by ignoring the joint nature between both processes,
the estimates of the survival regression parameters are often biased [22,28–30].

From a Bayesian perspective, we work around this problem by proposing a two-
stage approach that, after fitting the longitudinal submodel, corrects bias through an
individual and multiplicative fixed-effect with highly informative prior inserted in the
survival submodel.

The paper is organised as follows—Section 2 introduces a general formulation of joint
models. Sections 3 and 4 describe the standard joint and two-stage approaches. Section 5
presents our two-stage strategy. Section 6 validates and compares the performance of our
proposal against the other standard approaches. Finally, Section 7 discusses the advantages,
limitations and extensions of our methodology. Appendices A and B show sensitivity
analyses and other simulated scenarios.

2. Bayesian Joint Model Formulation

We assume that there are n individuals with repeated measures and time to an event
of interest individually associated. In particular, underlying characteristics from the lon-
gitudinal process, which models repeated measures, are shared with the time-to-event
process [30].

2.1. Longitudinal Submodel

We use the well-known linear mixed-effects specification to model the repeated mea-
sures over time [31,32]. In this case, the response variable yi(t) of individual i at time t is
given by:

yi(t) = µi(t) + εi(t) = x>L,i(t)β + z>i (t)bi + εi(t),

bi
i.i.d.∼ N(0, Σ) and εi(t)

i.i.d.∼ N(0, σ2),
(1)

where the true unobserved value of the longitudinal outcome at time t, µi(t), is charac-
terised by the linear combination between the covariate vectors, xL,i(t) and zi(t), and their
respective fixed (β) and random (bi) effect vectors; bi represents the vector of individual
random effects with a K × K variance-covariance matrix Σ, where K is the number of
random effects; and εi(t) denotes the measurement error term with variance σ2.

2.2. Survival Submodel

The proportional hazards specification is widely used to model this type of problem [33].
Let T∗i denote the event time for individual i, Ci the censoring time, Ti = min{T∗i , Ci} the
observed time, and δi = I(T∗i ≤ Ci) the event indicator. So, the hazard function of the survival
time Ti of individual i is expressed by:

hi(t | Mi(t)) = h0(t) exp
{

x>S,iγ + αµi(t)
}

, (2)

where h0(t) represents an arbitrary baseline hazard function at time t and xS,i is a covariate
vector with coefficients γ.Mi(t) = {µi(l), 0 ≤ l < t} denotes the history of the longitudi-
nal process up to t; µi(t) is defined as in (1) and has the role of connecting both processes,
while α measures the strength of this association. In order to simplify the notation, we will
omit the termMi(t) when specifying a hazard function.

2.3. Prior Distributions

To complete the Bayesian joint model formulation, we have to assign prior distributions
to all parameters and hyperparameters. As a standard specification, we assume independent
and diffuse prior, that is, proper distributions with a large variance [34]. More specifically,
β, γ and α follow Normal distributions with mean at zero and large variance; σ follows a
weakly-informative half-Cauchy(0, 5) [35]; and Σ follows an inverse-Wishart(V, r), where
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V is a K × K identity matrix, r = K is the degrees-of-freedom parameter [36]. Once the
baseline hazard function h0(t) is defined, diffuse priors are also specified for its parameters.

3. Joint Specification (JS) Approach

Let y and s be the longitudinal and survival data, respectively. The vector of all
parameters and hyperparameters is specified by θ and the random effects by b. So, the
full joint distribution of (y, s, b, θ) can be factorised as the product of the joint conditional
distribution f (y, s | b, θ), the conditional distribution of the random effects f (b | θ), and
the prior distribution π(θ). Equationally,

f (y, s, b, θ) = f (y, s | b, θ) f (b | θ)π(θ). (3)

There are different proposals for the specification of the conditional distribution
f (y, s | b, θ) [37]. However, the most widely used approach is the shared-parameter speci-
fication [38], in which it assumes that the longitudinal process is conditionally independent
of the survival process given the shared information:

f (y, s | b, θ) = f (y | b, θ) f (s | b, θ), (4)

where f (y | b, θ) and f (s | b, θ) are commonly specified according to the joint models (1)
and (2).

From a joint approach, the inferential procedure to estimate (b, θ) based on
Equations (3) and (4) should be performed simultaneously. In addition, this joint modelling
is usually quite complex due to the high number of parameters and potential integra-
tions with no closed-form derived from the calculation of the survival function obtained
from Equation (2). Hence, as expected, the processing of the inferential procedure is very
time-consuming.

