
AVP-IC50Pred: Multiple Machine Learning Techniques-Based
Prediction of Peptide Antiviral Activity in Terms of Half Maximal
Inhibitory Concentration (IC50)

Abid Qureshi, Himani Tandon, Manoj Kumar
Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39-A,

Chandigarh-160036, India

Received 22 March 2015; revised 16 June 2015; accepted 21 July 2015

Published online 25 July 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/bip.22703

ABSTRACT:

Peptide-based antiviral therapeutics has gradually paved

their way into mainstream drug discovery research.

Experimental determination of peptides’ antiviral activity

as expressed by their IC50 values involves a lot of effort.

Therefore, we have developed “AVP-IC50Pred,” a

regression-based algorithm to predict the antiviral activ-

ity in terms of IC50 values (lM). A total of 759 non-

redundant peptides from AVPdb and HIPdb were divided

into a training/test set having 683 peptides (T683) and a

validation set with 76 independent peptides (V76) for

evaluation. We utilized important peptide sequence fea-

tures like amino-acid compositions, binary profile of N8-

C8 residues, physicochemical properties and their hybrids.

Four different machine learning techniques (MLTs)

namely Support vector machine, Random Forest,

Instance-based classifier, and K-Star were employed.

During 10-fold cross validation, we achieved maximum

Pearson correlation coefficients (PCCs) of 0.66, 0.64,

0.56, 0.55, respectively, for the above MLTs using the best

combination of feature sets. All the predictive models also

performed well on the independent validation dataset

and achieved maximum PCCs of 0.74, 0.68, 0.59, 0.57,

respectively, on the best combination of feature sets. The

AVP-IC50Pred web server is anticipated to assist the

researchers working on antiviral therapeutics by enabling

them to computationally screen many compounds and

focus experimental validation on the most promising set

of peptides, thus reducing cost and time efforts. The server

is available at http://crdd.osdd.net/servers/ic50avp. VC
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INTRODUCTION

A
ntiviral peptides (AVPs) have recently emerged as

an alternative strategy to fight disease causing

viruses.1 The peptide Enfuvirtide (T20) is the first

AVP approved by the FDA against HIV.2 Similarly,

Sifuvirtide (SFT) peptide has shown potent anti-

HIV activity and pharmacokinetic profiles and is under

phase-II clinical trial.3 The peptide CIGB-228 has shown

potency against Human papilloma virus (HPV) infections

Additional Supporting Information may be found in the online version of this

article.
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and is under Phase II clinical trial.4 A peptide-based HLA-

A2-restricted CTL epitope capable of inducing both cellular

and humoral responses is in phase I clinical trials against

Hepatitis C virus (HCV).5 Another synthetic peptide (SPC3)

was reported to prevent the HIV infection and is being eval-

uated for its antiviral properties in phase II clinical trials.6

Since peptides are involved in a number of cellular proc-

esses, they have a considerable potential to act as drugs in treat-

ing human diseases. Many peptide-based drugs are already

generating billions of dollars in annual sales.7 Peptide-based

drugs like penicillin and insulin has been widely used as thera-

peutics.8 Antimicrobial peptides are produced by living organ-

isms as a means of defense against invading microbes

including bacteria, protozoa, fungi and viruses, for example,

cathelicidins, defensins, histatins, and so forth.9 Lately, antimi-

crobial peptides have been used to control different types of

pathogens, particularly viruses1,10 which are a major cause of

malaise and death in the world because of their high genetic

variation, different routes of transmission, efficient replication,

and the capability to persist in the host cells.11 Although there

are several traditional antiviral nucleoside and non-nucleoside

analogues against few viruses, many of these drugs have unde-

sirable toxic effects.12 Whereas, AVPs with natural amino acids

have lesser toxicity and are easily eliminated from the body.13

The AVPs block the viruses via different strategies including

inhibition of virus fusion, signaling, replication, and so forth.14

They can interact with various glycosaminoglycans on the cell

surface and thus compete with the virus for attachment sites.

They may obstruct viral entry by binding virus fusion protein

or cellular receptors needed for virus internalization. They can

also hinder viral gene expression or translation via inhibition

of essential viral proteins like polymerase, reverse transcriptase,

and so forth.15

The earliest reports of AVPs were described for herpes sim-

plex virus (HSV).16 Daher reported a-defensin as an AVP

against HSV.17 Melittin peptide has been noted to have inhibi-

tory activity against HIV18 and Junin virus (JV).10 Similarly

alloferon peptides have been demonstrated to inhibit influenza

virus.19 Peptides derived from human lactoferricin were shown

to possess potent antiviral activity against a variety of viruses.20

Generally, the efficacy of AVPs is measured as the half maximal

inhibitory concentration (IC50) which is a quantitative mea-

sure to signify the concentration of a molecule or drug

required to block a given biological process by half (50%).21

For example, “FluPep” blocks Influenza virus entry into the

cells with an IC50 of 0.10 lM.22 Also, peptides derived from

RhoA protein restrict Respiratory syncytial virus (RSV) repli-

cation and the best performing peptide accomplished an IC50

of 1.23 lM.23 Similarly, Pinon et al.24 were able to inhibit

Human T-cell leukemia virus (HTLV) protease using AVPs

with a minimum IC50 of 0.28 lM. Also, Ray et al.25 demon-

strated the ability of small peptides in inhibiting HCV transla-

tion as well as replication by disrupting the interaction

between NS3 protease and HCV IRES with an IC50 value of

5 lM.

Although, for AVPs two specialized databases, “HIPdb” for

HIV15a and “AVPdb” for more than 60 viruses14 are available.

Additionally, AVP prediction algorithm “AVPpred,”26 which

classifies a given peptide sequence as effective or non-effective

also exists. However a peptide antiviral activity predictor in

terms of IC50 value is lacking. Therefore, in this study we have

developed a regression-based algorithm, “AVP-IC50Pred” using

experimentally proven datasets by employing multiple machine

learning algorithms.

