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Abstract

N-methyl mesoporphyrin IX (NMM) is a water-soluble, non-symmetric porphyrin with excellent 

optical properties and unparalleled selectivity for G-quadruplex (GQ) DNA. G-quadruplexes are 

non-canonical DNA structures formed by guanine-rich sequences. They are implicated in genomic 

stability, longevity, and cancer. The ability of NMM to selectively recognize GQ structures makes 

it a valuable scaffold for designing novel GQ binders. In this review, we survey the literature 

describing the GQ-binding properties of NMM as well as its wide utility in chemistry and biology. 

We start with the discovery of the GQ-binding properties of NMM and the development of NMM­

binding aptamers. We then discuss the optical properties of NMM, focusing on the light-switch 

effect — high fluorescence of NMM induced upon its binding to GQ DNA. Additionally, we 

examine the affinity and selectivity of NMM for GQs, as well as its ability to stabilize GQ 

structures and favor parallel GQ conformations. Furthermore, a portion of the review is dedicated 

to the applications of NMM-GQ complexes as biosensors for heavy metals, small molecules (e.g. 
ATP and pesticides), DNA, and proteins. Finally and importantly, we discuss the utility of NMM 

as a probe to investigate the roles of GQs in biological processes.
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INTRODUCTION

N-methyl mesoporphyrin IX (NMM, Fig. 1a) is a non-symmetric, water-soluble porphyrin 

with excellent optical properties and exceptional selectivity for G-quadruplex (GQ) DNA. 

GQs are non-canonical DNA structures composed of two to four π–π stacked G-tetrads. 

Each G-tetrad is composed of four guanines connected via Hoogsteen hydrogen bonding 

and stabilized by a monovalent cation (Fig. 1b). Unlike double-stranded DNA (dsDNA), 

GQs display high structural diversity. They can be categorized by strand orientation into 

parallel, hybrid, and antiparallel geometries, as well as by the number of strands into 

mono-, bi-, and tetramolecular structures (Fig. 1d). This structural diversity makes GQs 

an interesting, yet challenging, topic for investigation. The importance of GQs stems from 

their involvement in a variety of biological processes. There is compelling evidence that 

GQs influence epigenetics, play protective roles at telomeres, define DNA replication origins 

in vertebrates, and serve as roadblocks during replication, transcription, and DNA repair, 

thereby linking them to cancer [1]. Therefore, small molecule ligands that modulate GQ 

structure and stability can be of great therapeutic value. In this review, we provide a detailed 

account of the GQ-binding properties and biological effects of the highly promising GQ 

ligand NMM.

Chemical structure and physical properties of NMM

NMM (MW = 580 g/mol) is a commercially available compound that can be synthesized 

via methylation of mesoporphyrin IX (MPIX). It exists as a mixture of four regioisomers 

with the methyl group at one of the four core nitrogens (note, only one regioisomer is 

shown in Fig. 1a). In addition, each isomer exists as a racemic mixture of two enantiomers 

with the methyl group either up or down relative to the macrocycle ring. The calculated 
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free energy barrier for enantiomer interconversion is 54.3 kcal/mol at 298 K, indicating that 

racemization would require temperatures in excess of 500 K to occur on a timescale shorter 

than decades [2]. The four regioisomers are difficult to separate. It is easier to separate them 

into two groups, with the methyl group on the pyrrole rings A–B and on the pyrrole rings 

C–D (Fig. 1a). The reported separation method starts with the methyl ester of NMM, and 

the separated compounds need to be hydrolyzed afterwards [3]. As far as we know, all work 

reported in the quadruplex field was done using a mixture of NMM isomers. Our laboratory 

attempted the separation following the protocol in [3] but did not succeed in obtaining pure 

regioisomers.

The presence of an N-methyl group on one of the pyrrole nitrogens leads to a large 

non-planar deviation in the porphyrin macrocycle [4]. This deviation, however, is highly 

localized on the pyrrole ring bearing the N-methyl group (Fig. 1c). Similar localization 

of distortion was reported for doubly methylated octaethyl porphyrin [4]. No experimental 

structure of NMM is available, but its geometry can be obtained from the reported crystal 

structures of NMM in complex with human telomeric DNA (AGGG(TTAGGG)3, named 

Tel22) [2] and with the Bacillus subtilis wild type [5] and mutant [6] ferrochelatases. In 

these structures, the overall deformation of the porphyrin macrocycle, expressed as Doop 

(deformation, out-of-plane), is 0.747, 1.581, and 1.839 Å, respectively. These numbers 

were calculated using the normal coordinate structural decomposition method, wherein 

the porphyrin plane was defined by the 24 core atoms, including nitrogens. These Doop 

values reveal that NMM distortion is highly dependent on its interacting partner. We have 

also estimated the geometry of NMM alone via energy minimization based on the NMM 

coordinates found in the Tel22-NMM complex and obtained a Doop of 1.068 Å [2]. The 

non-planarity of NMM has a strong effect on its physical properties as well as on its ability 

to interact with GQ DNA and proteins.

Another important feature of NMM is its two propionic acid side chains, which likely lead to 

its negative charge at physiological pH. As a charged non-planar molecule, NMM displays 

excellent solubility in water (in the mM range). Through serial dilution experiments, we 

have demonstrated that NMM does not aggregate in solution in the concentration range 

of 1–50 μM, which is used in the majority of chemical and biological studies [7]. Our 

data could also suggest that NMM exists as a stable dimer that does not dissociate 

or aggregate in this concentration range. NMM’s solubility contrasts with that of many 

other porphyrins, which are often only soluble in DMSO and display difficult-to-control 

aggregation phenomena. We typically work with aqueous, concentrated stocks of NMM 

(2–5 mM), which are stable for at least 6 months when kept at 4 °C in the dark. The 

water solubility and well-defined solution state of NMM, coupled with its excellent optical 

properties and selectivity toward GQ DNA (discussed below), makes NMM a highly suitable 

molecule for biological and biochemical studies.

Discovery of NMM as a GQ ligand and the development of NMM aptamers via SELEX

NMM was first identified as a strong inhibitor of Fe2+ insertion into protoporphyrin IX 

(PPIX) in a reaction catalyzed by ferrochelatase, a terminal enzyme in the heme biosynthesis 

pathway. Mice treated with NMM accumulated PPIX instead of heme in their livers [8]. 
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While it is difficult to determine the amount of NMM accumulated in the liver, the amount 

injected into mice was 80 nmols (46.4 μg or 50 μL of 1.6 mM solution). Inhibition of 

ferrochelatase leads to extreme light sensitivity due to the photoactivation of a singlet 

oxygen by PPIX (known as erythropoietic protoporphyria). Fe2+ insertion into planar 

PPIX typically proceeds via a transition state involving a significantly distorted porphyrin 

macrocycle. The crystal structure of NMM in complex with B. subtilis ferrochelatase 

confirms that NMM, with its non-planar geometry, is a stable analogue of this transition 

state [6].

After this discovery, NMM was used to develop nucleic acid aptamers (short sequences 

with high specificity for their target) via the systematic evolution of ligands by exponential 
enrichment (SELEX) method using the transition state analogue approach. Aptamers 

selected for their affinity toward NMM were expected to act as DNAzymes or ribozymes 

and accelerate metal insertion into MPIX, the non-methylated analogue of NMM. The 

majority of sequences discovered via SELEX were G-rich [9], and in 1996 the Sen 

laboratory suggested that the structural element which recognizes NMM is a GQ [10]. This 

conclusion was further confirmed by Sugimoto et al., who reported that the 18-nt G-rich 

sequence 5′-GTG GGT TGG GTG GGT TGG-3′, which forms a GQ in the presence of 

50 mM K+, binds NMM with a Ka of 1.4 μM−1 [11]. This sequence accelerates Zn2+ [11] 

and Cu2+ [12] insertion into MPIX by 2-fold and 7-fold, respectively. Yang and Browser 

also identified 10 aptamers, two of which bound NMM with Ka of ~1 μM−1 and accelerated 

Cu2+ insertion into MPIX by 2-fold [12]. Curiously, a recent report identified two NMM 

aptamers, Nm1 and Nm2, which were proposed to form stem-loop and GQ structures, 

respectively, based on biophysical evidence [13]. However, both aptamers are G-rich and 

GQ formation by both cannot be easily excluded. Nm1 accelerates Cu2+ insertion into 

MPIX by 3-fold and binds NMM with a Ka of 1.3 μM−1. Meanwhile, Nm2 accelerates 

Cu2+ insertion into MPIX by 2-fold and is a weaker NMM binder with a Ka of 0.08 μM−1 

[13]. Thus, the ability of NMM aptamers to accelerate metal insertion (chelatase activity) 

seems to be positively correlated with their binding affinity for NMM. Nm2 also displayed 

peroxidase activity in the presence of hemin [13]. Recently, Li et al. developed a gold 

nanoparticle-based SELEX method and identified an aptamer for NMM and ZnPPIX. The 

aptamer showed ~7-fold binding selectivity for NMM over ZnPPIX (Ka of 0.74 vs. 0.10 

μM−1, respectively) and excellent peroxidase activity. Conformational studies suggest that 

the aptamer forms a parallel GQ, which explains its selectivity for NMM [14].

Sen’s report influenced greatly the development of the GQ filed by identifying NMM as the 

first GQ-binding small molecule ligand [10].