4. Standard Two-Stage (STS) Approach

Two-stage strategies are very useful for reducing the complexity of joint models and
speeding up the inferential process. From a frequentist point of view, Tsiatis et al. [20]
proposed one of the most popular two-stage approaches. The first stage is to fit the
longitudinal submodel (1) and then the trajectory function µi(t) is calculated using the
estimated parameters and random effects. In the second stage, this trajectory function
estimated is considered as an endogenous time-varying covariate when fitting the survival
submodel (2).

As a potential competitor, we use the Tsiatis et al. [20] approach adapted to the
Bayesian framework. Specifically, in the first stage, we calculate the posterior mean of the
longitudinal submodel parameters and random effects shared with the survival submodel,
that is, β̂ = E(β | y) and b̂ = E(b | y). In the second stage, we incorporate the trajectory
function into the survival submodel considering µ̂i(t) = x>L,i(t)β̂ + z>i (t)b̂i, for i = 1, . . . , n,
and then the posterior distribution of (γ, α, h0) is calculated.

5. Novel Two-Stage (NTS) Approach

The first part of our two-stage proposal is similar to the STS approach, that is, the
posterior distributions of the longitudinal submodel parameters and random effects are
calculated. However, we propose the following modification to the survival submodel:

hi(t) = wi h0(t) exp
{

x>S,iγ + αµ̂i(t)
}

, (5)

where wi > 0 denotes a multiplicative fixed-effect for individual i and µ̂i(t) is calculated in
the same way as the standard two-stage approach.

The role of wi is essential to satisfactorily correct the estimation bias by ignoring
the potential joint nature between both processes. In addition, this term can also correct
problems of model misspecification and unobserved heterogeneity [39]. Specifically, what
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we propose is a very small perturbation using an individual fixed-effect. Hence, to do that,
we specify a highly informative prior distribution for wi, given by:

wi ∼ Gamma(η, η), (6)

where E(wi) = 1 and η is a known parameter and must be specified such that Var(wi) = 1/η
is small. Interpretatively, if wi is not perturbed (i.e., Var(wi) = 0), then we turn to the
standard two-stage approach presented in Section 4. Moreover, note that if we assume that
η is an unknown parameter and so a hyperprior should be set for it, then the specifica-
tion (5) becomes a Bayesian frailty model [40]. In practice, the latter option is convergently
unstable and therefore will not be addressed in this paper.

In the context of frailty models, wi is typically modelled through a Gamma distribu-
tion [41]. For this reason, we chose such distribution in (6). However, other non-negative
continuous distributions could be used as long as E(wi) = 1 is satisfied.

6. Simulation Study

To evaluate whether the novel two-stage approach reduces the bias with low compu-
tational time, we perform a simulation study that compares our proposal with the joint
specification (see Section 3) and standard two-stage (see Section 4) approaches.

The joint formulation that is considered here is based on submodels (1) and (2).
In particular, the longitudinal specification for individual i at time t is given by:

yi(t) = µi(t) + εi(t) = β0 + b0i + (β1 + b1i)t + β2xi + εi(t),

bi = (b0i, b1i)
> i.i.d.∼ N(0, Σ) and εi(t)

i.i.d.∼ N(0, σ2),
(7)

where the covariate xi is a binary group indicator simulated from a Bernoulli distribution
with probability 0.5 and will be called group parameter.

Based on the simulation scenarios proposed by Furgal et al. [8], we adopt the following
hazard specification for individual i:

hi(t) = exp
{

γ0 + γ1xi + αµi(t)
}

, (8)

where the baseline hazard function has an exponential specification, h0(t) = exp(γ0). Note
that other options for this function could be preferred, such as Gamma, Weibull, Gompertz,
log-normal, log-logistic, piecewise, splines, and so forth [42,43].

6.1. Simulating Data for Joint Models

As a preliminary simulation step, all parameters and hyperparameters θ = (β, Σ, σ, γ, α),
number of individuals (n), minimum number of longitudinal observations (mmin), and
maximum observational time (tmax) must be set. Then, the covariate xi and the random
effects bi, for i = 1, . . . , n, are simulated.

The true event time for individual i is simulated using the well-known inverse trans-
form sampling [44], where T∗i = Si(u), u is generated from a standard uniform distribution,
and Si denotes the survival function derived from Equation (8). The censoring time for each
individual, Ci, is generated from a uniform distribution on the interval (0, tmax) and then
the observed time is set as Ti = min{T∗i , Ci} and the event indicator as δi = I(T∗i ≤ Ci).

The number of longitudinal observations of individual i, ni, is set as mmin plus the
largest integer less than Ti (i.e., bTic). The recording times of the repeated measurements
are equispaced set from 0 to bTic. The random errors εi(t1), . . . , εi(tni ) are simulated
from a normal distribution with mean at zero and variance σ2. Finally, the longitudinal
observations of individual i, yi(t1), . . . , yi(tni ), are computed according to the submodel (7).

