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ABSTRACT
It is increasingly recognized that local protein synthesis (LPS) contributes to fundamental aspects of 
axon biology, in both developing and mature neurons. Mutations in RNA-binding proteins (RBPs), as 
central players in LPS, and other proteins affecting RNA localization and translation are associated with 
a range of neurological disorders, suggesting disruption of LPS may be of pathological significance. In 
this review, we substantiate this hypothesis by examining the link between LPS and key axonal 
processes, and the implicated pathophysiological consequences of dysregulated LPS. First, we describe 
how the length and autonomy of axons result in an exceptional reliance on LPS. We next discuss the 
roles of LPS in maintaining axonal structural and functional polarity and axonal trafficking. We then 
consider how LPS facilitates the establishment of neuronal connectivity through regulation of axonal 
branching and pruning, how it mediates axonal survival into adulthood and its involvement in neuronal 
stress responses.
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Introduction

The nervous system is an interconnected network of billions 
of individual cells, which is key to its function. As central 
network building blocks, neurons not only conduct signals to 
relay information (electrically within and chemically between 
cells), but also generate, maintain, and adapt inter-neuronal 
connections to enable dynamic information storage and 
retrieval (i.e., memory and learning). The sites of connection, 
synapses or neuroeffector junctions, where the axon terminal 
of one neuron meets the dendritic spine or soma of another 
neuron or a target cell, are key for cognition, as well as for 
control and coordination of the body [1,2]. Aberrant network 
assembly or progressive network disintegration, due to failure 
in the establishment or maintenance of synaptic connections, 
results in neurodevelopmental and neurodegenerative disor
ders, respectively.

In this review, we focus on the idea that the local synthesis 
of new proteins (local protein synthesis; LPS) in axons by 
translation of localized mRNAs is essential for network 
assembly and its maintenance in adulthood. Evidence that 
axons can synthesize proteins locally was first reported in 
axons in the 1960s using metabolic labelling methods [3,4,5], 
but has only become widely accepted in recent years. Early 
scepticism sprang from concerns about sample (axonal) purity 
due to technical difficulties in obtaining axon-only material, 
and the paucity of ultrastructural evidence for the existence of 
ribosomes in axons. Technical advances in recent years have 
overcome these difficulties, enabling the collection of pure 

axons in vitro [6,7], the use of sophisticated RNA molecular 
analysis (transcriptomics and translatomics) [8–10] and the 
acquisition of ultrastructural evidence of ribosome localiza
tion in axons [9,11,12,13]. As a consequence, evidence now 
abounds that thousands of diverse sets of mRNAs reside and 
are translated in axons of both central nervous system (CNS) 
and peripheral nervous system (PNS) neurons. However, the 
exact contribution of axonal translation to function in vivo 
has been slow to emerge due to the scarcity of approaches that 
enable precise and controlled inhibition of protein synthesis 
in axons without affecting cell bodies. The first in vivo experi
ment where the axonal translation of a specific mRNA was 
blocked was done in the Xenopus vertebrate visual system 
[14]. Remarkably, without the translation of a specific inter
mediate filament protein (Lamin B2), the retinal axons degen
erated; hence, the notion that LPS was needed for axon 
maintenance was born. It is now known that the axonal 
transcriptome consists of several groups of mRNAs with 
related functions, which are bound by particular RNA- 
binding proteins (RBPs) [15]. Meanwhile, research on pro
teins associated with neurodegenerative diseases has identified 
an increasing number of disease-associated RBPs, such as 
Fused in Sarcoma (FUS) and Survival of Motor Neuron 
(SMN) [16,17,18], providing a parallel strand of evidence 
linking axon health to RNA regulation. The role of four of 
these disease-associated RBPs, namely FUS, SMN, Fragile-X 
Mental Retardation Protein (FMRP), and TAR DNA-binding 
protein 43 (TDP-43), in local translation in axons and den
drites has recently been reviewed [19]. Here, we discuss the 
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intertwining strands of research on axonal LPS and RBP 
dysregulation, and in particular, explore the relevance of 
their combined findings to neurological disorders. We focus 
on neurological disorders with genetic components, examin
ing to what extent the genetic alterations associated with these 
diseases (in RBPs as well as other proteins) support 
a causative role of LPS in pathogenesis or disease progression.

Long-term neural networks rely on cellular 
specializations

In this section, we briefly examine some specialized features of 
neurons that underpin neural network assembly and function, 
particularly the subcellular processes crucial for the in vivo 
development and maintenance of neuronal processes – den
drites and axons – which, collectively, we refer to here as 
‘neurites’. In subsequent sections, we discuss how some of 
these requirements are met by LPS.

The formation of a large number of synaptic connections 
between cells with cell bodies that may be far apart requires 
neurons to be exceptionally structurally and functionally 
polarized. The average human neocortical neuron forms 
around seven thousand different synapses with multiple dif
ferent cells [20], and each synaptic cleft has to be narrow 
enough to allow rapid and specific signal transmission relying 
on neurotransmitter diffusion, which results in a breadth of 
around 20 nm in the central nervous system [21]. Such spatial 
organization can only be possible if neurons are morphologi
cally polarized: neurons extend long and sometimes branched 
axons towards the soma or highly branched dendrites of 
recipient neurons. Axons in particular can reach great lengths, 
with the longest in the human body being those of motor 
neurons (up to one meter in length). This length has two 
further consequences: it limits the speed of macromolecule 
exchange between axon terminals and the soma, and it places 
distal parts of axons in different local environments than the 
soma. Therefore, axons require (i) an efficient active transport 
mechanism to achieve a stable supply of locally required 
factors (including mRNAs, proteins, and organelles), which 
must function efficiently in the spatially confined environ
ment of elongated axon. In practice, the fastest axonal trans
port mechanisms can reach speeds of around 400 mm/day 
[22], which is much faster than passive diffusion (especially 
for molecules with diameters of more than 40 nm, for which 
the diffusion coefficient drops below 1 μm2/s in nerve cyto
plasm [23]). Furthermore, as distal axons can experience very 
different stimuli than the soma, they need (ii) the ability to 
independently remodel or change their macromolecular 
components.

To achieve almost immediate information relay from den
drites to axons at a speed beyond what can be reached by 
active transport, neurons are electrically excitable. In order 
for information to be transferred between cells, even fast 
axonal transport is insufficient: when a hand is withdrawn 
reflexively from a hot surface, for instance, a signal must 
travel from the hand to the spinal cord and back to relevant 
muscles, which is well over a meter of total path length and 

so would take several days by active transport [22]. In con
trast, the unidirectional transmission of changes in mem
brane potential (action potentials) along axons can reach 
speeds of over 100 m/s [24], and so can accomplish this 
information transfer in well under a second. However, excit
ability comes at an energetic cost. The restoration of dissi
pated ion gradients following action potentials accounts for 
the majority of the large neuronal energy expenditure on 
signalling [25]: it has been estimated that three-quarters of 
neuronal energy consumption are spent on signalling [26], 
which is not trivial, considering the central nervous system 
accounts for 20% of the human body’s energy consumption, 
but for only 2% of its weight [27]. In addition to membrane 
potential management, this high energy consumption is 
accounted for by vesicle recycling, neurotransmitter synth
esis, and axonal transport [28]. Therefore, another require
ment for neuronal function arises, namely that (iii) high 
energy consumption must be supported throughout neurites. 
This requires the continual presence of a population of 
mitochondria in neurites.