Optical properties of NMM alone and in complex with GQ DNA: UV-vis, fluorescence, and 
circular dichroism spectroscopy

The UV-vis spectrum of aqueous NMM displays a Soret band at 379 nm (ε = 1.45 × 105 

M−1 cm−1 [15]) and weak Q bands at 540, 560, 579, and 604 nm. Upon binding to GQ 

DNA, the spectrum displays a large red shift of 17–20 nm, accompanied by a relatively 

small change in signal intensity (hypo- or hyperchromicity) of ±20% [7] (Fig. 2a). These 

numbers correlate to a specific binding mode (e.g. intercalation or groove binding) of 
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porphyrins to (infinitively) long dsDNA [16]. However, such correlations have not yet been 

established for the binding of porphyrins to GQs due to the lack of structural data.

NMM fluoresces weakly in solution when excited at 399 nm, but its fluorescence is 

significantly enhanced upon the addition of GQ DNA (Fig 2b). As a result, NMM can 

serve as a turn-on fluorescent probe [17–19]. The excitation wavelength corresponds to the 

Soret peak for NMM-GQ complexes (~400 nm), while NMM’s emission peaks at 610–614 

nm. Our investigation into the fluorescence enhancement mechanism suggests that binding 

to GQs protects NMM from the solvent, thereby increasing its fluorescence lifetime [19]. 

We determined that NMM displays a single long lifetime (6–8 ns) in the presence of parallel 

GQs, but two lifetimes (5–7 and 1–2 ns) in the presence of hybrid and antiparallel GQs 

[19]. The fluorescence of NMM is an extremely useful property that allows for many of 

its applications (discussed below). The Bolton laboratory was the first to take advantage of 

NMM’s fluorescence to characterize both its binding to GQs and its ability to discriminate 

between GQ and dsDNA [18].

NMM does not display any signal in its circular dichroism (CD) spectrum because the 

commercially available product exists as a racemic mixture. NMM-GQ complexes, which 

are chiral, should produce an induced CD (iCD) signal around ~400 nm, where NMM-GQ 

complexes absorb. In general, the iCD signal can be positive, negative, or display a more 

complex pattern depending on the binding mode. While we did observe a negative iCD 

signal, it was weak and only appeared in the presence of some GQs (Fig. 2c) [7]. The 

Bolton laboratory examined 11 different NMM-GQ complexes and did not detect any iCD 

signal. They concluded that the absence of an iCD signal is consistent with the end-stacking 

binding mode (binding to terminal G-tetrads), which is associated with the lowest chirality 

[20]. Similarly, the Wilson laboratory observed no significant iCD signal for ethidium, a 

well-characterized end-stacking compound [21].

Interaction of NMM with GQ DNA

All DNA sequences mentioned in this review are listed in Table 1.

Binding affinity.—NMM did not immediately capture the attention of the GQ community 

when its ability to bind GQ DNA was discovered, likely because of its relatively low affinity 

for GQs. The latter is due to the negative charge and non-planarity of NMM. Good GQ 

binders are usually positively charged and planar, which allows them to interact with GQs 

via electrostatic interactions and π–π stacking. One of the best porphyrin GQ binders is 

tetra(N-methyl-4-pyridyl)porphyrin (TMPyP4), which has a 4+ charge and a planar core [7]. 

However, TMPyP4 suffers from poor selectivity for GQ vs. dsDNA [15], whereas NMM 

does not have this fatal flaw.

When our laboratory measured the affinity of NMM toward a variant of human telomeric 

DNA, Tel22, in K+, the binding constant was low at 1 × 105 M−1 [7]. In spite of this 

weak binding, we obtained crystals of NMM in complex with Tel22 and solved its structure 

[2]. We proceeded to investigate the binding of NMM to other GQ structures using a 

combination of spectroscopic methods (CD, UV-vis, Analytical Ultracentrifugation, and 

fluorescence titrations) and isothermal titration calorimetry (ITC). We observed a Ka of ~1.5 
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× 106 M−1 for the parallel, tetrastranded T4GnT4 (where n = 4 or 8), and a much stronger Ka 

of ~1.3 × 107 M −1 for the G4T4G4 dimer, which is expected to form an antiparallel GQ in 

the presence of K+ [19]. Our preliminary data on NMM binding to the parallel GQs formed 

by VEGF, cMyc, and G4TERT yielded Ka values of >2 × 106 M−1, suggesting strong 

binding (unpublished). Our most recent data on NMM binding to the parallel THM GQ in 

K+ buffer suggests a binding affinity of ~5 × 107 M−1, the highest value determined so far 

for any GQ-NMM complex (unpublished). Interestingly, in Na+ buffers, where GQ DNA 

is expected to adopt an antiparallel topology, we detected no binding of NMM to G4T4G4, 

26TelG4 [19], and Tel22 [7]. Our results (except for G4T4G4 in K+, see below) are in line 

with a report by Tippana et al., who measured the affinity of NMM for eleven GQ-forming 

sequences with various degrees of parallel/antiparallel topology. Their binding constants 

were determined by taking advantage of NMM’s ability to quench the fluorescence of Cy3 

dye placed at the 3′ end of the DNA. NMM bound tightly to all parallel GQs (e.g. cMyc) 

with a Ka of ~1 × 107 M−1, and rather weakly, with Ka lower than ~1 × 104 M−1 to all 

antiparallel GQs and T25 single stranded DNA (ssDNA) [17].

GQ-forming aptamers developed for NMM bind with weak-to-medium affinity and Ka of 

(0.1–5) × 106 M−1 [10–12]. For example, the binding affinity of NMM to the three aptamers 

identified by Sen and co-workers is in the range (1.3–2.5) × 106 M−1. In this case, binding 

constants were determined by measuring the distribution of aptamers between free NMM 

in solution and NMM immobilized on a column [10]. Out of the ten aptamers identified by 

Yang and Bowser, two bind NMM with Ka of 0.8 × 106 and 1.1 × 106 M−1, three display Ka 

of (2–3) 105 M−1, while the rest do not bind well to NMM, displaying Ka lower than 5 × 104 

M−1 [12]. The Sugimoto aptamer binds NMM with Ka of 1.4 × 106 M−1 [12].

The binding affinities discussed are summarized in Table 2. From the table, it is apparent 

that NMM binds GQs with Ka spanning 2–3 orders of magnitude, ranging from (0.1–50) × 

106 M−1. While the binding of NMM to GQs is always stronger in K+ than in Na+ and could 

be explained by the differences in GQ topology, the cause of these large Ka differences 

displayed by NMM toward a variety of parallel GQs is not fully understood and requires 

further exploration.

Stabilizing ability of NMM.—We studied the stabilizing ability of NMM via CD melting 

and fluorescence resonance energy transfer (FRET) [7]. In FRET we used doubly labeled 

human telomeric DNA, 5′-FAM-GGG(TTAGGG)3-Dabcyl-3′ (F21D) and monitored FAM 

fluorescence as a function of temperature. The advantage of FRET is its high-throughput 

format which allows screening of a large number of variants (e.g. buffer components and 

ligand concentrations) in a short time and with a low amount of materials [22]. Its main 

drawback, however, is the possibility that ligands interact with the labels rather than the GQ 

itself. CD melting of unlabeled GQs in the presence of a ligand circumvents this drawback 

and is a direct way to determine DNA stability. While the melting temperatures derived from 

these two methods usually cannot be directly compared, the trends are similar.

NMM displays excellent dose-dependent stabilizing ability toward a variety of GQ 

structures (Fig. 3). Consistent with results from binding studies, NMM stabilizes parallel 

structures and, to a lesser extent, hybrid structures, but generally does not stabilize 
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antiparallel GQs. The presence of K+ is essential for stabilization, as we did not find any 

reports of NMM stabilization of GQs in Na+ buffers. Interestingly, the highest stabilization, 

of 23 ± 2 °C at 2 eq of NMM is observed for the THM GQ, which adopts a parallel 

conformation (even in the absence of NMM) and displays the highest known binding affinity 

for NMM (unpublished). Biologists use NMM as GQ-stabilizing treatment to determine the 

effect of GQs on a variety of biological processes (see “Using NMM to study GQ DNA in 

biological contexts”).

NMM-induced conformational change of G-rich DNA.—In the process of 

characterizing NMM binding to Tel22, we discovered that NMM is capable of inducing 

a structural transition from hybrid to parallel conformation, as signified by the increase 

in CD signal at 264 nm (Fig. 4a). This conversion is slow, occurring over ~30 h at 30 

°C in 5 mM K+ [7]. We hypothesize that the NMM-induced structural rearrangement of 

Tel22 happens via conformational selection mechanism described by the Chaires group 

for the Tel22-PEG (polyethylene glycol) system [23]. In essence, Tel22 in K+ exists as 

an equilibrium mixture of multiple conformations, one of which is parallel, estimated at 

~14%. NMM preferentially binds to the parallel conformation, which shifts the equilibrium, 

until full conversion occurs. We observed similar structural transitions for Bcl-2, G4TERT, 

cKit1, (TTGGGG)4, and G4T4G4 (Fig. 4b), among others [7, 18, and unpublished]. Such 

conversions are not observed in Li+ or Na+. For DNA that adopts a parallel GQ geometry 

by itself, NMM either increases the signal intensity at 264 nm or does not change the CD 

signal. A recent study by the Renčiuk lab [24] demonstrated that 2 eq of NMM induces 

parallel conformation in two human telomeric sequences, (GGGTTA)3GGGT and Tel22, 

and one model sequence, APS-WT, all of which adopt antiparallel/hybrid conformations in 

K+ buffer. The effects of NMM on GQ DNA are similar to, but somewhat weaker, than those 

of 60% PEG200 or 60% ethanol. The ability of NMM to modulate GQ structures must be 

taken into consideration in biological studies.

