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Atrial Fibrillation

Anatomically based pulmonary vein isolation (PVI) is the cornerstone of 
ablation, yet continues to achieve success rates of 55–75% at 12–18 
months in randomised trials, depending on the population, which falls 
over time.1 Notably, there has been little benefit from adding several 
anatomical ablation strategies targeting the posterior wall, the mitral 
isthmus, left atrial roof or other linear lesions.2–5 Studies that add isolation 
of the left atrial appendage are ongoing.6 A dominant alternative viewpoint 
is that patients with AF likely differ in the anatomical locations for their 
mechanisms, underscoring the need to optimise AF mapping. This 
viewpoint is tempered by the reality that mapping systems to date have 
yielded divergent data, varying outcomes in different clinical series and 
complex mathematical approaches that are difficult to validate by clinical 
observation.7 In contrast, PVI and anatomical ablation lines are relatively 
straightforward to confirm clinically.

This review critically evaluates the bench-to-bedside evidence that 
localised regions of interest perpetuate AF, and describes clinical 
approaches used to identify these regions for ablation.8,9 We will attempt 
to address why the localised source hypothesis may be more important to 
some patients than others.10–15 We will intersperse our descriptions with 
thoughts on future directions to address challenges that we believe must 
be overcome to truly advance the field.

Mechanisms that Sustain Human AF
Once AF has been initiated by triggers from the pulmonary veins or other 
sites, its disorganised wavefronts must be continuously replenished for 
AF to sustain.16 Two mechanisms are proposed. In one model, disorganised 

activity self-sustains because new wavelets are generated across atrial 
tissue over time. Computer simulations reveal that such wavelets can be 
generated by unstable spiral waves and wavebreak.17,18 Collision from 
repetitive foci in multiple spatial locations can also destabilise wave 
propagation, again producing new wavelets.19 This hypothesis does not 
require preferred regions of interest (Figure 1A), and effective therapy 
would require large-scale debulking of the atrium. In the second major 
model, preferred regions of interest are central to perpetuating AF. Such 
regions may represent localised rotational or focal sources, other 
electrical features such as repetitive activation patterns, or structural 
regions of fibrosis or tissue anisotropy that replenish disordered 
wavefronts and can thus be termed ‘drivers’ (Figures 1B, 1C and 1D). 

Localised rotational or focal sources are a well-described mechanism for 
replenishing AF wavelets. Rotational circuits were first described in animal 
models of ventricular and AF in seminal work by Jalife and others in the 
1990s.9 Classically, a rotor is defined as re-entry around an unexcited yet 
excitable core, activating too rapidly for surrounding tissue to keep up 
and resulting in disordered waves (‘fibrillatory conduction’). This has been 
shown in multiple animal studies using optical mapping and contact 
mapping and more recently in human atria during AF (Figures 1B and 1C).9 
These features have been reported in patients by many techniques, and 
ablation at these localised sites alone may terminate AF (Figure 1D).8,20 
The field has been confused by argument on the definitions of a rotor, yet 
this argument has little practical significance at the spatial resolution of 
clinical mapping. We use the terms rotational activation, localised re-entry 
and rotor interchangeably, leaving ultimate adjudication on this issue to 
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future biophysical, tissue-level and cellular studies. Rapid focal activity 
can also produce fibrillatory activity and may be a source or driver for AF. 
The localised source hypothesis may explain how AF sustains in small 
volumes such as mouse hearts.21 This has always been difficult to explain 
by the multiwavelet hypothesis that requires large volumes, and how 
limited ablation alone may terminate persistent AF, which is also difficult 
to explain by the multiwavelet hypothesis.7,22

Clinical Mapping of AF in Patients
An increasing variety of approaches are available to map AF. Despite 
differences in how signals are recorded and analysed, most clinical 
systems reveal organised features in AF in both atria where ablation can 
acutely impact AF in patient subsets. 