METHODS

Algorithm Development
Data Sets. From combined 3040 peptides available in recently pub-

lished specialized AVP databases, AVPdb14 and HIPdb,15a we selected

1061 peptides having quantitative IC50 values against 42 viruses. After

removal of redundant sequences, 759 peptides were left which were

divided into datasets of 683 peptides for training/testing (T683) and 76

peptides for independent validation (V76). The peptide length ranged

from 8 to 38 (average 22) amino acid residues. Peptides in the train-

ing/testing dataset belong to 39 diverse viruses and their quantitative

IC50 values range from 0.001 to 442 lM. The validation dataset

belongs to 18 viruses and their quantitative IC50 values range from

0.002 to 333 lM. Full description of the training/testing and valida-

tion dataset is available on the web server as well as in the Supporting

Information Tables S1 and S2.

Peptide Features. We have used the different features like amino acid

composition, binary profiles, physicochemical properties, solvent accessi-

bility, secondary structure, and their hybrids for model development. In

addition, we have also used database scanning technique to display earlier

reported sequences matching with user provided peptides.

Amino Acid Composition. Amino acid composition has been

widely used in a number of existing prediction methods.27 It is the

fraction of each amino acid in a peptide. The fraction of all 20 natural

amino acids was calculated using the following equation:

Fraction of amino acid X5Total number of X=peptide length

The models developed using mono and di amino acid composi-

tions are termed as “Mono” and “Di,” respectively.

Binary Profile. Many researchers have used binary method for pre-

dicting proteins and peptides belonging to different classes.28 Binary

profiles were generated for the peptides with each amino acid being

represented by a vector of 20 dimensions (e.g., Ala by 1,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 and Cys by 0,1,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0, etc.) to incorporate positional information of amino acids

in a peptide. A pattern of window length “w” was represented by a
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vector of dimensions 20*w. The models created employing the binary

pattern of eight carboxy and eight amino terminal amino acids are

referred to as “C-8 Bin” and “N-8 Bin,” respectively. We have gener-

ated binary pattern of eight amino acid residues since it is the mini-

mum length of peptides in our dataset.

Physicochemical Properties. A number of workers have demon-

strated the importance of physicochemical properties in the develop-

ment of different types of prediction models.26,29 We have used the

numerical values of 15 best performing physicochemical properties

(Supporting Information Table S3) from AAindex, a database of indi-

ces defining various physico and biochemical properties of amino

acids and pairs of amino acids.30 The model developed using the

above physicochemical features is denoted as “Physico.”

Solvent Accessibility. Solvent accessibility of a peptide determines

the extent to which it interacts with the solvent. It is proportional to

the surface area of the exposed peptide.31 Solvent accessibility of the

peptides was predicted using the method of ASAview.32 The model

developed using the solvent accessibility features is denoted as “SA.”

Secondary Structure. The secondary structure of a peptide depicts

the hydrogen-bonding pattern (a-helix, b-sheet, or random coil) of

its backbone.33 The secondary structure of the peptides was calculated

using prediction PSSpred module (http://zhanglab.ccmb.med.umich.

edu/PSSpred/) of I-TASSER platform.34 The model developed using

the secondary structural features is denoted as “SS.”

Database Scanning. Since sequences having high resemblance can

mimic each other in structure and function, similarity search may be

used to identify AVPs. This approach has been frequently used in the

development of protein and peptide-based prediction methods.3,35 In

this method, each query sequence is matched against two newly

released AVP databases viz., AVPdb14 and HIPdb15a using BLAST.36

Machine Learning Techniques
Support Vector Machines. SVM has been used to develop num-

ber of bioinformatics algorithms.37 The SVMlight software package

(available at http://svmlight.joachims.org/) was used to construct

SVM models. In this study, we used the radial basis function kernel:

kðx; yÞ5 expð2ckx2yk2Þ

where x and y are two data vectors, and c is a training parameter.

Random Forest. Random forests (RFs) are an ensemble learning

method for classification and regression.38 The randomForest package

version 4.6–7 in R (available at http://stat-www.berkeley.edu/users/

breiman/RandomForests) was used.

IBk. IBk is a K-nearest neighbors classifier available in Weka package

(accessible at http://www.cs.waikato.ac.nz/ml/weka/). It can select appro-

priate value of K based on cross-validation and distance weighting.

KStar. KStar is an instance-based classifier (IBk) in Weka package

that is the value of a test instance is based upon the values of those

training instances similar to it, as determined by similarity function.

Evaluation
In order to evaluate performance of our models, we used Pearson’s

correlation coefficient (PCC). Models were evaluated using 10-fold

and leave one out cross validation (LOOCV) technique.
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where n is the size of test set, E
pred

i and E
act

i is the predicted and

actual IC50, respectively.

In LOOCV each peptide in the dataset is used for testing iteratively

and rest of the peptides are used to train the respective prediction

models. In addition to LOOCV, we have also used Leave one virus out

cross validation (LOVOCV) method. In this technique, AVPs from

each virus are iteratively excluded and the classifier is trained on the

remaining virus AVPs followed by testing on the excluded AVPs of

that individual virus.

RESULTS

Performance Evaluation During 10-Fold Cross

Validation
AVP-IC50Pred models have been developed using various pep-

tide sequence features including mono and di-amino acid com-

position, binary pattern of eight C-terminal and N-terminal

amino acids, physicochemical properties, and so forth. During

10-fold cross validation using SVM, we achieved a maximum

correlation of 0.59, 0.61, 0.56, 0.51, 0.59, 0.22, 0.18 on mono, di,

C8-binary, N8-binary and physico, solvent accessibility (sa), sec-

ondary structure (ss) models, respectively, on the T683 training/

testing dataset. Using hybrid models of the above mentioned fea-

tures, the performance was improved to a maximum of 0.66 in

case of mono-di-physico-sa-ss composite features as shown in

Table I. The SVM and RF parameters used to develop prediction

models are shown in Supporting Information Table S4. Further-

more, we calculated the P-value for different models and found

that P-value of most of the models is statistically significant and

<0.001 (For model no. 6 and 7 the P-value is< 0.05).

We also used other machine learning algorithms like RF,

IBk, and K* to check their performance on the T683 training/
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testing data using the above mentioned features. RF performed

similar to SVM with best PCC of 0.64 on N8/C8-physico-sa-ss

hybrid model while IBk and K* showed best performance of

0.56 and 0.55 on hybrid N8/C8-physico-sa-ss features (Table

I). However, SVM performed better than other machine learn-

ing algorithms.