Selectivity of NMM for GQ DNA vs. other DNA structures.—A variety of 

experimental approaches showcase NMM’s selectivity, including competition dialysis [25, 

26], fluorescence enhancement [19, 20, 27], FRET melting [7], single-molecule FRET 

(smFRET) [17], and helicase inhibition assays [28, 29]. All these studies conclude that 

NMM is exceptionally selective for GQ DNA over other types of DNA, including ssDNA, 

dsDNA, DNA-RNA hybrids, dsRNA, Z-DNA, and triplex DNA [15, 18, 19, 25].

In competition dialysis, fluorescent enhancement, and smFRET, selectivity was assessed by 

looking at NMM’s response in the presence of different DNA topologies (Fig. 5). When the 

response was high, strong NMM-DNA interaction was assumed. By quantifying equilibrium 

dialysis data, Chaires concluded that NMM binds to GQs more favorably by at least 2 

kcal/mol as compared to other tested DNA structures [25]. In FRET melting studies the 

ability of NMM to stabilize doubly labeled human telomeric GQ DNA, F21D, was tested 

in the presence of a large quantity of dsDNA competitors. The stabilizing ability of NMM, 

unlike that of TMPyP4, was not compromised even when in the presence of a large excess 

of dsDNA (Fig. 5b), which is indicative of its excellent selectivity. NMM’s selectivity 

was also demonstrated in helicase inhibition assays using the RecQ family helicases, BLM 
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(human), Sgs1p (Saccharomyces cerevisiae) [28], and RecQ (Escherichia coli) [29]. DNA 

helicases are ATPases that remodel DNA and DNA-protein complexes. NMM selectively 

inhibits unwinding of GQs by BLM and Sgs1p with an inhibition constant, Ki, of ~0.8 

and ~1.0 μM, respectively, but not dsDNA or Holliday Junctions (Ki of ~25 μM) [28]. The 

observed inhibition was likely caused by NMM’s ability to stabilize GQs but not other DNA 

structures. The data also demonstrate that NMM affects neither helicase binding to DNA nor 

the ATP hydrolysis steps. On the other hand, the porphyrin ligand TMPyP4 inhibits BLM 

and Sgs1 activity toward both GQ and dsDNA without discrimination [28], in line with the 

poor selectivity of this ligand.

Finally, we would like to mention NMM’s selectivity toward i-motif DNA, an intercalated, 

hemi-protonated cytosine structure [30]. The literature reports are scarce and without 

agreement. The Chaires laboratory reported binding of NMM to bimolecular C4T4C4, 

tetramolecular TC4T, and poly(dC) i-motifs via the equilibrium dialysis method [25]. We 

investigated the first two sequences, as well as i-cMyc and A4C8A4, using fluorescence 

enhancement of NMM, and observed no binding (Fig. 5a) [19]. Further investigation is 

required to resolve this discrepancy.

Selectivity of NMM for parallel GQs vs. other GQ topologies.—NMM displays 

excellent selectivity for parallel GQs — a highly desirable but rare property among GQ 

ligands, which often interact with a broad range of GQ conformations. Using ~10 G-rich 

DNA sequences each, the Chaires and Bolton laboratories discovered that NMM displays 

a clear preference for some GQ structures over others [20, 25]. However, they made no 

attempts to correlate this preference with the exact GQ topology. Later, Tippana et al. 
reported a strong correlation between NMM’s binding affinity and the percentage of parallel 

GQ character measured via smFRET, which clearly indicated NMM’s preference for the 

parallel GQ topology [17]. Our laboratory arrived at a similar conclusion while working 

with Tel22. NMM’s fluorescence increases only slightly in the presence of unfolded Tel22 

in Li+ or antiparallel Tel22 in Na+, but increases by 25-fold in the presence of hybrid 

Tel22 in K+ (Fig. 2b) [7, 19]. We then expanded this study to include ~20 different GQs 

(Fig. 5a) and determined that NMM fluorescence increases by ~60-fold in the presence of 

parallel GQ structures, ~40-fold in the presence of hybrid structures, and ~10-fold in the 

presence of antiparallel structures (excluding the unusual case of G4T4G4) [19]. The latter 

DNA is expected to form a bimolecular antiparallel GQ in both K+ and Na+ [31, 32], so the 

fluorescence enhancement was expected to be low. Contrary to our expectations, however, 

the addition of G4T4G4 to NMM in the presence of K+ led to fluorescence enhancement 

of 60 ± 5%, equal to that of many parallel sequences (Fig. 5a). We explain this result, at 

least in part, by NMM-induced structural conversion of G4T4G4 into a conformation with 

increased parallel nature, as judged by the increase in the CD signal at 264 nm, which 

is characteristic for parallel GQs (Fig. 4b). The Chaires laboratory also observed a strong 

preference of NMM for a related sequence (G4T4)3 [25]. A crystal or NMR structure of 

NMM in complex with the G4T4G4 GQ may help explain the strong preference of NMM 

toward this (presumably) antiparallel structure.

In summary, NMM demonstrates unparalleled selectivity for GQs over other DNA 

secondary structures, albeit with a lower affinity than other small molecule ligands. Among 
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GQs, it strongly prefers the parallel conformation, followed by the hybrid, and only weakly 

interacts (if at all) with antiparallel GQs.

The end-stacking binding mode of NMM to GQ DNA.—Intercalation of NMM into 

GQs is a myth. Neither spectroscopic nor structural studies point to the ability of NMM 

to intercalate between G-tetrads by overcoming their efficient π–π stacking interactions. 

In fact, no GQ ligand to date has been shown to intercalate into a short biological GQ 

(with 2–4 G-tetrads) via structural methods. Instead, our crystal structure of the NMM-Tel22 

complex, solved to 1.65 Å (PDB ID: 4FXM), indicates that NMM stacks onto the 3′ 
G-tetrad (i.e. end-stacking binding mode) (Fig. 6) [2]. The NMM macrocycle is positioned 

3.6 Å away from the 3′ G-tetrad, which is consistent with the π–π stacking distance 

observed for a variety of GQ-ligand complexes (ligands: berberine, metal-salphene, and 

naphthalene diimide) [33–35]. The end-stacking binding mode is a common way for (nearly) 

planar ligands to interact with GQ DNA. In the NMM-Tel22 crystal structure, the N-methyl 

group of NMM is bent away from the mean macrocycle plane by 44.8° and points into 

the potassium channel in the center of the Tel22 GQ (Fig. 6a). This arrangement leads to 

the off-centered placement of NMM toward one of the guanines in the 3′ G-tetrad, G22 

(Fig. 6b). While the geometry of the GQ is invariant in its free and ligand bound forms, 

the efficiency of binding can be explained by the ability of NMM to adjust its geometry to 

match that of the terminal G-tetrad to which it binds. Furthermore, efficient π–π stacking 

and complementarity between the surface of 3′ terminal G-tetrad and NMM can explain 

the excellent selectivity of NMM for parallel GQs. Meanwhile, the smaller Na+ ion usually 

occupies the space within a terminal G-tetrad [36], preventing the N-Me group from entering 

the ion channel and thereby inhibiting binding. The electron density in our structure is not 

clear enough to support with confidence Tel22’s preference for one NMM isomer. On the 

contrary, only one NMM isomer, with the methyl group on pyrrole ring A (Fig. 1a), was 

shown to bind to B. subtilis ferrochelatase [5], suggesting stereoselectivity. The His183Ala 

mutant of B. subtilis ferrochelatase had preference for another NMM isomer, with the 

methyl group on ring B [6]. Yet all four isolated NMM isomers equally inhibited the enzyme 

[37]. Recently, our laboratory solved the crystal structure of NMM in complex with THM 

at 2.4 Å (PDB ID: 6PNK and 6P45). The structure shows great resemblance to that of the 

NMM-Tel22 complex.

While no other structures (NMR or X-ray) of NMM-GQ complexes exist, the binding mode 

of NMM can also be inferred from spectroscopic and footprinting experiments, as well as 

from computational studies. Two reports attempted to determine the binding mode of NMM 

to the thrombin-binding aptamer, TBA, a widely studied G-rich sequence which forms an 

antiparallel GQ (Fig. 7). The TBA GQ has anticoagulant properties due to its nanomolar 

affinity for exosite I of human α-thrombin. In the first report, the enhanced hydroxyl radical 

cleavage method was used to demonstrate that NMM binds to TBA by forming a bond with 

a single base in the central (top) TGT loop [38]. The hydroxyl radical cleavage protocol can 

detect any base with an exposed sugar. Ligand binding sites are determined by comparing 

the cleavage patterns for DNA and ligand-DNA complexes. The second report used NMM 

and Thioflavin T (ThT) fluorescence, coupled with molecular docking experiments, to 

conclude that NMM interacts with TBA at the opposite end of the GQ, which contains two 
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TT loops [39]. The propionic acid side chains of NMM are proposed to form hydrogen 

bonds with one guanine from the bottom G-tetrad and one thymine from the TT loop. Two 

additional thymines and one guanine π–π stack onto NMM, but this binding is weaker. 