Table 1 summarises AF clinical mapping systems. Essentially all identify 
localised regions of interest in AF, such as focal impulses, rotational 
sources or other repetitive areas (including ‘localised disorder’). Spatially, 
three to five such sites are typically seen in each patient, approximately 
two-thirds of which are in the left atrium. Figures 2A, 2B and 2C show 
examples of mapped sites where ablation terminates AF. Multiple sites 
often co-exist and compete and, as shown in Figures 2D and 2E, when the 
re-entrant site (blue) dominates AF the focal site (pink) is quiescent and 
vice versa.23 The earliest clinical mapping system (focal impulse and rotor 
mapping [FIRM]), specifically designed to identify focal sources, provides 
~80% concordance with simultaneous optical mapping of human AF, with 
the caveat that electromechanical decoupling agents were used to 

eliminate atrial motion (a general requirement for optical mapping).24 
Validation studies of other clinical mapping systems are pending.

We summarise reported AF mapping methods based on whether their 
primary recording approach is global (panoramic) or in a small field of 
view (and hence sequential) in the atria. Sequential approaches assume 
that AF sources, when identified, are relatively stationary during the 
timescale of mapping or return to preferred locations repetitively if they 
meander. We also compare systems based on whether they use contact 
electrodes, which have traditionally been the gold standard, or non-
contact recordings such as body surface mapping, in which electrograms 
are computed mathematically. Randomised trial data do not yet support 
the benefits of ablating targets identified by any of these mapping 
systems, but early subset analyses of randomised trials are promising and 
several trials are ongoing (NCT04442113, NCT04473963, NCT02696265, 
NCT04428944, NCT04702451).25

Panoramic Contact Mapping
Focal Impulse and Rotor Mapping 
FIRM was the first approach to systematically map localised putative 
drivers for AF and target them for ablation (Figure 2). FIRM analyses 
unipolar electrograms of AF from wide-area (panoramic) basket 
recordings, and applies physiological filters based on monophasic action 
potential dynamics and conduction velocity to remove noise (RhythmView, 
Abbott). Initial reports of FIRM in 2011 demonstrated localised rotors and 
focal sources in nearly all patients with AF, where ablation was able to 

Figure 1: AF Shows Spatially Heterogeneous Disordered Activity
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This may result from localised regional (hierarchical) or self-sustaining (non-hierarchical) mechanisms. A: Non-hierarchical mechanisms, which would require atrial debulking to eliminate; B: AF driver 
(a hierarchical mechanism) in ex-vivo human AF revealed by bi-atrial optical mapping, which could theoretically be eliminated by localised ablation driver near the RAA with action potentials spanning 
100% of cycle length; C: Structural heterogeneities in human atria, with intramural fibrosis at the AF arrhythmogenic hub (red, driver) and surrounding intramural fibrosis (blue) on contrast-enhanced MRI; 
D: Re-entrant AF driver (hierarchical mechanism), ablation lesions (green dots) that terminated AF prior to PVI, and panoramic recording catheter (basket; left) and DE-CMR reconstruction (right). 
DE-CMRI = Delayed-enhanced cardiac MRI; IVC = inferior vena cava; LIPV = left inferior pulmonary vein; LSPV = left superior pulmonary vein; PLA = posterior left atrium; PVI = pulmonary vein isolation; 
RAA = right atrial appendage; RIPV = right inferior pulmonary vein; RSPV = right superior pulmonary vein; SVC = superior vena cava. Sources: A: Eckstein et al. 2008.67 Reproduced with permission from 
Elsevier. de Groot et al. 2016.68 Reproduced with permission from Wolters Kluwer Health; B–D: Hansen et al. 2020.69 Reproduced from Wiley & Sons under a Creative Commons CC-BY-NC license. 
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terminate or slow AF and eliminate AF in 82.4% of patients. Results from 
this mapping approach are ~80% concordant with concurrent optical 
mapping of AF in explanted human atria, with promising results of ablation 
in meta-analyses.7,24,26,27 However, some clinical studies reported very 
poor results, for unclear reasons. Nevertheless, this has motivated newer 
techniques to overcome difficulties in reading maps, to provide better 
atrial coverage during AF, to better define ablation strategies once 
mapping is complete and also to identify patients in whom these 
mechanisms are more important than others.