In order for neuronal networks to learn, they must be able 
to adapt the nature of connections according to various sti
muli, as changes in synaptic strength (plasticity) are thought 
to be important for (efficient) learning and memory [2,29]. 
This is one of the ways in which neuritic (sub)compartments 
need to be able to locally change their macromolecular com
ponents (ii): as part of synaptic plasticity, components should 
be changed to alter local synaptic function in response to 
changes in activity. Furthermore, neurons should be able to 
add new connections, reduce unused connections, and 
remove damaged connections. Therefore, synaptic structural 
plasticity calls for (iv) tightly regulated local ‘death-like’ path
ways to remove synapses and even whole axons, as well as for 
mechanisms to add new synapses.

Lastly, for neuronal networks to store memories long-term, 
neurons have to be resilient against a range of insults, in order 
to sustain neural connectivity throughout the organism’s life 
span. Consequently, neurons are long-lived cells, particularly in 
comparison with other cell types, such as the intestinal epithe
lium or red blood cells, which are frequently ‘worn out’ and 
replenished by reservoirs of stem cells. However, neurons can
not be similarly replaced, as new neurons could not readily 
integrate into the neuronal network without loss of the infor
mation encoded by pre-existing synaptic connections. Notably, 
adult neurogenesis and subsequent integration of newly formed 
neurons do in fact occur in the mammalian brain, but only in 
the olfactory bulb and dentate granule cell layer of the hippo
campus, in a process that is modulated by circuit activity [30]. 
Therefore, the following is required to appropriately maintain 
neuronal networks: (v) neuronal stress responses should adopt 
anti-apoptotic strategies to enhance stress tolerance and to 
avoid cell death, and (vi) neurons must habituate to and 
mitigate cellular damage accumulated during aging. These 
unique stress responses have to affect local processes in neur
ites, including local replenishment and activation of anti-stress 
factors that involve LPS and post-translational modifications 
(PTMs), which also become altered with age.
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LPS supports multiple axonal functions

LPS enables neurites to autonomously remodel their pro
teome in response to local stimuli, which means it can provide 
a way to address some of the requirements outlined above. 
This is particularly true for the axon [31], which is the longest 
neurite and contains the largest cytoplasmic volume of any 
compartment of the mature neuron [32,33].

LPS can be useful to maintain local axonal proteome 
homeostasis, but its products may also have unique properties 
that carry functional information. These can arise from their 
association with local components of signalling cascades or 
from unique post-translational modifications [34]. For 
instance, a study in cultured primary hippocampal neurons 
showed locally produced arginyltransferase 1 (ATE) in the 
growth cone arginylated adjacent β-actin proteins that were 
also locally synthesized, and that the arginylation of β-actin in 
neurites is important for growth cone area size (spreading) 
and neurite outgrowth [35].

A wide range of mRNAs has been demonstrated to be 
locally translated, which contribute to a variety of sub 
cellular functions and neuronal specializations beyond synap
tic plasticity. In the axon, locally synthesized proteins have 
been shown to contribute to axon navigation, maintenance 
and regeneration [36]. Specifically, LPS regulates a range of 
essential processes in the axon [31], including vesicle traffick
ing, cytoskeletal remodelling and mitochondrial integrity [37].

Notably, the translatome is not static, which allows it to 
support a range of functions. Genome-wide analyses have 
revealed that the axonal translatome changes during the 
course of development, in step with evolving axon function 
and behaviour. In mouse retinal ganglion cell (RGC) axons 
in vivo, for example, the mRNAs translated in early growth 
stages are associated with axon elongation, followed by 
branching then synaptogenesis [9]. The context-dependent 
composition of the axonal translatome is further demon
strated by functional enrichment Gene Ontology (GO) and 
KEGG pathway analyses of published datasets describing the 
abundant localized mRNAs and locally synthesized proteins 
in axons at different developmental stages in different neuro
nal types [8–10,38–43] (Fig. 1). mRNAs of ribosomal proteins 
are highly enriched in axons of all stages, as reported by 
several studies [9,10,40,44]. However, only a subset is bound 
to ribosomes, according to an axon-TRAP study, and their 
translation rates decline synchronously after the axonal 
branching stage [9]. It has been further demonstrated that 
several ribosomal proteins, particularly the surface compo
nents of each subunit, are locally synthesized upon cue sti
mulation and incorporated on-site into axonal ribosomes 
[44]. The functional role of this axonal ribosome remodelling 
is not yet known, but it could extend the lifetime of ribosomes 
and, perhaps most intriguingly, could ‘tune’ them to translate 
specific mRNAs [45].

In addition to ribosomal proteins, axonal localization and 
translation of mRNAs encoding other proteins with roles in 
LPS are also revealed by the analyses, including those regulat
ing mRNA metabolism (e.g., ubiquitin and proteasome com
ponents), those transporting and localizing mRNA (e.g., 
cytoskeletal proteins and RBPs), those forming part of the 

translation machinery (e.g., eukaryotic initiation and elonga
tion factors), and those required for energy supply (e.g., 
mitochondrial proteins). In addition, though mRNAs encod
ing synaptic components are not strongly enriched, these 
proteins, including synaptosomal-associated protein 25 
(SNAP25) and vesicle-associated membrane protein 2 
(VAMP2), are more abundant in the local translatome 
[9,39]. Furthermore, some components of the oxidative stress 
response may be locally synthesized to respond to local per
turbations of energy supply and mitochondrial function.

Besides housekeeping proteins produced via basal transla
tion (Fig. 1), the stimulus-dependent translatome is also a large 
constituent of axonal proteome. Stimulus-dependent LPS con
tributes to a range of axonal functions: it mediates axon gui
dance and arborization, supports axon maintenance and 
survival, regulates presynapse formation and synaptic plasticity, 
and aids the response to stress and injury [31,46,47]. During 
axon pathfinding in development, asymmetric localization and 
translation of β-actin mRNAs in the growth cone can be 
observed in cultured Xenopus RGCs upon 5–10 min gradient 
stimulation with the guidance cue Netrin-1 or brain-derived 
neurotrophic factor (BDNF), which facilitates growth cone 
turning [48,49]. As detected by metabolic labelling, 1-h cue 
stimulation of developing RGC axons induced a 10–80% 
increase in the amount of locally synthesized proteins [14]. 
A recent proteomic study of axonal nascent proteome showed 
that among 1000 proteins detected in isolated axons, approxi
mately 350 proteins were locally synthesized. The translation 
rate of over 100 of them changed significantly upon guidance 
cue stimulation and the pattern of changes varied greatly 
depending on the types of the cues and lengths of stimulation 
[39]. In mature neurons, LPS can provide a basis for hetero
geneity of synapses made by the same neuron: for instance, LPS 
enables the activity-mediated upregulation of the key presynap
tic kinase CamKII in the Drosophila larval neuromuscular 
junction [50]. In the model system of Aplysia sensory-motor 
neuron synapses, presynaptic LPS has been shown to support 
synaptic plasticity: branch-specific long-term facilitation in 
response to localized exposure of serotonin requires presynap
tic LPS [51], for instance of the peptide neurotransmitter sen
sorin [52]. Moreover, different aversive stimuli, including acute 
injury or chronic diseases, elicit distinct landscapes of the local 
translatome, opening up new opportunities to discover thera
peutic targets [8,42,47,53].