Interestingly, the authors did not observe binding of NMM to an unusual parallel form of 

TBA formed in the presence of ThT (and absence of K+). The authors explained this lack 

of binding as being due to the two TT loops being far apart in this conformation. We can 

propose an alternate explanation: NMM’s lack of interaction with TBA could also be due 

to its binding site being already occupied by ThT. Alternatively, in our experience, NMM 

always binds weakly or not at all to GQs formed in the absence of K+. While contradictory 

in terms of the specific binding interactions, the two reports indicate that NMM does not 

end-stack onto the terminal G-tetrad in TBA. This explains why our laboratory observed low 

fluorescence enhancement of 16 ± 1% in K+ and 5.2 ± 0.4 in Na+ (Fig. 5a) [19], as well as 

no stabilization of TBA by NMM (Fig. 3) [7].

In summary, structural studies indicate that NMM binds to Tel22 [2] (PDB ID: 4FXM) and 

THM (PDB ID: 6PNK and 6P45) GQs via end-stacking to the 3′ G-tetrad. Biophysical 

analysis of NMM binding to TBA reports that NMM interacts with either the top loop [38] 

or the bottom loops [39] (Fig. 7). Further studies are needed to resolve this discrepancy.

NMM-GQ complexes as fluorescent sensors

The exceptional selectivity of NMM for GQ DNA allows for its wide applications in 

chemistry and biology. Specifically, NMM-GQ complexes can serve as label-free turn-on 

or turn-off sensors whose fluorescence is proportional to the concentration of an analyte. 

In all turn-on sensors, the addition of an analyte triggers GQ formation or stabilizes an 

existing GQ, which then interacts with NMM, thereby leading to an increase in fluorescence. 

Meanwhile, in turn-off sensors, highly fluorescent NMM-GQ systems are disrupted by 

the analyte due to remodeling or unfolding of the GQ, or alternatively due to specific 

interactions with the side chains of NMM. NMM-GQ sensors provide a simple, cost 

effective and highly sensitive method for identifying a range of analytes that includes 

heavy metals, anions, small molecules (including ATP and pesticides), DNA, and proteins. 

Their dynamic range can be controlled by the precise selection of G-rich DNA fragments 

(which lead to varied fluorescence responses, see Fig. 5a) and buffer components (notably 

K+). Sensor sensitivity can be further improved by incorporating enzyme-based signal 

amplification strategies (such as rolling circle amplification (RCA), ligase chain reaction, 

and exonuclease amplification) or enzyme-free technologies based on hybridization chain 

reaction and strand displacement. The most common amplification strategy relies on the 

ability of exonuclease to digest blunt 3′ (Exo III) or 5′ (Exo T7) ends of dsDNA 

making this method extremely general and allowing detection and signal amplification 

for any analyte as long as its DNA binding partners can be identified (e.g. aptamers or 

complementary sequences). NMM-GQ sensors described in literature are summarized in 

Fig. 8 and discussed below.

Detecting heavy metal ions.—Heavy metals have great utility in various industries, 

but their toxicity can adversely impact both the environment and human health. Although 

it is important to be able to detect heavy metals, established methods are expensive, time­
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consuming and complicated. Accordingly, new and improved methods are highly sought 

after.

Two studies exploited the fluorescence enhancement upon NMM’s interaction with a G-rich 

sequence called AGRO100 to detect Ba2+ [40], Pb2+, and Hg2+ [41]. In the first study, a 

turn-on probe was developed based on the ability of Ba2+ to induce AGRO100 folding into 

a GQ, which is detected by NMM with a limit of 4 nM [40]. This value is 3600 times lower 

than the maximum allowed Ba2+ concentration in drinking water as defined by the U.S. 

Environmental Protection Agency (EPA). Other metals that promote AGRO100 folding into 

a GQ (e.g. K+, Pb2+) may interfere with this assay. This system was then converted into a 

turn-off detector for Pb2+ and Hg2+ [41]. NMM displays high fluorescence when AGRO100 

is folded into a GQ in a K+ buffer. Addition of Hg2+ leads in T–Hg2+–T interactions, which 

change the GQ into a hairpin structure that NMM does not bind to. Similarly, addition 

of Pb2+ converts the GQ into a new conformation that no longer interacts with NMM. 

For Pb2+ detection, Hg2+ interference was eliminated by adding polythymine (T20), which 

sequesters Hg2+ by forming a hairpin. 2,6-pyridinedicarboxylic acid was added to eliminate 

interference from Pb2+ when detecting Hg2+. The sensitivity for Pb2+ is 5 nM and the 

sensitivity for Hg2+ is 18.6 nM [41]. A similar turn-off Pb2+ sensor based on another G-rich 

sequence called PS2.M was reported by Guo et al. with a 1 nM detection limit [42].

A turn-off sensor for Cu2+ (detection limit of 80 nM) was developed by Qin et al. using 

the 24GT GQ-forming sequence [43]. In the absence of Cu2+, the NMM-24GT complex 

is highly fluorescent. However, Cu2+ quenches fluorescence of NMM by binding to its 

carboxylate groups. Cr3+ and Fe3+ interfere with the assay, but addition of ssDNA sequesters 

these metals and eliminates interference.

A turn-on Ag+ sensor relies on the ability of Ag+ to interact with cytosine (C) bases, forming 

C–Ag+–C, and uses the Exo III signal amplification strategy [44]. Addition of Ag+ to a 

hairpin probe creates a 3′ blunt end via the formation of C–Ag+–C. Exo III then digests this 

blunt end, releasing Ag+ (to start a new cycle), along with a trigger DNA sequence. This 

trigger binds to a G-rich signal sequence to create a new blunt end, which Exo III digests. 

Upon digestion, the trigger DNA is released to start a new cycle, while the G-rich sequence 

folds into a GQ and binds NMM, leading to fluorescence enhancement. This Ag+ biosensor, 

with its detection limit of 2 pM, is comparable to conventional methods of Ag+ detection 

(such as atomic absorption spectroscopy, ICP-MS, and the ion-selective electrode), but does 

not require any specialized instrumentation.

In summary, Cu2+, Hg2+, Pb2+, Ba2+, and Ag+ biosensors were developed based on 

the fluorescence of NMM-GQ complexes. These sensors have excellent selectivity and 

sensitivity, with detection limits well below those defined by the World Health Organization 

(WHO) or EPA for drinking water. Their dynamic range can be tuned to span the 

concentrations desired by either adjusting the amount of NMM or using G-rich sequences 

with varying affinities for NMM.

Detecting melamine and iodide.—Melamine (Mel), an industrial chemical, is often 

used in dinnerware, adhesives, coatings, and flame retardants. It is used illegally to enhance 
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the apparent protein levels in foods. A Chinese milk scandal brought world attention to the 

toxic effect of this chemical in 2008. Two turn-off Mel sensors were developed utilizing the 

ability of Mel to form a hydrogen bonded T–M–T triad [45, 46]. In this sensor, the G-rich 

part of the DNA is flanked by TTTTT stretches at the 5′ and 3′ ends. In the absence of 

Mel, the sensor adopts a GQ conformation and binds NMM. Addition of melamine unfolds 

the GQ to form a hairpin with a T–Mel–T stem. The excellent sensitivity of 80 nM [45] is 

further improved to 25 fM using the Exo III signal amplification and strand displacement 

strategies [46]. The sensor has proven successful when applied to real milk samples.

The turn-off Mel sensor was converted to a turn-on iodide sensor [45]. The starting state of 

this sensor is a hairpin with five T–Hg2+–T base pairs in the stem. Addition of I− removes 

Hg2+ (in the form of HgI2 and [HgI4]2−) freeing the G-rich part to form a GQ that binds 

NMM. The detection limit of this biosensor is 4.6 nM, which is below the acceptable I− 

levels defined by the WHO.

Detecting ATP and adenosine.—The ATP sensor consists of NMM, a DNA strand 

composed of an ATP aptamer followed by a sequence complementary to a blocking probe, 

the blocking probe, and two DNA hairpins (H1 and H2), one of which can fold into a GQ 

[47]. This system uses an enzyme-free signal amplification strategy based on a hybridization 

chain reaction involving H1 and H2. Each ATP molecule releases one blocking probe, which 

initiates a hybridization chain reaction that leads to the formation of long, GQ-decorated, 

DNA nanowires. NMM binds to these GQs, resulting in high fluorescence. In principle, 

any analyte can be detected by incorporating an appropriate aptamer while keeping the rest 

of this sensor unchanged. The specificity of the sensor is mostly defined by the specificity 

of the aptamer. Analysis of ATP in urine was successfully conducted using this NMM-GQ­

based biosensor [47].

The adenosine sensor was developed based on an adenosine aptamer [48]. In the presence 

of adenosine, dsDNA containing the adenosine aptamer as one of its strands dissociates, 

releasing ssDNA that is complementary to the stem of a DNA hairpin with a G-rich loop. 

Hybridization of the ssDNA with the DNA hairpin opens the hairpin, thereby enabling 

GQ formation followed by NMM binding and fluorescence enhancement. Both steps are 

amplified using the T7 Exo-based dual recycling signal amplification strategy leading to a 

detection limit of of ~1 μM.