AF sources from FIRM mapping arise in diverse locations; one-third in the 
right atrium.11,28,29 This intriguing figure may explain the 70–80% success 
ceiling of left atrial ablation for AF and the reported benefits of right atrial 
ablation in some patients.30,31 There were few complications during 
mapping.32 In a recent randomised clinical trial (REAFFIRM), intention-to-
treat analysis showed no difference in arrhythmia freedom between FIRM 
+ PVI and PVI. However, in on-treatment analysis, the pre-specified PVI + 
FIRM group showed beneficial trends over the prespecified PVI alone 
group (77.7% versus 65.5% single procedure freedom from atrial 
arrhythmias at 1 year; p=0.09).25 These hypothesis-generating results are 
now being tested in on-going randomised trials of several AF map-guided 
ablation strategies. 

FIRM studies in 2011–2014 foreshadowed several current controversies in 
AF mapping. First, AF driver sites fluctuated over time, but some 
reappeared in conserved locations for very prolonged periods.33 While 
reappearing features were ideally prioritised for ablation, they may have 
been difficult to identify at some centres. A major focus is to reduce 
subjectivity in map reading, for which machine learning has had some 
success.34 AF sources may fluctuate if they compete with concurrent 
sites.23 From optical maps of human AF, fluctuations may also represent 
intramural migration of a driver.8 Conversely, body surface mapping 
(electrocardiographic imaging; ECGI) interprets these features as truly 
intermittent.13

Electrographic Flow Mapping
Electrographic flow (EGF) uses panoramic basket catheter recordings to 
compute the ‘average propagation of action potentials.’35 Unipolar 
electrogram data are used to reconstruct 64 discrete data streams with 
equal peak amplitudes. After filtering to reconstruct local extracellular 
voltage, EGF reconstructs an electrogram that is stated to be akin to an 
optical action potential at each electrode. One hundred consecutive 
voltage shapes covering 1.9 seconds are then fed into a Horn-Schunck 
optical flow algorithm to calculate average flow behaviour. Because of 
noise and imperfect mathematical modelling, flow vectors may scatter 

Table 1: Clinical Mapping Approaches for AF

Mapping Technique AF Type Mapped Number of 
Ablation 
Targets 

Atrial Location Source 
Characterisation

Acute 
Termination 
Percentage

Freedom from AF 
at 12 Months, with/
without PVI 

Panoramic Contact Mapping

FIRM (RhythmView)10,62,63 Paroxysmal, persistent and 
long standing persistent 

3–5 LA 70%
RA 30%
PV 24%

Stable rotations 76%, 
focal sources 24%10

56% (60% to sinus)10
RA in 22%62

In meta-analyses 
27–53% (sinus or AT)

Meta-analysis: 72.5%7 
Persistent AF RCT: 77.7% (FIRM 
+ PVI subgroup)25 

Electrographic flow mapping 
(Ablacon)35,36

Persistent AF 4–6 LA 70%
RA 30%
PV 40%

Rotational 51%, 
focal 49%

100% 
RA in 10%

Pending

Sequential Contact Mapping

CARTOFINDER (Biosense 
Webster)37,38,42

Persistent and long 
standing persistent

1–3 LA 63%
RA 27%
Non-PV 79%64

Rotational activity 70%, 
focal activations 
30–100%38,42 

63% (58% to AT)42

15% (all sinus)64 
71%38

70%64

Spatiotemporal dispersion 
(Volta Medical)43

Persistent AF 4–6 LA 80%
RA 20%
PV/LAA 80%

Regions of micro- 
re-entry

95% (85% to AT) 85% without PVI
(1.4 procedures, at 18 months)

STAR45 Persistent AF 2–3 (post PVI) LA 95%
RA 5%

Early sites of activation 29% (75% to AT) 80% (AT/AF at 18 months)

RADAR (CardioNXT) 46 Persistent AF
Longstanding AF

3.9 ± 1.3 (LA)
2.5 ± 1.4 (RA)

Inconsistent RA 
mapping 

Rotational (73%) and 
focal sites

55% 74% AF freedom at 13 months 
(on/off drugs)