RBP dysfunction in neurological disorders indicates 
compromised LPS may be causative

Considering the range of critical processes in which LPS is 
involved in neurons, including in axons, it is not surprising 
that it is disturbed in multiple neurological disorders, and that 
this disturbance may be part of the pathomechanism(s) of these 
disorders. Indeed, a bioinformatics search among the highly 
abundant axonally localized or translated mRNAs identifies 
a number of genes associated with various neurological disor
ders (Fig. 2), including amyloid β precursor protein (APP) and 
ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) related to 
Alzheimer’s disease (AD) and Parkinson’s disease (PD) sus
ceptibility [9,39,43]. ‘Neurological disorder’ is a broad term 
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Figure 1. Selective GO terms and KEGG pathways in most abundant axonal transcripts, ribosome-bound mRNAs and nascent proteins.
Top 100 annotated genes with most axonal reads in 16 datasets from 9 independent studies (4 microarray, 3 RNA-Seq, 1 Ribo-Seq and 1 nascent proteomic studies) 
are included in this analysis. The heat map shows the enrichment of GO terms and KEGG pathways relevant to the discussion in this review. The colours of the heat 
map represent the log2 value of the fold enrichment. The numbers on the heat map indicate the total number of genes among the top 100 genes from each dataset 
associated with the GO term/KEGG pathway and those with a Benjamini-Hochberg value <0.05 are shown in bold. Human orthologs of the top 2–5 genes associated 
with each GO/KEGG category ranked by their appearance frequency are indicated next to each row. The enrichment analysis was carried out with DAVID v6.8. 
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referring to any condition in which the function of CNS and/or 
PNS deteriorates. It covers a wide range of diseases, which 
place a significant burden on patients and society: neurodeve
lopmental disorders such as Fragile X syndrome (FXS), autism 
spectrum disorder (ASD), and schizophrenia, neurodegenera
tive disorders like AD, PD, and amyotrophic lateral sclerosis 
(ALS), and acquired disorders, addictions, and injury- or 
pathogen-induced disorders. Familial neurological disorders 
are associated with highly or completely penetrant mutations, 
which can be used not only to develop in vitro or in vivo 
disease models, but also link the disease to perturbations of 
certain cellular processes.

Interestingly, structural and functional alterations of RBPs 
are implicated in neurodevelopmental and neurodegenerative 
disorders, which strongly points to dysregulation of gene 
expression as a key feature of diseases. For instance, FXS is 
caused by loss-of-function mutations in the neuronal RBP 
FMRP [54]. However, for many neurological disorders in 
which RBPs can be found mutated, the genetic basis of famil
ial disease variants is less readily interpreted than for FXS.

The case of ALS illustrates the two main reasons why 
genetic predisposition of a disease does not always readily 
lead to a hypothesis of pathogenesis [55]. Firstly, the genetic 
basis of familial ALS (fALS) is heterogeneous. Mutations of 
genes encoding the RBPs FUS and TDP-43 are prevalent 
among fALS cases. Since RBPs are key to localization of 
mRNAs and the regulation of translation, their altered func
tion has, in some cases, been linked to the perturbation of LPS 
in axons [18,56–59]. However, highly penetrant mutations 
have also been discovered in other genes, such as in those 
encoding the following proteins: C9orf72 [60,61], the antiox
idant enzyme superoxide dismutase (SOD1) [62], the motor 
protein kinesin heavy chain isoform 5A (KIF5A) [63], tubulin 
isoform alpha 4A (TUBA4A) [64], and the actin-associated 
protein profilin 1 [65]. Secondly, mutant proteins can be 
expressed in (or lost from) a range of cell types, but the 

disease phenotype appears restricted to nervous tissues or 
even certain types of neurons. For instance, FUS and TDP- 
43 are ubiquitously expressed in all cells [66,67], but their 
mutations do not affect all tissues or even all neuronal sub
types. Though motor neurons are primarily affected, the 
extent of degeneration of different motor neuron subtypes 
varies greatly, with for instance spinal cord motor neurons 
degenerating relatively early in disease and ocular motor 
neurons remaining unaffected up to the end stage of the 
disease [68,69]. However, it should be noted that though the 
diagnosis of ALS is based on motor symptoms, ALS is increas
ingly recognized to be associated with a range of non-motor 
phenotypes in patients: for instance, up to half of ALS patients 
display some form of cognitive impairment, with 15% meet
ing the criteria for frontotemporal dementia (FTD) [70]. In 
fact, ALS shares many pathological features as well as genetic 
risk factors with frontotemporal dementia (FTD), which like 
ALS is associated with mutations in and aggregates of TDP- 
43, and these diseases are considered to be part of the same 
‘disease continuum’ of TDP-43 proteinopathies [69]. In such 
co-occurring ALS/FTD, non-motor neuronal subtypes are 
also affected: TDP-43 inclusions have been identified in the 
cortex and hippocampus of both sporadic and C9orf72- 
associated ALS/FTD patients [71].

Then, the postulation that RBP dysfunction can be causative 
in multiple neurological disorders, such as ALS, leaves two 
unanswered questions. Firstly, why do certain mutations in 
widely expressed RBPs such as FUS exert particularly strong 
effects on neurons? Secondly, why does RBP dysfunction result 
in the same phenotype as mutations of other disease-related 
proteins, such as cytoskeleton-associated proteins?