Detecting pesticides and mycotoxins.—A highly sensitive turn-off NMM-GQ sensor 

was developed by the Wang lab to detect carbamate and organophosphorus pesticides in 

agricultural products [49]. These pesticides inhibit acetylcholinesterase (AChE) activity in 

the nervous system and can thus be fatal. The sensor is designed such that in the absence 

of a pesticide, a normal activity of AChE will lead to the release of a trigger DNA, which 

initiates a hybridization chain reaction resulting in the formation of a long, GQ-decorated 

duplex. These GQs are recognized by NMM, leading to a fluorescence enhancement. The 

presence of a pesticide inhibits AChE, which decreases the amount of trigger DNA, and, 

accordingly, NMM fluorescence decreases.

Yett et al. Page 12

J Porphyr Phthalocyanines. Author manuscript; available in PMC 2021 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Recently, a NMM-GQ biosensor was developed to detect an ochratoxin A [50], one of the 

most abundant mycotoxins implicated in nephrotoxicity and renal tumors.

Detecting ssDNA and RNA.—Disease diagnosis and genetic screening require quick 

and reliable detection of ssDNA. NMM-GQ based sensors for ssDNA all have similar 

designs but utilize different GQ-forming sequences or amplification strategies [51–55]. 

These sensors are modular and can be easily redesigned to detect any desired target by 

replacing the DNA sequence complementary to the target. In general, the presence of 

one base mismatch leads to >30% signal reduction. The sensors discriminate completely 

against DNA targets with 2–3 mismatches and can function in the high background of 

non-complementary DNA. We highlight specific examples of DNA biosensors below.

A sensor developed by the Hu laboratory involves a single DNA strand that consists of three 

parts in the following order: a GQ-forming part, a part complementary to a target DNA, and 

a blocking part that is complementary to a portion of the GQ-forming part. In the absence of 

the target, the biosensor exists as a hairpin whose loop is complementary to the DNA target. 

When the DNA target is added, it hybridizes with the hairpin loop, pulling the two ends of 

the probe apart and releasing the G-rich part to fold into a GQ in the presence of K+, thereby 

leading to enhanced NMM fluorescence [51].

Two ssDNA sensors were developed based on split G-rich DNA sequences. The idea behind 

these sensors is that splitting a G-rich DNA sequence into two separated parts will prevent 

GQ formation, leading to low NMM fluorescence. Only upon addition of the target DNA 

do the two parts come together, restoring GQ and resulting in high NMM fluorescence. 

The first sensor consists of two DNA strands, each of which has half of the cMyc G-rich 

DNA along with a region complementary to the target DNA, the hepatitis B viral (HBV) 

gene [52]. Both K+ and HBV are required to restore the GQ structure, which leads to 

high NMM fluorescence. The second sensor consists of an oligonucleotide (P1) with the 

sequence dG3T4G3-loop-G3T4G3 (loop = 16-nt), as well as a 22-nt oligo (P4) that is fully 

complementary to the target and 16-nt loop of P1. The target DNA removes P4 via strand 

displacement (as P4 and the target share more complementary bases than P4 and P1), 

thereby freeing P1 to fold into a GQ that binds NMM [54]. The detection limit is 2.3 nM, 

which is comparable to other DNA detection methods.

Li et al. designed an influenza A H1N1 turn-off sensor that is composed of (i) a GQ-forming 

part extended by a sequence complementary to a portion of the H1N1 DNA target (QBF­

DNA); and (ii) an assistance DNA complementary to parts of both the QBF-DNA and 

H1N1 DNA [53]. In the absence of H1N1, the QBF-DNA forms a GQ which causes high 

fluorescence of NMM. When present, the H1N1 target hybridizes with both the QBF-DNA 

and assistance DNA, unfolding the GQ and forming a three-way junction, turning off the 

fluorescence of NMM. This biosensor has an impressive 8 pM detection limit, and its 

feasibility was demonstrated by the detection of H1N1 DNA in patient sera.

An interesting strategy was developed that allows for detection of any ssDNA. It consists 

of Exo III, NMM, and a DNA duplex with a G-rich segment and 3′ overhang that makes 

it stable in the presence of Exo III [56]. The addition of a target DNA creates a 3′ blunt 

Yett et al. Page 13

J Porphyr Phthalocyanines. Author manuscript; available in PMC 2021 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



end and initiates Exo III digestion of the original duplex. This process releases both the 

G-rich segment and the target DNA itself. The former folds into a GQ and enhances NMM 

fluorescence, while the latter is free to hybridize with another biosensor to amplify the 

signal. The reported sensitivity is 35 pM. The described strategy was used in the design of 

a biosensor for the mecA gene in Staphylococcus aureus, a foodborne bacteria with severe 

adverse effects on animal health. It has an impressive sensitivity of 2.4 fM [55].

NMM-GQ based biosensors can also be engineered to detect RNA. For example, Yan 

et al. designed a sensor for microRNA (miRNA), a short, non-coding, endogenously 

expressed RNA involved in negative post-transcriptional regulation. The sensor uses strand 

displacement as a signal amplification strategy and consists of NMM, a duplex-specific 

nuclease (DSN), and cDNA/G-rich DNA duplex [57]. The cDNA is complementary to 

the target miRNA and partially complementary to the G-rich DNA. When the miRNA 

target is present, it hybridizes with the cDNA via strand displacement, releasing the G-rich 

DNA to form a GQ that interacts with NMM, enhancing its fluorescence. The signal is 

amplified in the presence of the DSN, which digests the cDNA strand of the cDNA/miRNA 

heteroduplex, releasing the miRNA to hybridize with additional biosensors and continue 

the cycle. Impressively, this sensor can differentiate one miRNA (mi-141) from four highly 

similar members of the same miR-200 family, which was recently identified as one of the 

most promising targets for anticancer therapy [58].

In summary, a variety of ssDNA biosensors take advantage of NMM-GQ fluorescence as 

a detection method. These sensors display sensitivity equal to or better than that of other 

ssDNA detection techniques and provide scientists with a rich toolbox for detecting a variety 

of ssDNA targets. The appropriate choice of G-rich sequences along with amplification 

strategies can push the detection limits to even lower values.

Detecting proteins.—NMM, in combination with ThT, was reported to detect thrombin, 

an essential enzyme in hemostasis [39]. Both ligands have similar excitation wavelengths 

(399 and 420 nm, respectively), so they can be excited simultaneously, but have different 

emissions (610 and 487 nm, respectively), so they can be detected separately. The biosensor 

consists of NMM, ThT, and TBA and displays strong ThT fluorescence due to its interaction 

with TBA. Addition of thrombin induces the formation of antiparallel TBA GQ, leading 

to increase in NMM fluorescence. This observation is in line with our measurements of 

fluorescent enhancement of 16 ± 1% (Fig. 5a) for NMM-TBA in K+ buffer [19]. The 

fluorescence intensities of NMM and ThT have a linear relationship when the thrombin 

concentration is between 0 and 40 μM. This assay can accurately measure thrombin levels 

above 0.24 μM [39], rendering it potentially useful for monitoring changes in thrombin 

levels at the upper end of the range for blood clotting (full range: 0.1 nM–0.5 μM [59]).

A general strategy for detecting protein biomarkers relies on aptamer recognition of the 

target and Exo III signal amplification. First, magnetic beads decorated with the aptamer 

are hybridized with a ssDNA. Binding of the target protein releases the ssDNA, which 

hybridizes with a G-rich hairpin to create a 3′ blunt end. Exo III then digests the blunt end, 

releasing both the G-rich part of the hairpin (which folds into a GQ and enhances NMM 

fluorescence) and the ssDNA (allowing it to open another hairpin and amplify the signal). 
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The biosensor is highly versatile and can be readily engineered by incorporating appropriate 

aptamers to detect many disease-related proteins. For example, MUC1, a tumor biomarker 

highly expressed in human adenocarcinomas, was detected with a detection limit of 3.7 nM 

[60].

Another GQ-NMM-based sensor was developed to detect DNA methyltransferase (MTase), 

an essential enzyme for maintaining genomic stability. The sensor consists of a DNA 

probe, which contains up to three rolling circle amplification (RCA) primers sealed in 

one hairpin. MTase methylates the probe, which causes it to be digested by the restriction 

enzyme, releasing the primers. In the amplification step, the primers are elongated via RCA, 

producing a long ssDNA with multiple G-rich stretches. The latter can fold into GQs and 

induce NMM fluorescence in proportion to the amount of MTase present, with a detection 

limit of 0.0085 U/mL [61].

Studying enzyme activity and inhibition.—Sensitive, fast, easy, and cost-effective 

methods to study enzyme activity are highly desired, as enzymes are essential to many 

biological processes. Two NMM-GQ reporter systems were engineered to investigate 

activity and screen inhibitors for RNase H [62] and uracil-DNA glycosylase (UDG) [54].

RNase H catalyzes RNA hydrolysis in RNA-DNA duplexes and is important for DNA 

replication and repair. HIV reverse transcriptase — which is essential for retroviral DNA 

synthesis and subsequently host cell infection and viral replication — displays RNase 

H activity, making it of great interest for HIV/AIDS drug development. The biosensor 

for RNase H consists of a G-rich DNA-RNA hybrid and NMM, which displays low 

baseline fluorescence [62]. Once added to the system, RNase H digests the RNA, freeing 

the G-rich DNA to fold into a GQ that enhances NMM fluorescence by >10 fold. The 

authors demonstrate that NMM does not interfere with RNase H activity. This assay is fast 

(enzymatic activity can be detected within 5–10 min) and has a low detection limit of 0.2 

U/mL [62]. Using a catalytic hairpin assembly signal amplification strategy, the detection 

limit was dramatically improved to 0.037 U/mL [63].