Non-contact Mapping

Charge/dipole density 
(Acutus)48,65 

Persistent AF 2–3 RA not mapped
LA anterior 70%

Localised irregular 
activity 
Localised rotational 
activity
Focal activity

50–60% 73%65

Body surface, ECGI 
(CardioInsight, EP 
Solutions)13,51,66

Persistent and long 
standing persistent

3–6 LA 70%
RA 30%
LPV/LAA 82%13

LA 53%
RA 27%
Septum 20%51

Re-entries 80%
Focal breakthrough 
20%13

80% (66% to AT)13
64% (79% to AT)
(PVs 37%, LA 35%, 
RA in 28%)51

85%13

78%51

AT = atrial tachycardia; ECGI = electrocardiographic imaging; FIRM = focal impulse and rotor mapping; LA = left atrium; LAA = left atrial appendage; LPV = left pulmonary vein; PV = pulmonary vein;  
PVI = pulmonary vein isolation; RA = right atrium; RADAR = real-time electrogram analysis for drivers of AF; RCT = randomised controlled trial; STAR = stochastic trajectory analysis of ranked signals.
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widely with random vector sizes and directions. Averaging cycles 
eliminates these random vectorial components, leaving consistent EGF 
vectors that dominate the final map. 

EGF vectors may be consistent for several reasons. Flow vectors are 
constant at a given point if potentials originate from a local source, in 
which case they may travel in circular or spiral re-entry pathways, flow 
around a fixed anatomical obstacle, or follow a linear pathway. This 
principle of vector summation is a critical stated advantage over phase or 
activation mapping, where noise and artefacts cannot be easily eliminated 
by temporal averaging. The entirety of the resulting constant vector 
components is comprised in flow maps.

This approach has been proposed to distinguish primary (true) from 
secondary (passive) regions, although this has yet to be verified. Applied 
retrospectively to FIRM data, the approach identifies similar regions to 
FIRM including at sites where targeted ablation terminated AF.36 In that 
study, sites labelled as ‘active’ versus ‘passive’ did not identify sites of 
termination and non-termination. The commercially available system, 
Ablacon (Ablamap, Ablacon Inc.) is currently undergoing prospective 
evaluation to identify areas of importance for AF ablation.

Sequential High-density Contact Mapping 
CARTOFINDER
CARTOFINDER is the system from Biosense Webster integrated into current 
versions of the CARTO electroanatomic mapping system. CARTOFINDER 
uses combined unipolar and bipolar electrogram annotation to construct 

high density activation maps using either a panoramic basket catheter 
(Constellation, Boston Scientific) in early studies, or a high-density 
PENTARAY (Biosense Webster) in more recent series.37–40

Mapping using CARTOFINDER can be integrated into routine clinical 
workflows, as it requires no additional equipment if one is already using 
CARTO for AF ablation if the software module is present.41 Mapping shows 
focal and rotational activation patterns as regions of interest (ROI). 

Figure 3 shows a case of a 47-year-old man with new onset de novo 
persistent AF with extensive areas identified using CARTOFINDER pre-PVI, 
which were incorporated into the lesion set and ablated in addition after 
completion of PVI. Repeat mapping was performed to ensure modification 
of the ROI as an endpoint. 

In recent series, there does not appear to be a relationship between 
these sites and low bipolar voltage as measured by the PENTARAY, in 
contrast to earlier work using basket catheters.41,42 Given the large number 
of institutions that use CARTO mapping as part of an AF ablation, more 
systematically collected data are emerging to guide mechanistic insight 
and tailored therapy approaches using this method.

Spatiotemporal Dispersion Mapping
In 2017 Seitz et al. described the use of spatiotemporal dispersion to 
identify areas of stable electrogram patterns across the splines of a high 
density PENTARAY catheter, which spanned the AF cycle length and on 
modelling were proposed to represent electrogram fingerprints of nearby 