To begin to answer these questions, the functions of RBPs in 
neurons require further consideration. Typically, an individual 
RBP is functionally versatile and some of these functions may be 
unique to neurons (e.g., due to the presence of neuronally 
expressed interaction partners). Alternatively, the RBP’s functions 

Figure 2. Disease-associated genes enriched in axonal transcriptomes and translatomes.
A table shows human orthologs of axonally enriched transcripts or nascent proteins dysregulated in common neurodegenerative or neurodevelopmental diseases 
among the 100 most abundant genes in each dataset. Dysfunction of the indicated genes either causes or increases susceptibility to the disease, based on the 
corresponding OMIM disease entries. 
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may be exceptionally important in neurons. Neuropathology 
caused by RBP loss-of-function mutations indicates the protein 
performs an essential role on which neurons rely, whereas for 
a gain-of-function mutation (such as aggregation), the neuron 
would be particularly sensitive to this effect. The latter is best 
illustrated by proposed pathogenesis of neurodegenerative disor
ders: accumulation of protein deposits containing RBPs is 
a hallmark of multiple neurodegenerative disorders, such as FUS 
and TDP-43 aggregates in ALS [72,73,74,75]. Meanwhile, loss-of- 
function models have also been put forward: functional loss of 
FUS may affect mRNA stability at dendritic spines and cause 
axonal transport defects [76]. Therefore, there has been a long 
debate whether the pathological aggregate is in itself toxic, or 
whether loss of RBP function is detrimental. However, recent 
advances in genetic and pathophysiological studies suggest the 
two theories are not mutually exclusive and their distinction may 
be blurred, as heterogenous genetics can sometimes converge to 
shared downstream effects observed in a disease, such as impaired 
synaptic connectivity.

In the following sections, we provide a summary of evi
dence and our speculations on how functional alteration of 
RBPs and other disease-associated proteins may lead to LPS 
dysregulation in neurites. Using key cellular processes in 
axonal compartments as examples, we examine potential 
links between aberrant LPS and observed phenotypes of com
mon neurological disorders, and propose that LPS may serve 
as a crucial mediator in neuronal health and viability.

Polarity and axonal trafficking

The length and narrowness of axons create specific physical 
challenges for the transport of cargos, including mRNAs and 
translational machinery as well as organelles and proteins. 
Firstly, the narrowness of axons largely limits the distribution 
of materials by simple diffusion, as it affects flow – the diameters 
(calibres) of adult axons are typically between 0.1–1 µm for 
unmyelinated axons [77]. According to Stokes’ law, the opposing 
force impeding an object’s motion in a viscous fluid is propor
tional to the object’s size, the fluidic viscosity, and the flow 
velocity. However, boundary effects (a reduction in flow velocity 
as fluids approach the wall) play a much more significant role in 
a narrow cylindrical geometry than a large space (such as a cell 
body). Therefore, moving cargos encounter greater opposing 
forces within axons than within the soma, where most of the 
molecules are relatively far from the plasma membrane [78]. 
This is best demonstrated by comparing the speed of fast axonal 
transport (2–5 µm/s) [79] and diffusion coefficient of a GFP 
molecule in the cytoplasm (7.7–126 µm2/s) [80,81,82]. 
The second challenge to axonal cargo trafficking is posed by 
local macromolecular crowding in the axoplasm, which is 
packed with a dense cytoskeletal network and both static and 
moving cargos. For instance, membrane-bound and membrane
less organelles in axons range from 100 nm to 1–2 µm in 
diameter, which is close to the average axon calibre of around 
1 µm [77]. Local crowded regions in axons may act as physical 
barriers, resulting in a decrease of cargo velocity or complete 
stalling.

As a consequence of this limited diffusion, neurons have 
evolved unique strategies to facilitate the interlinked processes 

of RNA localization, local translation and axonal transport. 
These include the establishment of a robust scaffold to maintain 
axon morphology, and of an active transport network that can 
counteract drag forces and respond to changes in crowdedness 
[83,84]. Cytoskeletal elements, motor proteins and adaptor pro
teins together form the basis of these structures. In addition, 
RBPs are key for axonal RNA transport through interaction 
with motor and adaptor proteins. It is now clear that disruption 
of axonal transport is closely associated with multiple neurolo
gical disorders [85,86,87], as are structural and functional 
impairments of the main axonal cytoskeletal elements 
[83,87,88].

In this section, we discuss some of the cytoskeleton-related 
processes compromised in diseased neurons, dysregulation of 
which results in errors in mRNA localization and therefore LPS 
(Fig. 3). Interestingly, the interaction between LPS and axonal 
transport can at times be bidirectional, as a number of studies 
have revealed axonal localization of mRNAs encoding cytoskele
tal building blocks (i.e., neurofilament proteins, β-actin, tubulins) 
and their associated proteins (e.g., RhoA, cofilin, tau), some of 
which have been shown to be locally translated [89]. Impaired 
local synthesis of these cytoskeletal components and modulators 
would be expected to lead to disrupted axonal trafficking and/or 
disease progression. However, the concept of a direct link 
between axonal expression of cytoskeletal proteins and pathogen
esis of neurological disorders remains largely hypothetical. To 
explore this hypothesis, we will next highlight some cytoskeletal 
components suggested to be locally synthesized.

The axonal cytoskeleton maintains axon structure and 
organization

To maintain structural and functional polarity and sustain 
transport of cargos of various sizes, it is important that 
axons are mechanically resilient: axon shafts do not collapse 
around their circumferences or break during axon elongation 
or upon deformation by surrounding cells and tissues [90]. 

Figure 3. Mechanisms to sustain axonal transport related to LPS. 
Neurofilaments and membrane-associated periodic skeleton regulate axon struc
ture (upper segment); microtubule and motor protein-based active transport 
maintains cargo trafficking (middle segment); modulation of axonal RBP, RNA 
and organelle density controls local macromolecular crowdedness (lower seg
ment). Perturbation of these processes can result in defective axonal trafficking, 
as indicated by pink axon segments.

RNA BIOLOGY 941



The axon diameter is mainly regulated by neurofilaments and 
actin filaments [91]. Currently, the correlation between axon 
calibre and neuronal vulnerability in neurodegeneration is still 
controversial [92], but retaining axonal radial structure and 
elasticity is undoubtedly important for intra-axonal trafficking 
and therefore LPS.

Neurofilaments are a type of intermediate filaments most 
abundant in axon shafts, which structure and organize axons 
in several ways. Firstly, they are a major determinant of axon 
calibre, particularly for large axons: a large axon diameter is 
often associated with a large number of axonal neurofila
ments and increased inter-neurofilament spacing [93,94], 
and loss of neurofilaments results in a reduction in axon 
calibre and conduction velocity, leading to impairments in 
axon development, survival, and regeneration [95]. 
Secondly, neurofilaments interact with axonal organelles 
and cytoskeletal components. For instance, neurofilaments 
serve as scaffolds for docking and positioning of endoplas
mic reticulum (ER), endosomes, mitochondria and synaptic 
vesicles in axons [96]. One study in cultured dorsal root 
ganglion (DRG) neurons demonstrated that Charcot-Marie- 
Tooth disease (CMT)-associated mutations of the low- 
molecular-weight neurofilament protein (NF-L) decreased 
mitochondrial lengths and disrupted mitochondrial fusion 
and movement in axons [97].