Performance Evaluation on Independent Data Set
Besides 10-fold cross validation, we also checked the perform-

ance of our models on independent dataset of 76 peptides

(V76) not used during training/testing. Here, we achieved a

maximum correlation of 0.64, 0.66, 0.59, 0.48, 0.63, 0.21, 0.19

on mono, di, C8-binary, N8-binary, physico, solvent accessibil-

ity (sa), and secondary structure (ss) models, respectively,

using SVM. As expected, the hybrid models gave a better corre-

lation with a maximum PCC value of 0.74 on hybrid mono-

di-physico-sa-ss model and 0.73 on N8/C8-bin-physico-sa-ss

model using SVM.

Other machine learning techniques (MLTs) performed in a

similar trend but their correlation was less as compared to

SVM. Their best correlations on the hybrid mono-di-physico-

sa-ss model were 0.68 for RF, 0.59 for IBk and 0.57 for K*

(Table I). The correlation between actual and predicted IC50

values of the independent dataset using SVM and RF is also

graphically depicted in Figure 1.

Table I Performance Evaluation During 10-Fold Cross Validation

S. No. Feature No. of Features

PCC

Training/Testing, T683 (103) Validation, V76

SVM RF IBk K* SVM RF IBk K*

1 Amino acid composition (Mono) 20 0.59 0.61 0.44 0.41 0.64 0.64 0.42 0.41

2 Di-peptide composition (Di) 400 0.61 0.60 0.47 0.43 0.66 0.62 0.47 0.45

3 C8 Binary profile (C8 Bin) 160 0.56 0.57 0.45 0.42 0.59 0.60 0.43 0.41

4 N8 Binary profile (N8 Bin) 160 0.51 0.54 0.45 0.43 0.48 0.60 0.45 0.43

5 Physicochemical properties (Physico) 315 0.59 0.54 0.46 0.44 0.63 0.68 0.46 0.45

6 Solvent accessibility (SA) 21 0.22 0.20 0.18 0.19 0.21 0.18 0.15 0.16

7 Secondary structure (SS) 3 0.18 0.18 0.16 0.17 0.19 0.16 0.17 0.18

8 1 1 2 420 0.60 0.61 0.47 0.45 0.67 0.62 0.48 0.48

9 3 1 4 320 0.59 0.62 0.51 0.48 0.62 0.65 0.52 0.50

10 1 1 215 735 0.63 0.61 0.52 0.51 0.70 0.64 0.54 0.51

11 3 1 415 635 0.63 0.60 0.51 0.50 0.72 0.67 0.52 0.50

12 1 1 213 1 4 740 0.61 0.62 0.51 0.49 0.67 0.63 0.51 0.50

13 1 1 213 1 415 1055 0.62 0.61 0.50 0.51 0.66 0.64 0.54 0.53

14 6 1 7 23 0.22 0.20 0.18 0.21 0.23 0.19 0.20 0.18

15 1 1 215 1 617 758 0.66 0.63 0.55 0.54 0.74 0.68 0.59 0.57

16 3 1 415 1 617 658 0.65 0.64 0.56 0.55 0.73 0.70 0.58 0.56

10-Fold cross validation performance of predictive models on AVP dataset of 683 sequences (T683) and evaluation of performance of predictive models

on validation dataset of 76 peptides (V76) using SVM, RF, IBk, and K* MLTs.

Abbreviations: SVM: support vector machine; RF: random forest; IBk: instance-based classifier (Weka); K*: KStar (Weka); T685: Training dataset of 683

AVPs; 103: 10-fold cross validation; V76: independent dataset of 76 AVPs.

FIGURE 1 Correlation between actual and predicted IC50 values

of the independent dataset using (a) SVM and (b) RF.
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Performance Evaluation During LOVOCV
To further check the predictive performance for each virus in

the 759 AVP dataset, we used LOVOCV method (Table II).

Overall, the training dataset performance during 10-fold cross

validation ranged from PCC value of a minimum 0.55 to a

maximum 0.68 with an average 0.60. Simultaneously, the vali-

dation performance ranged from PCC 0.13 to 0.80 with an

average 0.43. The method showed good correlation for 38 out

of 42 viruses. However, for few viruses like HIV, RSV, INFV A,

and HSV the performance was not satisfactory. Since, enough

AVPs for RSV, INFV A, and HSV were not available; therefore,

we made a combined dataset of these viruses to develop a pre-

diction model with a best PCC of 0.59 using LOOCV. This

model performed well with a PCC of 0.54 for independent

dataset of these three viruses.

Performance Evaluation During LOOCV

We have also developed virus specific models for HIV and

HCV where reasonable numbers of peptides are available. We

also checked the performance of our method using LOOCV

technique by employing earlier mentioned peptide sequence

features (Table III). In this method we used specific AVP data-

sets belonging to HIV (295 AVPs) and HCV (124 AVPs) and

individually divided them into training and validation datasets,

keeping 10% of the data for validation in each case. Here also

the performance was increased while using hybrid mono-di-

physico and mono-di-C8/N8 bin features (PCC 0.60–0.65) as

compared to individual feature (PCC 0.50–0.55).