Figure 2: Initial Clinical Reports of Localised Sources for Persistent AF by FIRM
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A: Rotational sources for persistent AF; B: Focal sources for persistent AF. Ablation at these sites alone (approximately two to four per patient) caused termination to sinus rhythm prior to PVI; C: Multiple 
overlapping positions of basket catheters in the atria ensure adequate atrial coverage and contact in contemporary practice. CS = coronary sinus; FIRM = focal impulse and rotor mapping; IVC = inferior 
vena cava; LA = left atrium LIPV = left inferior pulmonary vein; LSPV = left superior pulmonary vein; PVI = pulmonary vein isolation; RA = right atrium; SVC = superior vena cava. Sources: A: Miller et al. 
2017.62 Reproduced with permission from Elsevier; B: Narayan et al. 2013.70 Reproduced with permission from Wolters Kluwer Health ; C: Zaman et al. 2017.71 Reproduced with permission from Elsevier.
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Figure 3: CARTOFINDER AF Mapping Using PENTARAY Prior to Pulmonary Vein Isolation

Left panel shows rotational activity (blue) spanning the junction of the right superior pulmonary vein and left atrial roof and focal activity (green) lies near the posterior antrum of the left pulmonary vein. 
Right panel shows the corresponding bipolar voltage map, with areas of heterogeneous voltage overlapping sites. White lines show planned modified pulmonary vein isolation lesion set to transect 
areas of driver and heterogeneous voltage, typically two to three targets per patient.

Figure 4: CardioNXT Mapping System Using RADAR Mapping
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A: Individual conduction vector maps for each phase; B: Combined to yield a driver density map; C: Voltage map collected during AF; D: Incorporated with this information to output the PADA map; 
E: AF successfully terminated with ablation (red and white dots) at the highlighted driver domain, typically approximately four per patient. LA = left atrium; PADA = probabilistic atrial driver assessment; 
RADAR = real-time electrogram analysis for drivers of AF. Source: Choudry et al. 2020.46 Reproduced with permission from Wolters Kluwer Health.



Challenges for AF Mapping

ARRHYTHMIA & ELECTROPHYSIOLOGY REVIEW
www.AERjournal.com

rotational drivers.43 Targeting these areas, without the need for activation 
assignment or annotation of electrograms, enabled high acute termination 
rates and high freedom from AF in a single-arm trial versus historical 
results from PVI only. Notably, the authors did not perform PVI in this 
series, with only spatiotemporal dispersion areas being targeted for 
ablation, but subsequent series have found it additive to PVI in terms of 
clinical efficacy.43,44

This approach has now been automated using artificial intelligence 
classification tools in a software system called Volta (Volta Medical), 
compatible with any multipolar catheter, currently under investigation in 
the Ev-AIFIB trial (NCT03434964) at eight sites in France.

Stochastic Trajectory Analysis of Ranked Signals 
Stochastic trajectory analysis of ranked signals (STAR) mapping identifies 
atrial regions in AF that most often precede activation of neighbouring 
areas, calculated from multiple individual wavefront trajectories. By 
gathering data from hundreds of activations, a statistical model is formed, 
permitting regions of the atrium to be ranked by the amount of time that 
their activations precede those of adjacent regions. 

The method imports electrogram signals, corresponding chamber 
geometry and catheter location data from electro-anatomical mapping 
systems. STAR maps allow the earliest sites of activity (ESA) to be identified 
on a digital replica of atrial geometry. For a site to be classified as an ESA 
it must lead for >75% of the time. STAR has been applied to panoramic 
contact baskets and as small multipolar mapping catheters. One 

‘advantage’ of the approach is that it does not discriminate whether a site 
is rotational, focal or shows other activation patterns. The ablation 
strategy of targeting of areas of ESA is the same for each. In a recent 
single-centre study of 35 patients, after PVI an average of 2.6 ± 0.8 ESA 
were ablated. Out of the 86 STAR maps created post-PVI, the same ESA 
was identified on 73.8 ± 26.1% of maps. ESAs that resulted in AF termination 
were more likely to be identified on both pre- and post-PVI maps. During 
a follow-up of 18.5 ± 3.7 months, 28 (80%) patients were free from atrial 
tachycardia/AF.45 Additional data on this technique are pending.

Real-time Electrogram Analysis for Drivers of AF
Another sequential high density mapping method for AF is termed real-
time electrogram analysis for drivers of AF (RADAR). Using the coronary 
sinus as a reference, this system sorts and compiles electrograms from 
various anatomical locations to create a panoramic 3D conduction vector 
map that corresponds to each of a series of numerically calculated ‘phases’ 
or patterns of coronary sinus activation. Distance between electrodes is 
calculated using positions obtained from the electroanatomical mapping 
system. Using these distances and depolarisation timings at each 
electrode, conduction vector velocities are calculated between electrode 
pairs. An average of 587 electrode locations are used to map the chamber. 
Conduction vectors are computed using combinations of all of these 
electrode positions and depolarisation timings. 