The majority of axonal neurofilament subunits are synthe
sized in the soma and subsequently transported into axons 
along microtubules [98]. Accumulation of neurofilaments in 
the cell bodies and proximal axons, due to an imbalanced 
expression of neurofilament subunits, altered PTMs of neu
rofilament proteins, or impaired axon trafficking has been 
identified as a common feature in multiple neurological dis
orders, including CMT, ALS, PD and AD [99,100]. There is 
evidence that mRNAs of neurofilament proteins reside in 
axons [101,102] and are also locally translated there 
[103,104]. However, the functions of these locally synthesized 
proteins are yet to be discovered.

Dynamic and diverse axonal actin structures play impor
tant roles throughout development and adulthood, from axon 
specification, initiation, elongation, guidance, branching to 
the development of presynaptic terminals [105]. In developing 
axons, actin filaments are enriched in the peripheral region of 
growth cones, where they form dynamic lamellipodia and 
filopodia to facilitate axonal pathfinding [106]. Upon target 
arrival, actin polymerization is also required for axon arbor
ization [107]. As first observed by super-resolution micro
scopy, actin is organized in ring structures underneath the 
plasma membrane in mature axons, which are connected and 
evenly spaced by spectrin heterotetramers [108]. Such actin 
ring-spectrin structures together with other interacting pro
teins form membrane-associated periodic skeletons to support 
axon architecture by conferring elasticity and stiffness [109]. 
At the presynapse, actin filaments accumulate at the active 
zone and associate with synaptic vesicles to promote active 
zone formation and to regulate synaptic vesicle clustering 
[110,111]. Conceivably, dysregulation of actin localization 
and organization can exert a detrimental effect on axon devel
opment and survival. Missense mutations in one of the two 
neuronal actin isoforms, β-actin and γ-actin, have been 

reported in neurological diseases, including juvenile-onset 
dystonia [112], late-onset sensory-neural deafness [113] and 
Baraitser–Winter syndrome [114].

It has been well established that locally synthesized β-actin 
proteins function in axon steering and branching in develop
ing neurons [48,49,115,116], but the extent of their involve
ment in mature axons and disease-affected neurons remains 
to be explored. Early studies demonstrated that whilst β-actin 
mRNA localizes to axons, γ-actin mRNA is restricted to the 
soma in developing cortical and adult DRG neurons in cul
tures [104,117]. However, a recent piece of work challenged 
this view by showing the localization of γ-actin mRNA in 
developing cultured motor axons using qRT-PCR and fluor
escence in situ hybridization [118]. In the same study, local 
translation of γ-actin mRNA in growth cones and branch 
points was also demonstrated by a FRAP assay using reporter 
constructs [118], suggesting that axonally synthesized actin 
isoforms may differ between different types of neurons. In 
addition to actin proteins, actin-associated proteins, such as 
α-spectrin, were identified in an axonal translatome of mouse 
retinal neurons [9], suggesting LPS could be involved in the 
dynamic regulation of axonal actin organization. This could 
help to provide structural stability and plasticity during axon 
development and maintenance.

Microtubule-based transport is critical to axonal 
trafficking

The microtubule cytoskeleton is critical for long-range trans
port in axons, and therefore for LPS. In this transport system, 
anterogradely and retrogradely transported cargos, including 
mRNAs and translational machinery components, are loaded 
onto motor proteins, which move along polarized microtu
bule tracks. Conventionally, axonal trafficking is considered to 
feature two distinct transport modes, namely fast and slow 
[119]. Fast axonal transport (0.5–5 µm/s) mainly carries orga
nelles and ribonucleoprotein (RNP) granules [79], including 
complexes carrying disease-related proteins (e.g. APP, 
Huntingtin) [120,121], whilst slow axonal transport (0.01–
0.001 µm/s) carries cytoskeletal components, such as neurofi
lament proteins [122]. Both modes of axonal transport are 
carried out by the same microtubule-based motor proteins, 
anterogradely-moving kinesins and retrogradely-moving 
dynein. The difference in their average velocity results from 
the occurrence of prolonged pauses in movement during slow 
axonal transport [123], which is modulated by dynamic 
attachment of multiple motors to the cargo [124]. Increasing 
evidence suggests that fast axonal transport defects are more 
common in neurological disease-affected neurons, possibly as 
a result of mutations in proteins mediating fast axonal trans
port, or trafficking perturbation in cargos undergoing fast 
axonal transport [125]. Besides determining the speed, cargo 
attachment to opposing motors allows them to undergo bidir
ectional transport and frequently change direction, which 
requires coordination of motor activities, including the dura
tion of individual motor attachment and run lengths in either 
direction [126,127]. Given the role of axonal transport in 
delivering structural components, organelles and survival 
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signals, it is not surprising that mutations in motor proteins 
and their cofactors cause a wide range of neuropathies [128].

Mutations and aberrant post-translational modifications in 
tubulins lead to multiple neurodevelopmental and neurode
generative diseases, including ASD, polymicrogyria, ALS, 
and AD [129,130,131], which could potentially be partly due 
to errors in local synthesis of these proteins. mRNAs encoding 
tubulins have been detected in axons in several transcriptomic 
studies (Fig. 1) [10,40,41]. Moreover, radioactive labelling and 
proteomic studies have identified several locally synthesized 
tubulin proteins [34,132,133]. Although these form <1% of 
the total axonal β-tubulin pool, according to [35S]-Met radio
active capturing analysis [132], this does not disprove the 
importance of axon-derived tubulins [131], as different tubu
lin isoforms [134] or PTMs [135] may be enriched in the 
somatically and axonally synthesized pools, resulting in dis
tinct functionalities. Inhibiting the local synthesis of β2B- 
tubulin, which mainly localized to the growth cone periphery, 
resulted in growth cone collapse in cultured DRG neurons 
[136]. Mutations in β2B-tubulin gene were found in patients 
diagnosed with polymicrogyria [137,138], but the extent to 
which axonally expressed β2B-tubulin contributes to the dis
ease needs further research.

Microtubule-associated proteins actively regulate the stabi
lity and dynamics of microtubules in axons, and their func
tional impairments often lead to axonopathy. One of the most 
extensively studied axonal microtubule-associated proteins is 
tau, which is important for microtubule stability and impli
cated in disease [139]. A range of neurological disorders 
(termed ‘tauopathies’) is characterized by deposition of hyper
phosphorylated tau protein in the brain, including AD and 
frontotemporal dementia (FTD). In axons, tau is reported to 
facilitate the organization of distal microtubules, which is 
important for axon trafficking, outgrowth and navigation 
[140,141]. tau mRNA contains an axonal localization signal 
and is locally translated [142,143], but the phosphorylation 
level of axonally synthesized tau is yet to be determined. 
Intriguingly, functional and pathogenic heterogeneity exists 
between the six tau splicing isoforms [144,145]. Therefore, 
characterization of the isoform-specific role of axon-derived 
tau would provide insights into its functional significance, 
which is particularly relevant in disease models. In mature 
healthy neurons, tau proteins are almost exclusively localized 
to axons, but somatodendritic tau inclusions are frequently 
found in AD-affected neurons [146]. It is worth noting that, 
although localized tau synthesis is restricted to axonal com
partments, tau mRNA is also localized to dendritic spines. 
Activation of glutamate receptors triggers local synthesis and 
hyperphosphorylation of tau in dendrites, leading to somato
dendritic accumulation of hyperphosphorylated tau [147]. 
This has been shown to be a key step in the initiation of 
tauopathies [148], indicating the importance of correct tau 
mRNA localization. Besides tau, another axonally synthesized 
microtubule-associated protein ‘mitogen-activated protein 
kinase kinase 7ʹ (MKK7) has also been shown to promote 
microtubule bundling and neurite elongation by correctly 
positioning Jun ‘N-terminal kinase’ (JNK) signalling in axon 
shafts [149].