Two Sample Logo
Two sample logos are used to graphically depict the differences

between two sets of sequence alignments.39 The web-based

tool is freely available via the url: http://www.twosamplelogo.

org. Highly and least effective AVPs were chosen to generate

two sample logos using both 8 N-terminal and 8 C-terminal

residues. The IC50 values of highly and least effective AVPs

were below 1mM and above 100mM, respectively. In the N ter-

minal region, we found that large acidic amino acids like Met,

Thr, Asp, and Glu were enriched in highly effective AVPs while

small basic amino acids like Ala, Gly, and Lys were more

Table II Performance of the SVM Model for Each Virus in the 759 AVP Dataset Using LOVOCV Method

S. No. Virus Abbreviation

No. of Peptides PCC

Training Validation Training Validation

1 Hepatitis C virus HCV 635 124 0.55 0.8

2 SARS coronavirus SARS-CoV 733 26 0.58 0.53

3 Porcine reproductive and respiratory

syndrome Virus

PRRSV 746 13 0.58 0.53

4 Hepatitis B virus HBV 747 12 0.58 0.53

5 Dengue 2 virus DENV 2 752 7 0.58 0.53

6 Newcastle disease virus NDV 752 7 0.58 0.53

7 Transmissible gastroenteritis virus TGEV 756 3 0.64 0.53

8 West Nile virus WNV 756 3 0.63 0.53

9 Human papillomavirus HPV 753 6 0.59 0.52

10 Human metapneumovirus hMPV 754 5 0.68 0.52

11 Human parainfluenza virus type 3 HPIV 3 734 25 0.57 0.51

12 HSV 2 HSV 2 754 5 0.62 0.51

13 Hendra Virus HeV 755 4 0.63 0.51

14 Human cytomegalovirus HCMV 755 4 0.65 0.5

15 Marek’s disease virus MDV 754 5 0.61 0.49

16 Dengue 1 virus DENV 1 756 3 0.61 0.49

17 Feline immunodeficiency virus FIV 730 29 0.55 0.46

18 Measles virus MV 739 20 0.57 0.45

19 Human T-cell leukemia virus 1 HTLV 1 753 6 0.65 0.41

20 HSV 1 HSV 1 729 30 0.58 0.2

21 Influenza A virus INFV A 720 39 0.59 0.15

22 Human immunodeficiency virus HIV 464 295 0.6 0.13

23 Respiratory syncytial virus RSV 694 65 0.58 0.02

24 Othersa Oth 736 23 0.65 0.51

a Other viruses include: ASLV-A, JV, SeV, VACV, AIV, AMV, ASFV, BKV, BoHV 1, BRV, DENV 4, EBoV, HPIV 2, INFV B, JEV, LCMV, MHV, NiV, and

SNV.
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common in least effective AVPs (Figure 2a). Similarly in the

C-terminal region, large polar and non-polar amino acids like

Leu, Trp, and Asn were frequent in the highly effective AVPs

while small positively charged amino acids like Gly, Lys, and

Arg were more common in the least effective AVPs (Figure

2b). Two sample logos of the above sequences with different

amino acids colored as per their charge, hydrophobicity, sur-

face exposure, flexibility, and disorder are available in Support-

ing Information Figure S1.

Box Plots
The box plot is a convenient way to denote the summary sta-

tistics and the distribution of numerical data. It not only allows

the depiction of the maximum, minimum, and median of a

data set but also the visualization of lower and upper quar-

tiles.40 We selected 97 highly effective (IC50< 1mM) and an

equal number of least effective AVPs (IC50> 100mM) and cal-

culated the 15 best performing physicochemical properties

(Supporting Information Table S3a) predicted by SVM. Box

plots for the individual properties were drawn using BoxPlotR

(available at http://boxplot.tyerslab.com). The plots are shown

in Supporting Information Figure S2(i and ii). It was observed

that some properties like helix initiation parameter (c), fre-

quency of C-terminal non beta region (d), free energy in beta-

strand region (e, m) and frequency of helix (f, k) were more

discriminative compared to others. Similar results were

Table III Performance of the SVM Models Using LOOCV Method on Virus Specific Datasets

S. No. Feature No. of features

PCC

Training/Testing Validation

HIV HCV HIV HCV

1 Amino acid composition (Mono) 20 0.54 0.56 0.51 0.52

2 Di-peptide composition (Di) 400 0.56 0.58 0.51 0.53

3 C8/N8 Binary profile (C8/N8 Bin) 160 0.57 0.57 0.54 0.55

4 Physicochemical properties (Physico) 315 0.55 0.55 0.51 0.51

5 1 1 213 735 0.58 0.64 0.54 0.61

6 1 1 214 635 0.60 0.67 0.54 0.58

7 1 1 213 1 4 740 0.60 0.65 0.53 0.63

FIGURE 2 Two sample logo (TSL) comparison. TSLs Two sample logos of a) 8-N terminal and

b) 8-C terminal residues of 97 highly effective peptides (IC50< 1mM) and an equal number of least

effective peptides (IC50> 100 mM).
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reported by Chang and Yang12 and Polanco et al.41 while ana-

lyzing the physicochemical properties of AVPs.

Web Server
AVP-IC50Pred web server is freely accessible via the URL http://

crdd.osdd.net/servers/ic50avp. A flowchart depicting the work-

flow of AVP-IC50Pred web server is shown in Supporting Infor-

mation Figure S3.

Input. On the submit page user may paste single or multiple

peptide sequence(s) in FASTA format in the provided text-box

or upload a FASTA file from the system. An “Example link”

has been provided to load a default set of sequences. User can

select the desired model and MLT to run the prediction (Sup-

porting Information Figure S4).

Output. The prediction output is shown in tabular form with

10 columns. The first, second, and third columns consist of the

sequence identifier for the input FASTA sequence, the sequence

itself and the sequence length, respectively. The fourth column

gives the action buttons for database scanning in order to

check the presence of similar sequences in the existing antiviral

databases HIPdb and AVPdb and also in the latest UniProt

release using BLAST. Rest of the columns (5–8) show the

output of different MLTs used in this study (SVM, RF, IBk,

K*). The predicted IC50 value for the peptide sequence is dis-

played in lM units. The analysis column displays the calcu-

lated physicochemical properties for the peptides in question.

All the columns of the table have been provided with a sorting

functionality. Search option is also provided to filter the results

(Figure 3).

Analysis Tools
Mutation Analyzer. This tool allows the user to generate all

possible combinations of amino acid mutations in a given pep-

tide sequence and predict the IC50 of the mutant peptides

using the best performing model. However, the mutated

peptides are only computationally predicted and need experi-

mental validation. Worked examples have been provided in

Table IV.

AVP-IC50Pred-BLAST. Users may BLAST their peptide for

similarity against HIPdb and AVPdb. The result shows distri-

bution of hits, their score, E-value and alignment with sequen-

ces having significant similarity.

AVP-IC50Pred-Map. The MAP tool is used to fetch the per-

fectly matching peptides available in the existing AVP databases

FIGURE 3 AVP-IC50 Pred result output.
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which map against a user provided protein sequence. The

result output displays a list of earlier reported AVPs that match

with specific portions of the user provided sequence.