The commercial system (CardioNXT, CardioNXT.) computes sites of 
rotational activity and focal impulses from individual conduction vector 
maps, and combines them to create a driver density map (Figure 4). When 

Figure 5: Non-contact Mapping Using Charge Density
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A: AcQMap catheter with 48 ultrasound transducers and electrodes; B: Ultrasound geometry created by rotation of the catheter in the centre of the chamber; C: Activation patterns projected on 
geometry by AcQMap are categorised as focal (left, with line of block in dash), localised rotational activation (middle) or localised irregular activity (right), typically two to three per patient. LAA = left 
atrial appendage; LIPV = left inferior pulmonary vein; LSPV = left superior pulmonary vein; MV = mitral valve; RIPV = right inferior pulmonary vein; RSPV = right superior pulmonary vein. Source: Upper 
panel: Willems et al. 2019.72 Reproduced with permission from Wolters Kluwer Health. 
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rotational or focal activity is detected in voltage border zones, the region 
is highlighted. These data are fused to create a single probabilistic atrial 
driver assessment map that incorporates repetition of drivers and areas of 
voltage transition to highlight putative AF driver domains, which can then 
be targeted for ablation.46 

Initial results from ablation using this approach show 68% off-drug 
freedom from AF and 74% when on/off drug after a 13-month follow-up in 
64 patients treated.

Non-contact Charge Density Mapping
Non-contact charge density mapping is an alternative approach to map 
non-stationary AF mechanisms, inspired by the non-contact technology 
used to map focal ventricular ectopics and appreciation of the membrane-
associated charge origin of the cardiac electrical field.47 

The AcQMap (Acutus Medical) catheter incorporates 48 ultrasound 
emitters used in real time to generate a 3D anatomy by rotation of the 
assembly in the centre of the atrial chamber (Figure 5). The physical 
principle that underpins this approach is that the charge-layer is the true 
source of the cardiac field, so that calculated charge density provides the 
most accurate source localisation. Unipolar electrograms (150 ks−1) are 
acquired and the charge density calculated at fixed times using a 
governing Poisson formulation and displayed as a movie on a dedicated 
console (Acutus). 

The signals acquired provide acceptable correlations against contact 
electrograms (correlations >0.80).48,49 The system identifies areas in AF 
which exhibits localised rotational activity, focal beats and localised 
irregular activity, the most common patterns. Ablation at these areas has 
shown 72.3% freedom from AF at 12 months compared to PVI alone 
(Table 1) in an international multicentre series.50

Figure 6: ECG Imaging Provides a Non-contact Workflow for AF Mapping
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A: Pre-procedure CT registers vest with surface torso anatomy. B: Aggregated density plots of driver activity, showing red areas of repetitive activity, typically four to six per patient. 
ECGI = electrocardiographic imaging. Source: A: Ramanathan et al. 2004.73 Reproduced with permission from Springer Nature. B: Haissaguerre et al. 2014.13 Reproduced with permission from Wolters 
Kluwer Health.

Phase maps of reconstructed (virtual) electrograms show singularity point on posterior left atrial 
shell, with reconstructed electrograms numbered 1–13; Source: Haïssaguerre et al. 2014.13 
Reproduced with permission from Wolters Kluwer Health. 

Figure 7: Phase Maps of Reconstructed Electrograms
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Non-invasive Body Surface Mapping 
Electrocardiographic Imaging
The use of non-invasive body surface mapping using the inverse solution 
can resolve cardiac electrograms from multipolar ECGs acquired from the 
chest wall. The most studied approach clinically involves a 252-electrode 
surface vest (ECVUE, CardoInsight, Medtronic), which is placed on the 
patient before they undergo a non-contrast thoracic computed 
tomography scan to obtain high-resolution 3D images of the individual 
biatrial geometry and the relative electrode positions via segmentation.