There is also some evidence that LPS of motor proteins 
contributes to or regulates axonal transport, which further 
establishes a link between the two processes. Detection of 
kinesin mRNAs in giant squid axons and dynein light chain 
mRNAs in rodent axons have been reported over two decades 
ago [150; 151] and recent axon-TRAP and proteomics-based 
translatomic studies subsequently revealed that many of the 
motor protein mRNAs are actively translated, including kine
sin-1 proteins (KIF5A, 5B and 5 C) and a kinesin-3 protein 
KIF1A [9,39,152]. Of these, KIF5A localizes predominantly to 
axons rather than dendrites in cultured hippocampal cells 
[153], and KIF1A is a major axonal motor responsible for 
long-distance transport of synaptic vesicle precursors and 
neurotrophin-containing dense core vesicles [154,155]. 
Mutations in or hyperactivation of KIF1A are associated 
with neurodegenerative disorders, such as hereditary sensory 
and autonomic Neuropathy Type 2 and hereditary spastic 
paraplegia [156,157,158]. It will be of interest to determine 
the role of axonally synthesized kinesins and their link to 
kinesin-related diseases. In addition, local on-demand pro
duction of dynein cofactors has been demonstrated to mediate 
retrograde transport in healthy and disease-affected axons. 
Two dynein cofactors are differentially translated upon 
nerve growth factor (NGF) stimulation or withdrawal in axo
nal compartments: Lis1, a force-generating component in the 
dynein complex, and p150Glued, one of the eleven subunits of 
dynactin. Therefore, a local translation-based mechanism to 
regulate stimulus-specific retrograde trafficking has been put 
forward [159].

Neuropathy-related RNP condensation regulates axonal 
mRNA transport and localization

The mechanism of axonal mRNA localization to support LPS 
is evolutionally conserved in different cells and organisms: 
loading of mRNAs onto motor proteins is facilitated by 
RBPs that recognize localization elements often present at 
the 3ʹUTR [160,161,162]. Structurally, a majority of RBPs 
consist of RNA-recognition motifs (RRMs) and intrinsically 
disordered domains (IDDs), the latter being regions with low 
sequence complexity and no fixed three-dimensional struc
ture. Gene ontology annotations reveal that a third of human 
IDD-containing proteins function in RNA-binding [163], 
illustrating heavy involvement of IDDs in RBP functionalities. 
IDDs together with RRMs allow RBPs to flexibly and multi
valently interact with multiple protein/RNA targets to rever
sibly form membraneless organelles or granules (a liquid- 
liquid phase separation, LLPS). This can locally concentrate 
granule constituents and hence promote physical interactions 
between these molecules [164]. The strength of their interac
tions is sensitive to temperature, pH and salt concentration 
[165], and can be further fine-tuned by various protein PTMs 
[166], providing additional layers of regulation. However, 
these useful and unique properties of RBPs are the same 
feature responsible for their role in the development of neu
rodegenerative disease. Indeed, structural and functional 
alterations of a subset of RBPs are over-represented in 
patients diagnosed with ALS, FTD and AD [167]. When 
intracellular phase transitions become dysregulated, resulting 
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in hyper-stable RNP granules, proteins and RNA could 
become irreversibly trapped within the granules, preventing 
them from performing normal functions, including LPS. 
Despite being regarded as pathological hallmarks in neurode
generative diseases, it is under debate whether RNP deposi
tions on their own are pathogenic. It has been proposed that 
they instead serve as a reporter for the pathogenic dysregula
tion of cellular processes that often precedes aggregate forma
tion [168]. Therefore, rather than focusing on approaches to 
‘dissolve’ these aggregates, it may be more relevant to identify 
the dysregulated processes that promote hyperstable RNP 
granule formation.

Previous studies have demonstrated that RBP phase transi
tions are sensitive to and partly regulated by local protein 
concentration, RNA concentration and conformation, PTMs, 
and the availability of chaperones and other binding partners 
[169]. Consequently, aberrant homoeostasis of any of these 
factors may enhance the tendency for pathological aggregates 
to form and persist during disease progression. For instance, 
RBP:RNA ratio, RNA lengths and secondary structures, and 
their RBP binding specificity jointly determine the predomi
nant material states and dynamics of RNP granules [170]. As 
a result, the presence of sub-optimal amounts and species of 
axonal RNAs may reduce axonal trafficking, exacerbating the 
disruption of local homeostasis in diseased axons in a negative 
feedback loop. In addition, the link between aberrant RBP 
PTMs and neurological disorders has also been recently estab
lished. PTMs can effectively alter the strength of intra- and 
intermolecular interactions by modifying electrostatic charges 
of amino acids, hydrophobicity and protein structures, for 
instance, serine/threonine/tyrosine phosphorylation, arginine 
methylation, and arginine citrullination. Therefore, PTMs are 
powerful modulators of RBP LLPS and dynamic RNP granule 
regulation [166], which can be deregulated in disease. For 
instance, FUS inclusions with unmethylated arginine have 
been found in FTD patient post-mortem tissue [171,172]. 
Arginine hypomethylation promotes the formation of cyto
plasmic FUS inclusions, and axons expressing hypomethy
lated FUS showed an increased number of axonal FUS- 
containing granules accompanied by compromised LPS [58]. 
This study also showed that the reduced LPS could be effec
tively restored upon overexpression of a FUS chaperone, 
Transportin-1, which imports FUS from the cytoplasm into 
the nucleus and represses FUS aggregate formation 
[173,174,175]. Changes of LPS in response to FUS hypo
methylation and the level of its phase modulator support 
a close link between PTMs, chaperones, phase separation 
and LPS in axons.