Physicochemical Properties Calculator. The properties tool

allows the user to visually examine some important peptide

features like amino acid composition, hydrophobicity, prefer-

ence for b-strands and frequency of a-helix in a given peptide

sequence.

Motif Search. AVP-IC50Pred Motif Scan allows to search pos-

sible AVP motifs in user provided protein/peptide sequences.

This tool is based on MEME/MAST software.42

Protein Fragmentor. This tool generates peptide fragments of

desired length and overlapping residues from a protein

sequence.

AVP-IC50 Conserve. Checks the conservation of user provided

peptide sequence in human, viral, and antiviral proteins.

Application
Using AVP-IC50Pred mutation analyzer, users can generate all

possible combinations of amino acid mutations in a given pep-

tide sequence and predict the IC50 of the mutant peptides. This

tool also enables the users to sort the mutant peptides as per

their predicted IC50 value to select the highly effective peptides.

As an example we generated the mutants of Enfuvirtide/T-20,

an HIV fusion inhibitor using this tool. We found that muta-

tions like E10A and E11A improved the predicted IC50 over

hundreds of folds. Likewise, mutations of I20V and I20R in

peptide CL58-2 altered the IC50 by about 40 fold. Similar anal-

ysis of some more peptides was also carried out as provided in

Table IV.

DISCUSSION
Due to the limited availability of drugs and vaccines for many

viruses, there is a demand to develop more effective antiviral

therapeutics.37,43 Thus, apart from drugs and vaccines, AVPs

are a potential alternative to control viral pathogenesis.26,44

Table IV Mutational Analysis

Peptide Length

Mutation

Position IC50 (mM)

Fold

Change PubMed ID

YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF

(Enfuvirtide/T-20)

36 No Mutation 7.57 – 19949052

YTSLIHSLIAESQNQQEKNEQELLELDKWASLWNWF 36 E10A 0.01 757.0

YTSLIHSLIEASQNQQEKNEQELLELDKWASLWNWF 36 E11A 0.02 378.5

YTSLIHSLIEESQNQQVKNEQELLELDKWASLWNWF 36 E17V 0.03 252.3

YTSLIHSLIEESQNQQEKNDQELLELDKWASLWNWF 36 E20D 0.03 252.3

YTSLIHSLIEESQNQQEKNEQELLELDKWASLWGWF 36 N34G 0.03 252.3

KVINPEPIVEPFMSKPFALF (Scr alpha1-antitrypsin peptide) 20 No Mutation 100.00 – 17448989

KVINPEPIVEPFMSKPFLLF 20 A18L 5.24 19.1

LVINPEPIVEPFMSKPFALF 20 K1L 7.38 13.6

KVINPEPIVEPFMSKPFVLF 20 A18V 7.46 13.4

KVINPEPIVEPFMSLPFALF 20 K15L 7.95 12.6

KVILPEPIVEPFMSKPFALF 20 M4L 14.55 6.9

GLQLLGFILAFLGWIGAI (CL58.1 peptide) 18 No Mutation 25.00 – 22378192

GLQLLYFILAFLGWIGAI 18 G6Y 2.71 9.2

GLQLLGFILAYLGWIGAI 18 F11Y 2.99 8.4

GLQLLGFILAFLGWIGAY 18 I18Y 2.99 8.4

GLQLLGFILAFLRWIGAI 18 G13R 3.25 7.7

GLQLLGFILAFLGWIYAI 18 G16Y 3.5 7.1

MANAGLQLLGFILAFLGWIG (peptide CL58-2) 20 No Mutation 17.8 – 22378192

MANAGLQLLGFILAFLGWIV 20 I20V 0.46 38.7

MANAGLQLLGFILAFLGWIR 20 I20R 0.51 34.9

MANAGLQLLRFILAFLGWIG 20 G10R 0.9 19.8

MANAGLQLLGFILAFLRWIG 20 G17R 0.99 18.0

MANAGLQLLGFILAFLVWIG 20 G17V 1.07 16.6

Mutational analysis of different AVPs showing the top five best performing mutations and their predicted IC50 values from each peptide.
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Lower toxicity and broad range AVPs such as EB peptide

against HSV,45 a-defensin against cytomegalovirus (CMV),15b

enfuvirtide2 and SFT against HIV,3 Human neutrophil peptide

1 against VSV,1 and so forth have shown promising results

with high specificity and relatively few off-target side-effects.

The AVPs act via variety of routes including inhibition of viral

entry into the host cell, suppression of viral gene expression or

translation, immunopotentiation, and so forth.46

Antiviral activity of a peptide is often determined experi-

mentally as its half maximal inhibitory concentration (IC50)

value. Usually AVPs with< 1mM IC50 values are considered

very effective while> 100 lM are least effective in repressing a

viral process or function. Although there are many antimicro-

bial peptide prediction servers like CAMP,47 APD2,48

AntiBP2,49 Wang et al.,3 and so forth and one AVP predictor

AVPpred26 but they are all based on classification mode of

machine learning, that is, they only classify a peptide sequence

as effective or ineffective. In addition, none of them quantita-

tively predicts the antimicrobial or antiviral activity of a pep-

tide in terms of IC50.

To develop such predictor we have extracted comprehensive

non-redundant 759 AVPs with quantitative IC50 values from

specialized resources HIPdb15a and AVPdb.14 These AVPs were

randomly divided into three training/testing (T683) and vali-

dation (V76) datasets that belong to as many as 42 medically

important viruses. We also checked the performance of SVM

models based on these three training and validation dataset

and selected one set with better performance for algorithm

development as shown in Supporting Information Table S5.

Peptide-based antivirals can act in many different ways

however generally the AVPs act via interference of protein–pro-

tein interactions by mimicking the properties of one of the

interfaces, thus acting as competitive inhibitors by preventing

interaction of the binding protein partners. The various

sequence features of a peptide play an important role in their

bioactivity. These features include amino acid composition, N/

C terminal residues and their physicochemical properties like

hydrophobicity, secondary structure, and so forth. These have

also been reported previously for prediction of other impor-

tant peptides viz., ABCpred,50 AntiCP,51 QSPpred,52 and so

forth. Evans et al.53 have also described HIV coreceptor tro-

pism prediction on the basis of the amino-acid sites and physi-

ochemical characteristics of the V3 loop sequence of the HIV

envelope.