The simulation scheme to jointly generate longitudinal and survival data is sum-
marised in Algorithm 1.
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Algorithm 1: Simulation scheme

0 INITIALISATION: Set θ, n, mmin, and tmax.

1 SURVIVAL SUBMODEL:
• Simulate xi ∼ Bern(0.5) and bi ∼ N(0, Σ) ∀i.

• Simulate T∗i based on the survival submodel (8) and sample Ci ∼ U(0, tmax) ∀i.

• Set Ti = min{T∗i , Ci} and δi = I(T∗i ≤ Ci) ∀i.
2 LONGITUDINAL SUBMODEL:

• Set ni = mmin + bTic ∀i.

• Set 0 = t1, . . . , tni = bTic ∀i equispaced.

• Simulate εi(t) ∼ N(0, σ2), t = t1, . . . , tni ∀i.

• Compute yi(t1), . . . , yi(tni ) ∀i based on the longitudinal submodel (7).

6.2. Scenarios

We present simulation scenarios generated from the prothro dataset, which is avail-
able in the R-package JM (version 1.4-8) from the CRAN at http://cran.r-project.org/
package=JM. This dataset includes 488 patients with histologically verified liver cirrhosis,
where 251 patients were randomised to a treatment with prednisone and the remaining
received placebo [45]. The longitudinal variable pro is used on a logarithmic scale and the
treatment variable (treat) is defined as xi in both submodels.

First, we fit the joint models (7) and (8) for prothro data using the function jointModel
from the R-package JM. Then, the estimates are used as “true parameter values” in the
generation of simulated data, also using the joint formulations (7) and (8). The jointly
estimated parameters are β̂0 = 4.274, β̂1 = −0.004, β̂2 = −0.097, σ̂ = 0.262, Σ̂11 = 0.094,
Σ̂22 = 0.005, and Σ̂12 = Σ̂21 = −0.001 for the longitudinal submodel (7); and γ̂0 = 8.671,
γ̂1 = −0.172, and α̂ = −2.447 for the survival submodel (8). Finally, we simulate 100
datasets with n=200, 500, 1000, mmin = 3, and tmax = 15. Other simulation scenarios are
presented in Appendix B.

The Bayesian joint model specification (7) and (8) with the prior distributions pre-
sented in Section 2.3 is used for the three estimation strategies. The MCMC configuration
is defined as follows: 2000 iterations with warm-up of 1000 for the joint model using the JS
approach and for the longitudinal submodel from both two-stage approaches. Addition-
ally, 1000 iterations with warm-up of 500 are set to run the survival submodel from both
two-stage approaches. All models were implemented using rstan (http://mc-stan.org) and
the codes are provided in a Supplementary Material. Simulations were performed on a
Dell laptop with 2.6 GHz Intel Core i7, 16 GB RAM, OS Windows.

Here, the η parameter is set to 1.5 and so the prior variance of wi is equal to 1/1.5 ≈ 0.67.
Of course, this variance value is small and informative for the scale of simulated data in
this paper, but it can still be very large for other problems. A sensitivity analysis for the
choice of η is presented in Appendix A.

Table 1 and Figure 1 show the comparative results among joint specification (JS),
standard two-stage (STS), and novel two-stage (NTS) approaches for 100 simulated datasets
from the joint models (7) and (8) using the parameters set above.

http://cran.r-project.org/package=JM
http://cran.r-project.org/package=JM
http://mc-stan.org
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Table 1. Posterior summary and computational time (in minutes) from each estimation approach.

Posterior Parameter JS STS NTS
(True Value) n = 200 n = 500 n = 1000 n = 200 n = 500 n = 1000 n = 200 n = 500 n = 1000

Mean γ1 (−0.172) −0.172 −0.152 −0.165 −0.148 −0.132 −0.144 −0.141 −0.148 −0.160
α (−2.447) −2.574 −2.505 −2.460 −2.271 −2.237 −2.204 −2.537 −2.491 −2.456

SD γ1 0.193 0.120 0.084 0.184 0.115 0.082 0.241 0.149 0.106
α 0.345 0.214 0.148 0.295 0.186 0.131 0.391 0.245 0.171

Average Comp. Time 4.291 11.055 23.428 1.885 4.692 11.906 2.224 5.836 13.845

n=200 n=500 n=1000

JS STS NTS JS STS NTS JS STS NTS

−0.50

−0.25

0.00

0.25

P
os

te
rio

r 
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ns

(a) Group parameter (γ1).

n=200 n=500 n=1000

JS STS NTS JS STS NTS JS STS NTS

−3

−2

P
os

te
rio

r 
M

ea
ns

(b) Association parameter (α).