The neuronal context of spatially confined axonal compart
ments packed with high density of cytoskeleton and organelles 
and unique modes of RBP transport may further enhance 
pathological RNP assembly. Under these conditions, protein 
and RNA may be concentrated locally, elevating local axo
plasmic viscosity and influencing RBP phase behaviour [84]. 
This can occur in several ways: 1) a regional disruption of 
axonal transport in response to local stimuli or insults; 2) 
a burst of LPS, especially of IDD-containing RBPs identified 
as highly locally translated in axonal translatomic studies, 
including FUS and hnRNPs [39]; 3) active recruitment of 

proteins and RNAs by membrane-bound organelles. Recent 
evidence showed that a proportion of RNP granules ‘hitch
hike’ on membrane-bound organelles, such as peroxisomes, 
mitochondria and endosomes, acting as vehicles for RNP 
granule trafficking and localization [176,177,178], in contrast 
to the conventional view that RNP granules undergo long- 
range trafficking through direct tethering to motor proteins. 
In vertebrate axons, late endosomes act as platforms to recruit 
mRNAs and translation machinery to support LPS [179]. 
Disruption of this process can be disease-causative: CMT2B- 
associated mutations of Rab7a attenuate LPS in axons, com
promise mitochondrial function and eventually result in axon 
degeneration. In addition, ALS-associated mutations of an 
adaptor between lysosomes and RNP granules, annexin A11, 
impair its intra-axonal phase-transitioning ability and its 
tethering between RNP granules and lysosomes, resulting in 
perturbed RNA localization in axons [180].

These observations open up an exciting direction for future 
research into how axons organize local translation into micro- 
domains and regulate translation specificity in these sub- 
compartments. As a main driving force for RNP granule 
formation, LLPS may also contribute to the establishment 
and stabilization of organelle-RNP compartments, as demon
strated by annexin A11 tethered to lysosomes [180]. The role 
of such molecular anchors remains to be explored for other 
organelles. Furthermore, it has been reported that translation 
only takes place on the surface of late endosomes in Xenopus 
RGC axons, although both early and late endosomes associate 
with key components of translational machinery, including 
mRNA, RBPs and ribosomes [179]. This leads to the question 
of what activates translation on these RNP-bound organelle 
platforms. The physical location of the organelles may be 
a key factor: organelles and RNPs are highly enriched at 
branch points and axon terminals, where high levels of trans
lation activity often occur [116,181]. It is possible that the 
local density of organelles and recruited molecules concen
trates components required by translation or alters the physi
cal states of the surrounding micro-environment to promote 
translation. Alternatively, translation activity could be modu
lated by certain regulatory elements associated with individual 
organelles, such as miRNAs [182]. Another open question lies 
in the control of mRNA localization and translation specificity 
on platforms; recruiting specific RBPs and the subset of 
mRNAs bound to them could be a way to define the identity 
of a translation hub. Finally, whether the disruption of micro- 
domain arrangement and regulation is prevalent in neurolo
gical disease-affected neurons remains to be investigated.

Establishment of axon architecture and connectivity

In order for appropriate connectivity between neurons and 
target cells to be generated and maintained, axonal branches 
and even whole neurons are at times remodelled. To establish 
and specify their innervation fields, developing axons from 
terminal branches with diverse lengths, density and complex
ity, allowing them to synapse with multiple target cells simul
taneously, with excess synapses being pruned at later stages 
[183]. Local translation is known to have a role in branching 
of axons. Data from chick embryonic sensory neurons suggest 
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that NGF promotes axon branching by modulating the actin 
cytoskeleton, in part via stimulation of LPS through phos
phoinositide 3 kinase (PI3K) signalling [181]. Furthermore, 
RNA granules dock at the bases of new branches and invade 
stable branches, and local synthesis of β-actin at these sites is 
important for axon arbour dynamics [116]. There is also some 
preliminary evidence that presynaptic LPS is important in the 
pruning stage of development, which can intersect with its 
role in survival signalling. For example, in degeneration-like 
pruning in the PNS, competition for neurotrophic support is 
an important driving force [184], and neurotrophin- 
stimulated LPS is important for this response [185].

In neurological disorders, branching and/or pruning are 
often compromised. This is perhaps intuitive for neurodeve
lopmental disorders such as for FXS, but more recent findings 
imply axonal structure may also be affected in neurodegen
erative diseases. The association of these defects with RBPs 
has been demonstrated for several such disorders, which can 
to some extent be linked to LPS.

RBP dysregulation compromises axon branching and 
pruning in neurodevelopmental disorders

In FXS, a clear link between RBP dysregulation and compro
mised neuronal connectivity exists, which makes it an impor
tant case study. We briefly discuss this link, and then outline 
the evidence that FMRP affects presynaptic translation of 
proteins important for axonal structure and function. We 
then indicate the extent to which similar processes are implied 
in other neurodevelopmental disorders, namely ASD and 
epilepsy.

In FXS, loss of function of the RBP FMRP results in defects 
in synaptic formation and plasticity. It is well-known that 
dendritic spine structure is altered in FXS, with more but 
longer, potentially immature spines being observed [186]. 
dfmr (fmrp1 homologue) knockout in Drosophila results in 
axonal overgrowth and overbranching, which compromises 
synapse formation [187]. However, decreased connectivity at 
certain developmental stages has also been reported in FXS 
models, along with more ‘diffuse’ axon arbours, with a higher 
connection density along the barrel borders and reduced 
connectivity at the centre [188]. This is consistent with 
a pruning defect [186].

Some of the effects of loss of FMRP function are likely due 
to regulation of LPS being compromised: FMRP is known to 
be a negative regulator of translation [189], and several obser
vations suggest it locally regulates translation at synapses 
[190]. Consistent with it having a functionally important 
role in regulating LPS, FMRP associates with polyribosomes 
and disruption of this interaction causes particularly severe 
disease, via the rare I304N mutation in the ribosome- 
interacting KH-domain [191]. FMRP-mediated regulation of 
LPS is known to be important in dendrites, where it influ
ences activity-dependent long-term potentiation. For instance, 
an imaging study showed knockout of fmr1 prevents an 
increase in levels of the presynaptic protein CamKIIα upon 
group I metabotropic glutamate receptor stimulation, which 
was demonstrated to be protein synthesis-dependent by cyclo
heximide treatment and presumed to be local due to its ten- 

minute timescale [192]. However, FMRP is increasingly 
recognized to be important for regulation of presynaptic 
translation as well [193]. In particular, FMRP-containing 
granules are found in a subset of axons, most prominently 
during synapse formation and pruning [194,195], indicating 
a possible presynaptic role of FMRP in synapse formation 
[196]. Notably, this association is not limited to early devel
opmental stages: FMRP-containing granules are also found in 
a subset of mature mammalian axons (but not dendrites), 
where they associate with ribosomes as well as (a subset of) 
FMRP mRNA targets [197].

Several key axonal mRNA targets of FMRP have now 
been identified, which have a range of functions during 
different developmental stages. In hippocampal neurons, 
FMRP has been shown to be involved in the LPS-based 
response to the guidance cue Sema3A during axon exten
sion, including by promoting the local synthesis of the 
microtubule-associated protein 1B (MAP1B) [198]. 
Previously, it had been shown that double knock-out of 
dfmr and futsch (the Drosophila map1b homologue) could 
rescue synaptic structural defects in the eye and neuromus
cular junction [199]. During presynapse formation in mouse 
cortical neurons, FMRP negatively regulates local translation 
of the synaptic vesicle fusion protein Munc18-1, as demon
strated in cultured mouse cortical neuron axons that were 
physically separated from the soma [200]. In Drosophila, it 
has been shown that FMRP functions in axon maturation in 
two distinct ways: it inhibits axon growth during late pupal 
development, and functions in activity-dependent pruning in 
emerging adult flies, during which time its activity correlates 
inversely with levels of the profilin homologue chickadee 
[201]. Though this link has not been demonstrated to be 
due to regulation of LPS of chickadee (an actin-remodelling 
protein), chickadee mRNA has been shown to localize to 
remodelling Drosophila axons, with its mislocalization 
resulting in remodelling defects [202].