UDG catalyzes excision of uracil from DNA. The system to study UDG kinetics is a 

variation on the ssDNA biosensor presented earlier. It consists of the GQ-forming oligo P1 

(which has G-rich portions on either side of a loop) hybridized with the oligo P2, which is 

complementary to the loop and contains four uracils. Hybridization of P1 and P2 prevents 

GQ formation, resulting in low fluorescence. When UDG is present, it digests the uracils 

in P2 and releases P1 to fold into a GQ, thereby resulting in a 16-fold increase in NMM 

fluorescence [54].

Using NMM to discover new GQs and GQ ligands

Inspired by the Sen report, which suggested that NMM likely recognizes the GQ structure 

[10], the Johnson laboratory coupled NMM to a Sepharose resin using the carbodiimide 

method via the propionic acid side chains of NMM [64]. We later showed that the 

propionates play a minor role in NMM-GQ binding [2], so their modification should 

be inconsequential. Using the resin, Johnson’s lab demonstrated an excellent correlation 

between the predicted propensity of G-rich DNA to fold into GQ structures and the extent of 
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the DNA binding to the resin. The methodology can be used to identify and isolate GQ DNA 

from in vivo sources illuminating genomic distribution of GQs.

Another method to detect GQs was developed by the Myong laboratory. It relies on the 

ability of NMM to quench the fluorescence of a 3′-Cy3 label upon close contact. Because 

of NMM’s selectivity, this methods worked well for parallel GQs [17]. To extend the assay, 

crystal violet (CV) was added to detect also antiparallel GQs [65]. The assay was validated 

by comparing its results to those from smFRET, which allow for direct quantification 

of parallel GQ, antiparallel GQ, and unfolded DNA. The NMM/CV assay is simple, 

reliable, quantitative, and can allow for high-throughput screening of genomic DNA. It 

is an alternative to smFRET and can complement the CD signatures of GQs which are 

currently used to infer specific GQ conformations. The Myong laboratory applied this assay 

to determine GQ topology as a function of loop composition and length [17], as well as to 

investigate the ability of G-rich DNA to fold in the context of dsDNA in both dilute and 

crowded conditions [65].

The Sugimoto laboratory developed a novel method to monitor co-transcriptional folding of 

RNA into GQs in real-time using NMM and the hydroxyethyl analogue of ThT, ThT-HE 

[66]. Both ligands selectively recognize the parallel GQ conformation that is usually adopted 

by RNA [82]. Crowding conditions (20 wt% PEG200) were used to mimic biological 

settings. The authors demonstrated that NMM serves merely as a reporter of GQ folding 

and does not affect the kinetics of the folding process. This method allows researchers to 

investigate the effect of a variety of intracellular factors on co- and post-transcriptional RNA 

folding in real time.

The Granzhan laboratory recently developed a high-throughput sensor array to identify 

DNA secondary structures with high accuracy and discover new DNA structural motifs 

[27]. The array includes 34 DNA sequences with representative topologies (ssDNA, dsDNA, 

parallel, antiparallel, and hybrid GQ DNA) along with 11 commercial dyes with documented 

affinity for DNA, including NMM. The authors demonstrated that NMM displays a selective 

fluorescence response to all GQs (the highest response in the presence of parallel GQs) but 

not to dsDNA or ssDNA [27], in agreement with other fluorescence enhancement studies 

[18, 19]. To simplify the array while maintaining its differential power, the 11 dyes were 

reduced to eight. This shortened list included NMM, which was deemed among the top 

three dyes in terms of its efficacy. The array can be continually trained using additional 

DNA sequences with well-characterized secondary structures to improve reliability of 

identification of DNA with known folds and to discover new DNA topologies.

The fluorescence indicator displacement (FID) assay is a widely used method to search for 

new GQ ligands [67, 68]. It relies on the ability of thiazol orange (TO) dye to fluoresce 

in the presence of GQs with different topologies. GQ binders will displace TO decreasing 

its fluorescence and the extent of the decrease could be used as a quantitative measure of 

ligand’s affinity for GQ. As demonstrated by the Bolton laboratory in their Mix and Measure 

assay, NMM can be used in a manner similar to TO. The assay contains 11 DNA sequences 

with representative GQ topologies (parallel, hybrid, and antiparallel) and three dyes: NMM 

and two carboxycyanines (DODC and DTDC) [20]. The use of multiple dyes, just like in 
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Granzhan’s assay, yields redundant and complementary information, allowing for substantial 

improvement in the accuracy of ligand identification. The authors validated the assay using 

six known GQ ligands. As with FID, the Mix and Measure method is prone to false positives 

due to possible ligand-dye interactions, as well as false negatives if the ligand binding 

pocket is different than that of the dyes used in the assay.

In summary, the methods described in this section allow for a relatively simple, cost­

efficient, and rapid identification of DNA secondary structures, discovery of novel DNA 

folds, and identification of new GQ ligands.

Using NMM to study GQ DNA in biological contexts

The ability of NMM to selectively recognize and stabilize GQ structures, along with its 

turn-on fluorescence in the presence of GQ DNA is particularly valuable for investigating 

the most crucial questions in the quadruplex field: to what extent do GQs form in vivo, 

and what are their roles within the biological processes they have been implicated in? 

Thus far, the effect of NMM has been studied in a variety of cultured cells: human kidney 

cells (HEK293T) [69], human embryonic stem cells (CCTL14) [70], human embryonal 

carcinoma cells (NCCIT) [66], human osteosarcoma cells (U2OS) [70], porcine kidney cells 

(PK-15) [71], and chicken lymphoma cells (DT40) [72]. The effects of NMM have also been 

studied in vivo in a variety of organisms including yeast (Saccharomyces cerevisiae) [73, 

74], the malaria parasite (Plasmodium falciparum) [75], the gonorrhea bacterium (Neisseria 
gonorrhoeae) [76], extremophiles (Deinococcus radiodurans and Deinococcus geothermalis) 

[77], and maize (Zea mays) [78], as well as in the pseudorabies virus [71]. In vitro data 

strongly suggests that NMM selectively binds to and stabilizes parallel GQs (Fig. 3 and 

Fig. 5) even in the presence of high concentrations of competing dsDNA [7, 19]. This 

ability is also believed to be true in vivo, although it is possible that interactions with 

other biomolecules (e.g. ferrochelatase) might also contribute to NMM’s biological effects. 

Nonetheless, as NMM preferentially acts on regions of the genome with GQ-forming 

potential, it is likely that NMM has direct effects on GQs in vivo. NMM has made great 

contributions to the quadruplex field by providing substantial evidence that GQ-forming 

nucleic acids hold biological significance (Fig. 9).

Studying genome regulation by GQs.—Growing maize seedlings in NMM (16 μM 

for 3 days) differentially affected the transcription of various G-rich long terminal repeat 

retrotransposons (self-amplifying genetic elements) [78]. This study reveals that GQs may 

influence genome dynamics by regulating retrotransposon expression.

Treatment of exponentially growing yeast with NMM (8 μM) inhibited its growth rate by 

25% and led to the preferential regulation of genes associated with chromatin structure, 

telomere structure, and transcription. NMM caused cells to accumulate in the S-phase, but 

had no effect on S-phase-regulated genes. Beyond cell cycle perturbation, NMM treatment 

led to upregulation of 9% of genes, including many promoters and open reading frames 

with high quadruplex forming potential. At the same time, 9% of genes were downregulated, 

including many involved in nucleolar functions such as rRNA processing and ribosome 
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biogenesis, which may be impacted by rRNA GQ formation. Together, these results indicate 

that NMM-stabilized GQs affect yeast growth and gene expression [73].

Treating the radioresistant bacteria D. radiodurans with NMM (50 nM) caused 

radioresistance to decrease by ~60% (when exposed to 10 kGy gamma irradiation) [77]. It is 

remarkable that biological effects were observed at NMM concentrations below the average 

reported Kd (0.1–1 μM, Table 2). However, NMM binds some GQs with exceptionally high 

affinity (as observed for THM with a Kd of ~20 nM), and it is possible that NMM is 

concentrated within the cell. NMM may also act via targets other than GQs. The increase 

in radiation sensitivity was accompanied by the radiation dose-dependent downregulation 

of RecF recombinational repair pathway genes (recA, recF, recO, recR, and recQ), whose 

promoters have high GQ-forming potential. This work demonstrates that GQs contribute 

to radioresistance gene regulation, thereby establishing the connection between GQs and 

radioresistance for the first time and showing that GQ stability affects organismal function.

OCT4, a pluripotency gene highly expressed in both cancers and stem cells, has a conserved 

region near its transcription start site that is proposed to fold into a parallel GQ structure 

[70]. When OCT4 gene expression in human osteosarcoma and embryonic stem cells was 

interrupted by a single nucleotide polymorphism that destabilized the GQ, NMM treatment 

(30 μM for 12 h) rescued OCT4 gene expression. Meanwhile, NMM did not have a 

statistically significant effect on wild-type cells. Thus, NMM helped to demonstrate that 

GQ formation at the OCT4 promoter acts as a positive regulator of OCT4 gene expression 

and thereby identify the OCT4 locus as a potential target for GQ-based anticancer therapy 

[70].