The system reconstructs biatrial unipolar electrograms from torso 
potentials using mathematical computation. Activation maps are then 
computed by using the traditional unipolar electrogram intrinsic 
deflection-based (−dV/dTmax) method. Surrogates of the depolarisation 
and repolarisation wave fronts have also been computed from the 
isophase values equal, respectively, to π/2 and –π/2.13 Movies of activation 
and/or phase can then be used to guide ablation (Figures 6 and 7). 

ECGI maps are reported to show ‘driver domains’ bi-atrially, which when 
targeted may reduce the complexity of AF leading ultimately to atrial 
tachycardias. This approach has been associated with higher freedom 
from AF compared to a historical stepwise ablation cohorts, although with 
up to a 50% recurrence rate with atrial tachycardia.13,51

Body Surface Mapping
A related technique uses body surface recording from a reduced 67 lead 
recording system without using CT scans to localise electrodes and has 
demonstrated singularity points on the body surface which become stable 
when filtered at the highest dominant frequency.52

Studies confirm the presence and detection of AF drivers using this 
approach when compared to panoramic basket catheters and ablation 
outcomes using this methodology either as a standalone or in combination 
with invasive mapping methods are awaited.53,54

Promising Novel Methods
The plethora of technologies seeking to identify AF mechanisms to guide 
ablation meet the unmet need to extend beyond PVI to treat patients with 
persistent AF. Another such system with similar early promising data is 
representation of electrical tracking or origin mapping, which uses a high-
density spiral catheter (AFOCUS II catheter, St Jude Medical) to identify 
spatiotemporal stability in persistent AF.55 Aside from novel mapping 
systems to visualise AF propagation, using an electrogram visualisation 
tool already available in CARTO (Ripple mapping), organised activation 
patterns detected by the Orion basket catheter in Rhythmia (Boston 
Scientific), consistent activation patterns detected on a PENTARAY and 
frequency analysis of electrograms have also been reported.56–60

Future Directions
Despite decades of research into fibrillatory propagation, clinical 
translation into therapy beyond PVI remains debated. Any AF mapping 
strategy must be explicable and confer additive value. Future AF mapping 
research must thus explain the interaction with pulmonary-vein-based 
mechanisms. Although AF termination is increasingly reported as an 
endpoint of these studies, it remains unclear whether this acute endpoint 
confers long term clinical benefit. How and why AF terminates in some 
patients but not others is an area we feel is vital towards developing a 
common vocabulary and framework to understand AF. Finally, as ablation 
technologies themselves are rapidly evolving to be more destructive yet 
safer, it is essential to develop robust endpoints and efficient approaches 
to map and ablate mechanistically important areas. We believe that better 
patient selection, by non-invasive imaging and body surface techniques, 
will help improve the impact of mapping studies in the future to those 
patients for whom an empirical lesion set, such as PVI is insufficient and 
better define substrate at an individual patient level.61

Conclusion
There is considerable interest in mapping AF to improve the results of 
anatomically based ablation in patients with persistent AF. A plethora of 
basic science as well as clinical studies support the role of spatial regions 
in sustaining AF. Studies are needed to clarify why ablating putative drivers 
produce widely differing results between centres, which has limited the 
ability of randomised trials to show benefit. The field could be advanced by 
identifying patients most likely to benefit from driver ablation, to standardise 
mapping and interpretation across centres, and to standardise strategies 
for ablation of potential drivers. Together, such studies may enable more 
precise map-based phenotyping of AF patients, and hence improved 
outcomes from ablation and pharmacological therapies. 

Clinical Perspective
•	 Standard pulmonary vein isolation and empirical ablation 

strategies approach a ceiling of efficacy in persistent AF.
•	 AF mapping is increasingly used to identify putative areas of 

mechanistic importance that often reside beyond the pulmonary 
veins.

•	 Many mapping approaches exist, each with their own limitations 
and strengths.

•	 Similarities are emerging amongst the patterns observed 
between techniques and direct comparison to gold standard 
ex vivo techniques suggests patterns are real.

•	 Clinical outcome data are promising when compared to 
pulmonary vein isolation alone but yet to be confirmed in 
prospective randomised control trials.
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