In our results, however, we found that SVM and RF compa-

ratively performed better than IBk and K* MLTs (MLTs). In

SVM by choosing appropriate kernel generalization grade,

SVMs gain flexibility and robustness and deliver a unique solu-

tion in their prediction.54 RF computes proximities between

pairs of cases that can be used in clustering and locating

outliers. RF is a fast and highly accurate learning algorithm

and can handle thousands of input variables without variable

deletion.38 IBk and K* are simple MLTs that work well on basic

recognition problems. One of the shortcomings of the these

two algorithms is that they are lazy learners, that is, they do

not learn anything from the training data but simply use the

training data itself for prediction because of which they are not

robust for predicting noisy data.55 Due to this reason SVM and

RF performed better than these MLTs in our study.

AVP-IC50Pred is a regression-based algorithm employing

hybrid models integrating different peptide features like amino

acid composition, binary profiles, physicochemical properties,

and so forth. We claim this method to be the first ever attempt

to predict a numerical antiviral efficacy value for a given pep-

tide. We had used SVM at the first place to predict the peptide

IC50 values for which we achieved a maximum PCC of 0.66

during 10-fold cross validation and a PCC of 0.74 on the inde-

pendent dataset.

Since AVPs are heterogeneous in terms of their target

viruses, one of the important questions remains whether this

algorithm is applicable for the general viruses. It has been

found by earlier researchers that a given class of peptides follow

a certain pattern as is the case with antimicrobial peptide pre-

diction algorithms like APD2,48 CAMP,47 AntiBP2,49 Class-

AMP,56 AMPA,57 and so forth. To further address this issue, we

have used LOVOCV strategy37 in which AVPs from each virus

are iteratively excluded and the classifier is trained on AVPs of

the remaining viruses followed by testing on the excluded

AVPs. This approach worked for 38 out of 42 viruses. Predic-

tive performance for IC50 of each virus was satisfactory for

most of the viruses despite the fact that their data was not

included during training. It shows that AVP-IC50Pred can act

as a general AVP prediction algorithm, which may be applied

to other viruses as well. However, there are a few exceptions

like HIV, RSV, INFV A and HSV for which algorithm did not

work. It can be due to the fact that some viruses differ in their

manner of infection/life cycle and hence mechanism or mode

of action of AVPs may differ in some cases. Therefore we have

provided virus specific models for the above viruses and also

integrated them on the web server. In the future, we are inter-

ested in making target specific algorithms once appropriate

and enough data are available.

It is reported in the literature that the prediction methods

developed in regression mode show a lower correlation for het-

erogeneous datasets than that for homogenous datasets. For

example, in similar studies of siRNAs, it was found that the

PCC ranged from 0.4 to 0.6 on heterogeneous datasets while it

increased to 0.7–0.8 on homogenous datasets.37,58 The SVM

models in this study were developed using a highly diverse

dataset taken from 125 different studies tested in 64 cell lines
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against 42 viruses. So the PCC of 0.66 in regression mode is

reasonable. This performance can be improved further if a

large homogeneous dataset is available in future. However, to

put more confidence in our present prediction, we used three

more MLTs in addition to SVM namely, RF, IBk and K* which

performed in a similar fashion. This will also encourage devel-

oping newer regression-based algorithms besides the existing

classification-based methods in the area of peptide-based

therapeutics.

There are limited reports of experimentally improving the

IC50 value of AVPs or to overcome their virus resistance by

amino acid substitutions. Izumi et al.59 designed an enfuvirtide

variant containing the S138A substitution and showed that it is

a potent inhibitor of both enfuvirtide -sensitive and enfuvirtide

-resistant viruses. Also it was shown that mutation of four C-

terminal amino acids (WNWF to ANAA) of the enfuvirtide

peptide made it inactive.60 Dwyer et al.61 found that the muta-

tions, which increased peptide helical structure, were more

effective in blocking the virus. All such improvements in the

peptide efficacy were achieved after considerable efforts in

terms of time and cost. Had there been an algorithm which

generates the possible mutants of a potential AVP and predict

its efficacy, these results might have been achieved in lesser

time. Simultaneously, AVPs with improved efficacy might be

useful against mutated viruses. To assist the researchers in this

direction, AVP-IC50Pred mutation analyzer tool will be useful

in designing AVPs with enhanced antiviral potential as illus-

trated in the “Application” section. Further, prediction and

analysis of IC50 of all single mutants of the AVPs in our dataset

have been provided on our web server. Besides, AVP-IC50Pred

web server has also been equipped with some important tools

such as physicochemical properties calculator, Motif scan,

BLAST, Conservation, Map, and fragment tool for further

analysis of the AVPs.

CONCLUSIONS
AVP-IC50Pred is the first regression-based algorithm developed

using experimentally validated data sets for prediction of pep-

tide antiviral activity in terms of IC50. Multiple MLTs were

used to build comprehensive prediction models exploiting

important peptide sequence features such as amino acid and

dipeptide compositions, binary profile of N8-C8 residues as

well as selected physicochemical properties. AVP-IC50Pred web

server is hoped to assist the researchers working on AVP thera-

peutics by decreasing the cost and time efforts involved in

experimental validation.

MK conceived the approach, helped in analysis and interpretation

of data, gave overall supervision to the project. MK, AQ wrote

the manuscript. AQ, HT collected the data, implemented

machine learning software and developed the web server. All of

the authors read and approved the final manuscript. The authors

declare that they have no competing interests.

REFERENCES
1. Gwyer Findlay, E.; Currie, S. M.; Davidson, D. J. BioDrugs 2013,

27, 479-493.

2. Ashkenazi, A.; Wexler-Cohen, Y.; Shai, Y. Biochim Biophys Acta

2011, 1808, 2352-2358.