Figure 1. Simulation results from 100 datasets comparing the joint specification (JS), the standard two-stage (STS), and
the novel two-stage (NTS) for n = 200, 500, 1000. The panels show posterior means from the 100 datasets for the survival
submodel group (a) and association (b) parameters. The dashed horizontal line indicates the true parameter value.

We can see, both in Table 1 and in Figure 1, that the group parameter (γ1) is satisfacto-
rily estimated using the three approaches. On the other hand, in all scenarios, our approach
also estimates the association parameter (α) very well. These results are better than the
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STS approach and similar to the JS, which in theory is the correct way to deal with the
estimation process. However, as expected, the standard deviation of posterior distributions
using our methodology is slightly higher than others. Furthermore, the computational
time of the NTS is a little higher than of the STS and much less than that of the JS approach.

It is worth noting that theoretically the joint specification approach is always preferable.
The other two approaches are recommended when the complexity of the joint model
makes the inferential procedure highly time-consuming or when there are problems of
convergence of the Markov chains due to the high-dimensional parameter space. In the
model selection framework (e.g., variable selection problems or model selection from
different hazard function proposals), Bayesian selection criteria can be applied in the
usual way. In particular, leave-one-out cross-validation (LOO) and the widely applicable
information criterion (WAIC) can be easily calculated using the R-package loo [46] as well as
Bayes factors and posterior model probabilities using the R-package bridgesampling [47].

7. Discussion

In this paper, we presented a novel two-stage (NTS) method for fitting Bayesian
joint models of longitudinal and survival data using fixed-effects with informative prior
to correct the estimation bias caused by ignoring the joint nature of both processes. We
demonstrated in different scenarios that our proposal is more accurate than the standard
two-stage (STS) approach and its processing time is much less than the joint specification
(JS) approach.

In our simulation studies, we found that the group parameter estimation from the
survival submodel is robustly estimated regardless of the estimation approach. This result
was expected since this parameter does not depend on shared information. On the other
hand, the association parameter is sensitive when using the STS strategy.

The specification of the informative prior variance for the fixed-effects can be critical
drawback of our approach. In our simulation study, the set value produced quite satisfac-
tory results (see the sensitivity analysis of this parameter in Appendix A). However, we
would like to reinforce to the reader that this choice depends on the scale of the problem,
in which the value used in this paper may not be appropriate in other applications.

It would be interesting to apply the NTS in more complex longitudinal (e.g., skewed
or multiple longitudinal data) and survival (e.g., competing-risks or multistate data) sub-
models than those employed here. Hence, we would be able to try determining the limits
of the methodology. Furthermore, our proposal could also be combined with sequential
methods for Bayesian joint models [48].

Supplementary Materials: The codes are available online at https://www.mdpi.com/1099-4300/23
/1/50/s1.
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Appendix A. Sensitivity Analysis for η

Group parameter (γ1) Association parameter (α)
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Figure A1. Sensitivity analysis for η from 100 datasets with n = 200. Since Var(wi) = 1/η (for the
Gamma prior), larger values of η lead to small perturbation of wi’s and therefore the results resemble
the standard two-stage (STS) approach. The dashed horizontal line indicates the true parameter value.

Appendix B. Other Simulation Studies

Appendix B.1. Scenario 1

Setting: β0 = 5, β1 = −0.02, β2 = −0.1, σ = 0.25, Σ11 = 1, Σ22 = 1, Σ12 = Σ21 = 0.2, γ0 = 5,
γ1 = −0.1, α = −1, n = 200, mmin = 3, and tmax = 15.

Group parameter (g 1) Association parameter (a)

JS STS 0.5 1 1.5 2 2.5 5 10 JS STS 0.5 1 1.5 2 2.5 5 10

-1.3
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Figure A2. Scenario 1: Simulation results from 100 datasets comparing the joint specification (JS), the
standard two-stage (STS), and the novel two-stage (NTS) for η = 0.5, 1, 1.5, 2, 2.5, 5, 10. The dashed
horizontal line indicates the true parameter value.

Appendix B.2. Scenario 2

Setting: β0 = 1, β1 =−0.1, β2 =−0.01, σ = 0.5, Σ11 = 1, Σ22 = 1, Σ12 = Σ21 = 0.2, γ0 = −3,
γ1 = 0.1, α = 1, n = 200, mmin = 3, and tmax = 15.
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Group parameter (γ1) Association parameter (α)

JS STS 0.5 1 1.5 2 2.5 5 10 JS STS 0.5 1 1.5 2 2.5 5 10
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Figure A3. Scenario 2: Simulation results from 100 datasets comparing the joint specification (JS), the
standard two-stage (STS), and the novel two-stage (NTS) for η = 0.5, 1, 1.5, 2, 2.5, 5, 10. The dashed
horizontal line indicates the true parameter value.
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