Finally, treating chicken lymphoma cells with NMM (5 μM) impeded DNA replication at 

a G-rich locus (BU-1) and triggered local, heritable epigenetic changes that decreased gene 

expression at that locus. This proof-of-concept study demonstrates that stabilization of DNA 

secondary structures (e.g. GQs) is a viable approach to inducing locus-specific epigenetic 

reprogramming and presents a novel method for epigenetic therapy [72].

In summary, treatment of cells and living organisms with NMM suggests that GQs likely 

regulate gene expression, modulate the epigenetic landscape of the genome, and affect cell 

growth and radioresistance, among other biological functions.

Investigating telomere structure and capping.—Telomeres are repetitive regions 

found at the ends of chromosomes which serve to maintain genome integrity. Vertebrate 

telomeres generally include a ~100 nucleotide single-stranded 3′ overhang consisting of a 

G-rich repeat (e.g. TTAGGG in humans). In 2005, Paeschke et al. demonstrated telomeric 

GQ formation in vivo in the ciliate protozoan Stylonychia lemnae [79].

Treating human embryonic kidney cells with NMM increased the number of parallel GQs 

at human telomeres and the co-localization between GQs and telomerase, while it had no 

effect on cell cycle progression into mid-S phase [69]. Additionally, NMM treatment slightly 

rescued the growth of yeast with a mutant telomere-capping gene (cdc13–1) [74]. This 

result suggests that telomeric GQs serve as a rudimentary telomere cap when natural protein 
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capping is compromised. Both studies provide evidence that GQs play important roles in 

telomeres.

Identifying GQs as targets for regulatory proteins.—NMM was instrumental in 

demonstrating that GQs can be recognized by regulatory proteins such as Lin28 [80] and 

p53 [81]. NMM was identified as the first small molecule inhibitor of Lin28, a conserved 

RNA-binding protein overexpressed in many cancers and linked to poor prognoses. In 

particular, Lin28 promotes translation by remodeling GQs within its mRNA substrates and 

also inhibits miRNA processing [80]. RNA GQs are uniformly parallel [82] (with one 

exception [83]), making them an excellent target for NMM. Treatment of human embryonal 

carcinoma cells with NMM (100 μM for 48 h) led to accumulation of mature miRNA, 

decreased levels of pluripotency proteins corresponding to Lin28 mRNA targets (OCT4, 

HMGA1, CCNB1, CDK4, and Lin28A), and decreased levels of two Lin28 mRNA targets 

(MYC and Lin28). NMM also inhibited self-renewal of cells and reduced their stem cell 

traits. Since NMM and Lin28 recognize the same RNA GQ features, NMM can inhibit 

Lin28 binding and thereby potentially prevent tumor progression in cancers.

The tumor suppressor protein p53 binds telomeric DNA in a structurally selective manner. 

Specifically, this binding interaction is enhanced in the presence of NMM/K+ but not Na+ 

(which typically stabilizes antiparallel GQs) or Li+ (which does not support GQ formation). 

Moreover, NMM had no effect on p53 binding to non-G-rich DNA. These findings suggest 

that p53 selectively recognizes parallel GQ structures [81].

In sum, these studies indicate that depending on the context, NMM can inhibit or enhance 

the binding of a regulatory protein to its GQ target. Their findings suggest that NMM can 

serve as either a competitive inhibitor or an allosteric activator, respectively. When NMM 

and a GQ-binding protein recognize the same GQ structural feature, competition for this 

binding site may lead to inhibition of protein binding. However, when a protein recognizes a 

different site on the GQ, NMM can promote protein binding by stabilizing the GQ structure. 

Using NMM as a selective probe for GQs, the two studies demonstrate that regulatory 

proteins can recognize GQ structures. In doing so, they provide further evidence for the roles 

of GQs in biological processes and also highlight GQ-protein interactions as potential targets 

for anticancer therapy.

Effect of NMM on infectious agents.—NMM has been identified as a potential drug 

against the malaria parasite [75], the pseudorabies virus [71], and antigenic variation in the 

gonorrhea bacterium [76]. These effects are directly linked to NMM’s ability to induce and 

stabilize GQ structures, thereby indicating that GQs are viable targets in infectious diseases.

A proof-of-concept study demonstrated that NMM (84 μM) displayed rapid cytocidal 

activity (i.e. rate of kill in trophozoite stage) in P. falciparum comparable to that of the 

common antimalarial drug chloroquine [75]. The biological effect of NMM is likely due to 

deregulation of expression of genes with high quadruplex-forming potential. Indeed NMM 

markedly suppressed expression of GQ-forming reporter genes. This study was the first 

to demonstrate the presence of GQs in malaria parasite nuclei and to establish GQs as 

antimalarial targets as well as GQ ligands as potential antimalarial agents.
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Similarly, NMM (150 nM for 24 h) reduced the viral load (titer) of the pseudorabies virus 

(PRV) Ea strain in porcine kidney cells. It likely did so by stabilizing two-tetrad GQs, which 

were found to be predominantly parallel [71]. PRV is a swine herpesvirus that serves as 

a model system for studying herpesvirus biology but has been recently reported to cause 

endophthalmitis in humans [84].

Additionally, NMM was shown to inhibit DNA recombination in N. gonorrheae, the bacteria 

responsible for gonorrhea [76]. DNA recombination in N. gonorrheae leads to antigenic 

variation (Av), which allows the bacteria to escape the host’s immune response and prevents 

the development of a vaccine. One of the Av systems in N. gonorrheae involves pili — hair­

like structures grown on the surface of many bacteria that allow them to attach to host cells. 

A G-rich sequence identified near the pilin locus was shown to fold into a GQ structure 

in vitro. Any GQ-disrupting mutations or treatments reduced pilin Av. Interestingly and 

seemingly contradictorily, NMM (at 0.38 μM, a concentration that does not alter bacterial 

growth) also reduced pilin Av and pilus phase in spite of its GQ-stabilizing ability. This 

result may be explained by the fact that to initiate recombination, a nick or break in DNA 

is required, and NMM was shown to prevent nicks on the G-rich strand [76]. Demonstrating 

involvement of GQs in Av and identifying NMM as a potential inhibitor of Av has great 

implications for both understanding and combating microbial pathogenesis.

Together, these studies indicate that NMM is capable of attenuating pathogenicity by 

selectively binding and stabilizing GQs, thereby establishing GQs as promising therapeutic 

targets against bacteria, viruses, and parasites. These findings are especially important 

in light of the growing resistance to current first-line therapeutic strategies against these 

pathogens.

NMM as a photosensitizer in photodynamic therapy

Photodynamic therapy (PDT) refers to light-activated toxic effects produced by 

photosensitizers (e.g. porphyrins) on cancer cells. A 1998 study by the Solomon lab 

indicated that NMM may be a viable photosensitizer for PDT either on its own or in 

combination with PPIX [85]. Specifically, the authors suggest that porphyrins, known to 

accumulate in mitochondria, disrupt mitochondrial function by binding to mitochondrial 

benzodiazepine receptors (MBR), and that their affinities for MBR correlate with their 

photodynamic cell toxicity. NMM was the 7th best out of the 27 porphyrins studied, with 4 

h of exposure at 0.35 μM followed by 60 s of irradiation reducing hamster lung cell survival 

to 37% after 7–14 days. Meanwhile, PPIX was the 3rd best, with the same effects being 

observed at 0.06 μM. To enhance the PDT effects, the amount of PPIX can be increased 

via addition of PPIX precursor, 5-aminolevulinic acid (ALA). Since NMM inhibits Fe2+ 

incorporation into PPIX [8], it helps maintain high PPIX levels, thereby further improving 

the PDT treatment.

A further proof-of-concept study for the use of NMM in PDT utilizes gold nanoparticles 

(AuNP) conjugated with a G-rich nucleolin aptamer AS1411 (also known as AGRO100) 

folded into a stable parallel GQ and decorated with NMM [86]. Nucleolin receptors are 

known to be overexpressed on cancer cells. Incubating HeLa cells with functionalized 

AuNPs (1 h at 10 nM) and subsequent irradiation for 30 min with white light led to a loss of 
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>30% cell viability. Furthermore, these functionalized AuNP were successful in fluorescent 

imaging of HeLa cells, but not normal human kidney cells. Successful cell imaging results 

from NMM fluorescence induced by AS1411, while selectivity of imaging results from 

the specific interactions between AS1411 and nucleolin. Together, these findings highlight 

NMM as both a viable photosensitizer for PDT and an essential component of a new 

fluorescent probe for cancer cells.

Non-GQ based applications of NMM

After the original discovery of NMM’s ability to inhibit Fe2+ insertion into PPIX, NMM 

was used to investigate heme biosynthetic pathways in plants. In the early 80s, Beale and 

Foley showed that treatment of blue-green algae, Euglena gracilis, with NMM (4 μM, 6 

h) increased the activity of ALA synthase and decreased heme levels without affecting 

chlorophyll (Chl) production, which indicated that ALA is not a precursor for Chl [87]. 