3. Wang, P.; Hu, L.; Liu, G.; Jiang, N.; Chen, X.; Xu, J.; Zheng, W.;

Li, L.; Tan, M.; Chen, Z.; Song, H.; Cai, Y. D.; Chou, K. C. PLoS

One 2011, 6, e18476.

4. Solares, A. M.; #Baladron, I.; Ramos, T.; Valenzuela, C.; Borbon,

Z.; Fanjull, S.; Gonzalez, L.; Castillo, D.; Esmir, J.; Granadillo,

M.; Batte, A.; Cintado, A.; Ale, M.; Fernandez de Cossio, M. E.;

#Ferrer, A.; Torrens, I.; Lopez-Saura, P. ISRN Obstet Gynecol

2011, 2011, 292951.

5. Yutani, S.; Komatsu, N.; Shichijo, S.; Yoshida, K.; Takedatsu, H.;

Itou, M.; Kuromatu, R.; Ide, T.; Tanaka, M.; Sata, M.; Yamada,

A.; Itoh, K. Cancer Sci 2009, 100, 1935-1942.

6. Carlier, E.; Mabrouk, K.; Moulard, M.; Fajloun, Z.; Rochat, H.;

De Waard, M.; Sabatier, J. M. J Pept Res 2000, 56, 427-437.

7. (a) Craik, D. J.; Fairlie, D. P.; Liras, S.; Price, D. Chem Biol Drug

Des 2013, 81, 136-147; (b) Mooney, C.; Haslam, N. J.; Holton,

T. A.; Pollastri, G.; Shields, D. C. Bioinformatics 2013, 29, 1120-

1126.

8. Uhlig, T.; Kyprianou, T.; Martinelli, F. G.; Oppici, C. A.;

Heiligers, D.; Hills, D.; Calvo, X. R.; Verhaert, P. EuPA Open

Proteomics 2014, 4, 58-69.

9. (a) Alba, A.; Lopez-Abarrategui, C.; Otero-Gonzalez, A. J. Bio-

polymers 2012, 98, 251-267; (b) Fernandes, F. C.; Rigden, D. J.;

Franco, O. L. Biopolymers 2012, 98, 280-287; (c) Peters, B. M.;

Shirtliff, M. E.; Jabra-Rizk, M. A. PLoS Pathog 2010, 6,

e1001067.

10. Albiol Matanic, V. C.; Castilla, V. Int J Antimicrob Agents 2004,

23, 382-389.

11. (a) Nichol, S. T.; Arikawa, J.; Kawaoka, Y. Proc Natl Acad Sci

USA 2000, 97, 12411-12412; (b) Domingo, E. Vet Res 2010, 41,

38.

12. Chang, K. Y.; Yang, J. R. PLoS One 2013, 8, e70166.

13. Castel, G.; Chteoui, M.; Heyd, B.; Tordo, N. Molecules 2011, 16,

3499-3518.

14. Qureshi, A.; Thakur, N.; Tandon, H.; Kumar, M. Nucleic Acids

Res 2014, 42, D1147-D1153.

15. (a) Qureshi, A.; Thakur, N.; Kumar, M. PLoS One 2013, 8,

e54908; (b) Mulder, K. C.; Lima, L. A.; Miranda, V. J.; Dias, S.

C.; Franco, O. L. Front Microbiol 2013, 4, 321.

16. Imanishi, J.; Oku, T.; Cho, Y.; Inagawa, S.; Tanaka, A.;

Kuwayama, W. C R Seances Soc Biol Fil 1985, 179, 414-419.

17. Daher, K. A.; Selsted, M. E.; Lehrer, R. I. J Virol 1986, 60, 1068-

1074.

18. Wachinger, M.; Kleinschmidt, A.; Winder, D.; von

Pechmann, N.; Ludvigsen, A.; Neumann, M.; Holle, R.;

Salmons, B.; Erfle, V.; Brack-Werner, R. J Gen Virol 1998,

79(Pt 4), 731-740.

762 Qureshi, Tandon, and Kumar

Biopolymers (Peptide Science)



19. Chernysh, S.; Kim, S. I.; Bekker, G.; Pleskach, V. A.; Filatova, N.

A.; Anikin, V. B.; Platonov, V. G.; Bulet, P. Proc Natl Acad Sci

USA 2002, 99, 12628-12632.

20. (a) Jenssen, H.; Hamill, P.; Hancock, R. E. Clin Microbiol Rev

2006, 19, 491-511; (b) van der Strate, B. W.; Beljaars, L.;

Molema, G.; Harmsen, M. C.; Meijer, D. K. Antiviral Res 2001,

52, 225-239.

21. (a) Patankar, S. J.; Jurs, P. C. J Chem Inf Comput Sci 2000, 40,

706-723; (b) Riddick, G.; Song, H.; Ahn, S.; Walling, J.; Borges-

Rivera, D.; Zhang, W.; Fine, H. A. Bioinformatics 2011, 27, 220-

224.

22. Nicol, M. Q.; Ligertwood, Y.; Bacon, M. N.; Dutia, B. M.; Nash,

A. A. J Gen Virol 2012, 93 (Pt 5), 980-986.

23. Budge, P. J.; Graham, B. S. J Antimicrob Chemother 2004, 54,

299-302.

24. Pinon, J. D.; Kelly, S. M.; Price, N. C.; Flanagan, J. U.; Brighty,

D. W. J Virol 2003, 77, 3281-3290.

25. Ray, U.; Roy, C. L.; Kumar, A.; Mani, P.; Joseph, A. P.; Sudha, G.;

Sarkar, D. P.; Srinivasan, N.; Das, S. Mol Ther 2013, 21, 57-67.

26. Thakur, N.; Qureshi, A.; Kumar, M. Nucleic Acids Res 2012, 40

(Web Server issue), W199-W204.

27. (a) Lata, S.; Sharma, B. K.; Raghava, G. P. BMC Bioinformatics

2007, 8, 263; (b) Garg, A.; Bhasin, M.; Raghava, G. P. J Biol

Chem 2005, 280, 14427-14432; (c) Holton, T. A.; Pollastri, G.;

Shields, D. C.; Mooney, C. Bioinformatics 2013, 29, 3094-3096.

28. (a) Xiao, X.; Wang, P.; Chou, K. C. J Comput Chem 2009, 30,

1414-23; (b) Gautam, A.; Chaudhary, K.; Kumar, R.; Sharma,

A.; Kapoor, P.; Tyagi, A.; Raghava, G. P. J Transl Med 2013, 11,

74.

29. Sanders, W. S.; Johnston, C. I.; Bridges, S. M.; Burgess, S. C.;

Willeford, K. O. PLoS Comput Biol 2011, 7, e1002101.

30. Kawashima, S.; Kanehisa, M. Nucleic Acids Res 2000, 28, 374.

31. Durham, E.; Dorr, B.; Woetzel, N.; Staritzbichler, R.; Meiler, J.

J Mol Model 2009, 15, 1093-1108.

32. Ahmad, S.; Gromiha, M.; Fawareh, H.; Sarai, A. BMC Bioinfor-

matics 2004, 5, 51.

33. Heringa, J. Curr Protein Pept Sci 2000, 1, 273-301.

34. Roy, A.; Kucukural, A.; Zhang, Y. Nat Protoc 2010, 5, 725-738.

35. Frank, K.; Sippl, M. J. Bioinformatics 2008, 24, 2172-2176.

36. Altschul, S. F.; Gish, W.; Miller, W.; Myers, E. W.; Lipman, D. J.

J Mol Biol 1990, 215, 403-410.

37. Qureshi, A.; Thakur, N.; Kumar, M. J Transl Med 2013, 11, 305.

38. Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J. C.; Sheridan, R. P.;

Feuston, B. P. J Chem Inf Comput Sci 2003, 43, 1947-1958.

39. Vacic, V.; Iakoucheva, L. M.; Radivojac, P. Bioinformatics 2006,

22, 1536-1537.

40. Spitzer, M.; Wildenhain, J.; Rappsilber, J.; Tyers, M. Nat Meth-

ods 2014, 11, 121-122.

41. Polanco, C.; Samaniego, J. L.; Castanon-Gonzalez, J. A.; Buhse,

T. Cell Biochem Biophys 2014.

42. Bailey, T. L.; Boden, M.; Buske, F. A.; Frith, M.; Grant, C. E.;

Clementi, L.; Ren, J.; Li, W. W.; Noble, W. S. Nucleic Acids Res

2009, 37 (Web Server issue), W202-W208.

43. (a) Sadanand, S. Yale J Biol Med 2011, 84, 353-359; (b) Duffy,

S.; Shackelton, L. A.; Holmes, E. C. Nat Rev Genet 2008, 9, 267-

276.

44. Lopez-Martinez, R.; Ramirez-Salinas, G. L.; Correa-Basurto, J.;

Barron, B. L. PLoS One 2013, 8, e76876.

45. Altmann, S. E.; Brandt, C. R.; Jahrling, P. B.; Blaney, J. E. Virol J

2012, 9, 6.

46. Real, E.; Rain, J. C.; Battaglia, V.; Jallet, C.; Perrin, P.; Tordo, N.;

Chrisment, P.; D’Alayer, J.; Legrain, P.; Jacob, Y. J Virol 2004, 78,

7410-7417.

47. Waghu, F. H.; Gopi, L.; Barai, R. S.; Ramteke, P.; Nizami, B.;

Idicula-Thomas, S. Nucleic Acids Res 2014, 42 (Database issue),

D1154-D1158.

48. Wang, G.; Li, X.; Wang, Z. Nucleic Acids Res 2009, 37 (Database

issue), D933-D937.

49. Lata, S.; Mishra, N. K.; Raghava, G. P. BMC Bioinformatics

2010, 11 (Suppl 1), S19.

50. Saha, S.; Raghava, G. P. Proteins 2006, 65, 40-48.

51. Tyagi, A.; Kapoor, P.; Kumar, R.; Chaudhary, K.; Gautam, A.;

Raghava, G. P. Sci Rep 2013, 3, 2984.

52. Rajput, A.; Gupta, A. K.; Kumar, M. PLoS One 2015, 10,

e0120066.

53. Evans, M. C.; Paquet, A. C.; Huang, W.; Napolitano, L.;

Frantzell, A.; Toma, J.; Stawiski, E. W.; Goetz, M. B.;

Petropoulos, C. J.; Whitcomb, J.; Coakley, E.; Haddad, M. J Bio-

inform Comput Biol 2013, 11, 1350006.

54. Muller, K.; Mika, S.; Ratsch, G.; Tsuda, K.; Scholkopf, B. IEEE

Trans Neural Netw 2001, 12, 181-201.

55. Bhavsar, H.; Ganatra, A., IJSCE 2012, 2, 2231-2307.

56. Joseph, S.; Karnik, S.; Nilawe, P.; Jayaraman, V. K.; Idicula-

Thomas, S. IEEE/ACM Trans Comput Biol Bioinform 2012, 9,

1535-1538.

57. Torrent, M.; Di Tommaso, P.; Pulido, D.; Nogues, M. V.; Notredame,

C.; Boix, E.; Andreu, D. Bioinformatics 2012, 28, 130-131.

58. Peek, A. S. BMC Bioinformatics 2007, 8, 182.

59. Izumi, K.; Kodama, E.; Shimura, K.; Sakagami, Y.; Watanabe,

K.; Ito, S.; Watabe, T.; Terakawa, Y.; Nishikawa, H.; Sarafianos,

S. G.; Kitaura, K.; Oishi, S.; Fujii, N.; Matsuoka, M. J Biol Chem

2009, 284, 4914-4920.

60. Hildinger, M.; Dittmar, M. T.; Schult-Dietrich, P.; Fehse, B.;

Schnierle, B. S.; Thaler, S.; Stiegler, G.; Welker, R.; von Laer, D.

J Virol 2001, 75, 3038-3042.

61. Dwyer, J. J.; Wilson, K. L.; Davison, D. K.; Freel, S. A.; Seedorff,

J. E.; Wring, S. A.; Tvermoes, N. A.; Matthews, T. J.; Greenberg,

M. L.; Delmedico, M. K. Proc Natl Acad Sci USA 2007, 104,

12772-12777.

IC50 Prediction of Antiviral Peptides 763

Biopolymers (Peptide Science)


	l
	l