Treating cyanobacteria, Cyanidium caldarium, with NMM (3 μM, 72 h) indicated that 

heme was a metabolic precursor to a light-harvesting pigment phycocyanin [88]. Finally, 

NMM (100–200 μM, 24 h) inhibited production of phytochrome, another light-harvesting 

pigment in plants, suggesting that phytochrome is an end product in the Fe2+ branch of the 

biosynthetic pathway in which PPIX and heme are intermediates [89]. In all these studies 

Chl production was not affected, suggesting that NMM does not inhibit Mg2+ insertion into 

PPIX.

Another application of NMM that does not rely on its GQ-binding ability concerns fibrils 

formed by oligomerization of the 40-residue amyloid-β peptide (Aβ40). Amyloid fibrils 

may act as neurotoxins and are involved in Alzheimer’s disease pathogenesis. NMM 

fluorescence was found to increase in the presence of fibrils but not the Aβ40 monomer 

[90]. Consequently, NMM could be used as an amyloid dye complementary to or in place 

of ThT, a common amyloid dye. While binding of NMM and ThT to Aβ40 is comparable 

(Ka ~5.0 × 105 M−1), NMM is far superior to ThT due to its resistance to photobleaching 

and large Stokes shifts (210 nm). Its red emission allows detection of Aβ40 in the presence 

of intrinsically fluorescent cellular components as well as green fluorescent probes. Staining 

of Aβ40 fibrils with NMM (3–5 μM for 10 min) has been reported in both E. coli culture 

and rat pheochromocytoma cells (PC12) [90]. It therefore comes as a surprise that NMM has 

not yet been used to stain cells for GQs. Furthermore, NMM (10 μM for 7 days) was also 

shown to inhibit Aβ40 aggregation in situ by prolonging the nucleation phase and slowing 

the elongation phase. In sum, NMM can be used not only to probe for Aβ40 aggregates to 

monitor Alzheimer’s disease progression, but also to develop a small molecule inhibitor of 

fibril formation that can serve as an Alzheimer’s therapeutic.

CONCLUSIONS

NMM is an excellent GQ binder whose greatest utility comes from its selective recognition 

of parallel GQ DNA, light-switch fluorescence properties, and water solubility. The 

importance of drug selectivity, especially those used for cancers, cannot be overstated, and 

NMM is superior in its selectivity to any other reported GQ binder. While it is possible 

that GQs formed in different regions of the genome work in concert, it is more likely 
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they act independently, bringing about both positive and negative changes. Thus, small 

molecule ligands that exhibit broad GQ binding might induce a combination of desirable 

and undesirable changes. Meanwhile, NMM, with its unprecedented preference for parallel 

GQ structures, provides an excellent platform for investigating the structural and chemical 

requirements for highly selective GQ binders. Furthermore, NMM’s interaction with GQs 

has been used to develop biosensors for many different molecules, as well as to investigate 

the roles of GQs in a variety of biological processes. However, we should not forget that 

NMM can induce GQ structural rearrangement, so the results of NMM treatments in cells or 

in vivo must be interpreted with great care and consideration. In addition, the non-GQ-based 

effects of NMM, such as inhibition of ferrochelatase function, should also be considered. 

Open questions remain about NMM’s bioavailability, cytotoxicity, in vivo half-life, and 

degradation products, as well as its viability as a fluorescent GQ probe for cell staining. 

Moreover, the relationship between NMM’s binding affinity and the structure of its binding 

partner remains to be determined. These topics will require further investigation, and some 

of this work is currently underway in our laboratory.
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Fig. 1. NMM, MPIX, and GQ DNA.
(a) Structure of N-methyl mesoporphyrin IX (NMM) and N-methyl protoporphyrin IX 

(MPIX). (b) Structure of a G-tetrad. M+ is Na+ or K+. (c) Deviation of NMM from 

non-planarity. The data are taken from the NMM-Tel22 crystal structure, PDB ID 4FXM. 

The dotted line represents the mean plane. (d) Schematic representation of GQ topologies: 

hybrid, where three strands point up and one down (left); antiparallel with two strands 

pointing up and two strands pointing down (center); and parallel, where all four strands 

point in the same direction 5′ to 3′ (right)
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Fig. 2. Optical properties of NMM alone and in the presence of GQ DNA in aqueous solutions.
(a) Visible spectrum of 5.3 μM NMM alone and with 14.2 eq of Tel22 in the presence of 

5 mM K+ collected in 2 mm cuvette. The major band, called the Soret band, red shifts 

in the presence of Tel22 from 379 to 399 nm. The inset displays Q bands of NMM. (b) 

Fluorescence spectra of 1 μM NMM alone and in the presence of 10 eq of Tel22 in 5 mM 

K+, 50 mM Na+, or 100 mM Li+ as well as ds26 in the presence of 5 mM K+. Excitation 

was at 399 nm, T was at 298 K, and slit width was set to 10 nm for both excitation and 

emission. (c) Negative iCD signal for GQ-NMM complexes at 2–4 μM in the presence of 5 

mM K+. Note, no iCD is observed for TBA-NMM. Other sequences that lead to iCD include 

26TelG4, Bcl-2, cKit1, cKit2, G4TERT, and THM G-rich sequences. Data in a and c are 

from [7] and in b are from [19]
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Fig. 3. Stabilizing ability of NMM toward GQ DNA.
Summary of stabilization temperatures, ΔT, determined via CD melting experiments in the 

presence of 2 eq of NMM in 5 mM K+. Data are from [7]. Data for KRAS-21R was 

collected in 20 mM KPi 6.7 and 70 mM KCl (unpublished). Data for OCT4 were collected 

in 10 mM KPi 7.0 and 150 mM KCl in the presence of 3 eq of NMM [70]. Data for 

APS-WT were collected in 1 mM NaPi 7.0, 0.3 mM EDTA, 100 mM KCl, and 2 eq of 

NMM [24]. Note, the specified conformation refers to GQ DNA in the absence of NMM
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Fig. 4. NMM-induced structural rearrangement of GQ DNA toward a parallel conformation in 
the presence of 5 mM K+

(a) Equilibrium titration of Tel22 with NMM. Figure adapted from [7]. (b) CD signal 

for G4T4G4 alone and in the presence of 2 eq of NMM. The inset shows the CD signal 

difference induced by NMM. Figure adapted from [19]. Parallel and antiparallel GQ 

conformations are signified by the CD signal at 264 and 292 nm, respectively. All data 

were collected under thermodynamic control, i.e. DNA in each CD scan was annealed with 

the indicated amount of NMM, slowly cooled, and incubated for >12 h at 30 °C for (a) and 4 

°C for (b)
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Fig. 5. Selectivity of NMM for GQ DNA.
(a) Fluorescence enhancement data for NMM in the presence of 10-fold excess of the 

indicated DNA structures. Data for the THM sequence (in grey) was collected in the 

presence of 2–5 eq of DNA (unpublished). Buffers are the same as in Table 2. In 

addition, 100Li is 10 mM lithium cacodylate 7.2, 100 mM LiCl; 5K 5.8 is 5K buffer 

adjusted to pH 5.8. Figure adapted from [19]. (b) Stabilization of 0.2 μM F21D, 5′-FAM­

GGG(TTAGGG)3-Dabcyl-3′, by 1.6 μM NMM and TMPyP4 in the presence of the 

specified amount of dsDNA competitor, ds26, in 5 mM K+ determined in FRET assay. 

Figure adapted from [7]
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Fig. 6. Tel22-NMM complex at 1.65 Å (PDB ID 4FXM).
(a) Model of the Tel22-NMM complex at 1.65 Å (PDB ID: 4FXM) embedded in an electron 

density map drawn at 2σ. NMM is shown in magenta. (b) Structure of NMM color coded for 

its temperature factors (lowest — blue; highest — red) and corresponding electron density 

map at 1σ. The blue color of the core suggests that it is well defined, while red color of 

one propionate group indicates that its position is not certain. Adapted with permission from 

(Nicoludis JM, Miller ST, Jeffrey PD, Barrett SP, Rablen PR, Lawton TJ and Yatsunyk LA. 

J. Am. Chem. Soc. 2012; 134: 20446–20456). Copyright (2019) American Chemical Society
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Fig. 7. Interaction of the Thrombin binding aptamer, TBA, with NMM determined by 
biophysical and computational methods.
TBA forms an antiparallel structure in both K+ and Na+ conditions. Two different possible 

binding modes of NMM, depicted as a red star, are shown. Hydroxyl radical cleavage was 

run in a buffer which contained 100 mM NaCl and 10 mM KCl
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Fig. 8. Summary of the variety of NMM-GQ based sensors and the molecules they are designed 
to detect.
The detection step for turn-on sensors involves quantitative increase in NMM fluorescence 

in response to target-induced GQ formation. The detection step for turn-off sensors involves 

quantitative decrease in NMM fluorescence due to target-induced unfolding of the GQ. 

Amplification steps can be subdivided into enzyme-based and enzyme-free. Both types lead 

to a dramatic increase in sensitivity of the sensors
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Fig 9. Applications of NMM to investigate the biological roles of GQ DNA.
(a) Studies with NMM demonstrated that GQs are involved in genome regulation. (b) NMM 

revealed that parallel GQs form at human telomeres and can serve as rudimentary telomere 

caps. (c) NMM inhibits Lin28 binding to its RNA GQ substrates and promotes p53 binding 

to telomeric GQs. (d) NMM attenuates malaria and PRV pathogenicity. In the N. gonorrhea 
bacterium, NMM stabilizes a GQ upstream of the only expressed pilin locus to prevent 

antigenic variation
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