There are implications that perturbed phase separation of 
FMRP can occur in FXS, though the link to dysregulated LPS 
is not yet firmly established. Notably, it has recently been found 
that only certain splicing isoforms of FMRP reduce axonal 
arbour complexity when overexpressed [203]. This regulation 
of arbour complexity does not seem to require the RNA- 
binding domains, including the KH-domain, but does require 
an intact nuclear export signal as well as the presence of 
a phosphorylatable serine that regulates translational suppres
sion in FMRP-associated polyribosomes [203,204]. Instead, the 
I304N (KH-domain) mutant was found to be more prone to 
fibril formation, indicating that this mutation may affect trans
lation by deregulating FMRP granule phase state rather than 
simple loss of function of RNA or ribosome binding [203]. In 
support of this theory of perturbed FMRP phase behaviour in 
certain disease variants, rare FXS-associated mutations in the 
fmr1 coding region cause loss of cytoplasmic FMRP1 function 
through introduction of a nuclear localization signal [205]. This 
induces nucleolar aggregation of FMRP1 [205], which is con
sistent with a phase separation behaviour (where increased local 
concentration makes phase separation and subsequent aggrega
tion more likely). As FMRP has recently been demonstrated to 
phase separate, which was suggested to be important for 
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activity-dependent translation regulation [206], this raises the 
interesting idea that perturbation of its phase behaviour may be 
harmful to local proteomic homoeostasis. Its aggregation would 
result in cytoplasmic loss of function of FMRP-associated 
mRNAs, and so could putatively have the same functional 
consequences as mutations causing nonsense-mediated decay 
of its frmp mRNA.

There is also evidence that dysregulated RBP activity 
occurs in other neurodevelopmental disorders that feature 
altered synaptic connectivity, such as ASD and epilepsy, but 
the links to altered connectivity and LPS have not been 
directly established for most of these RBPs. Notably, FXS is 
comorbid with select variants of these diseases [207]. Epilepsy 
can arise through acquired brain lesions, but also during the 
development of the cortex, at the steps of neuronal prolifera
tion, neuronal migration, or synaptic refinement [208]. For 
instance, tissues from patients with mesial temporal lobe 
epilepsy recurrently display the aberrant formation of excita
tory connections due to sprouting of hippocampal dentate 
granule cell axons into the dentate inner molecular layer 
[209]. Deficiencies in several RBPs other than FMRP have 
been associated with epilepsy, including BRUNOL4/CELF4 
[210], RBFOX1 [211], and Pumilio2 [212]. Of these, 
Pumilio2 is suggested to affect LPS: it is present in dendritic 
stress granules during metabolic stress [213] and has recently 
also been reported to influence the transcriptome of the 
developing axon by somatic retention of certain mRNAs 
[214]. Other RBPs implicated in epilepsy are known to be 
regulated by the translation initiation-promoting mTOR/ 
MAPK pathway, pharmacological inhibition of which effec
tively prevents epileptogenesis [215]. Axon pathology is 
thought to be at the core of aberrant connectivity in ASD, 
with changes in axon diameter, myelination and branching 
being observed in a range of studies [216]. Multiple ASD- 
associated genetic alterations have been identified as contri
buting to some of these changes in axon architecture, such as 
in the gene encoding chromatin remodelling protein ‘chro
modomain helicase DNA-binding protein 8ʹ (CDH8) [217] 
and in the ANK2 gene, which encodes two major ankyrin 
polypeptides that are important for polarized transport of 
organelles [218]. However, ASD is also linked to deficiencies 
in several RBPs, including RBFOX1 [219], CSDE1 [220], and 
Caprin1 [221]. For CSDE1, a link between its function and 
aberrant connectivity has been established, though the func
tional importance of LPS remains to be investigated: knock
down in primary mouse cortical neurons leads to an 
overgrowth of the neurites and abnormal dendritic spine 
morphology/synapse formation [220].

RBP variants associated with neurodegenerative diseases 
also affect axon architecture

Several mutations in RBPs associated with neurodegenerative 
diseases, with different ages of onset, have also been shown to 
affect axonal architecture. Here, we review the evidence link
ing the RBPs SMN, TDP-43, and FUS to axonal structural 
defects, and consider to what extent these links might be 
attributable to dysregulation of LPS.

SMN is a ubiquitously expressed RBP, reduction in the 
levels of which results in selective dysfunction of motor neu
rons (spinal muscular atrophy; SMA) [222]. SMN localizes to 
branch points and growth cones in the axons of primary 
cultured motor neurons [223], and its depletion has been 
shown to affect motor neuron axon architecture in several 
model systems. In zebrafish embryos, knockdown of SMN 
causes defects in motor neuron axonal outgrowth and path
finding in a cell-autonomous manner, a phenotype that is not 
seen in other neuronal subtypes [224]. Using a mouse model 
of SMA, it has been shown that the earliest structural defects 
occurred at the neuromuscular junction, and included poor 
terminal arborization and formation of intermediate filament 
aggregates [225]. In another mouse model of SMA, it has been 
demonstrated that reduction of SMN levels also results in 
abnormal synaptogenesis and neurofilament accumulation in 
retinal neurons [226]. This study also suggested that SMN- 
deficient retinal neurons displayed a defect in axon out
growth, as a reduced number of axons in the optic nerve 
were observed without a decrease in the number of retinal 
ganglion cells [226].

Several studies indicate that SMN affects LPS of proteins 
important for the correct establishment of axonal architecture 
and connectivity. SMN interacts with the RBP HuD [227], 
with which it is co-transported in axons of mouse primary 
motor neurons, and knockdown of SMN reduced both axonal 
HuD and axonal poly(A) mRNA levels, indicating that it has 
a role in facilitating axonal localization of certain mRNAs 
[228]. In particular, reduction of SMN levels is associated 
with reduced axon outgrowth of motor neurons, which cor
relates with reduced axonal levels of β-actin mRNA, the 3ʹ- 
UTR of which is bound by SMN’s binding partner hnRNP-R 
[229]. In the motor neurons of developing zebrafish embryos, 
hnRNP-R knockdown resulted in reduced axonal outgrowth 
associated with loss of β-actin mRNA in the growth cone, 
without motor neuron death or defects in dendrite outgrowth 
[230]. SMN not only affects LPS by influencing mRNA loca
lization, but also affects LPS rates directly. In particular, it has 
been demonstrated to regulate axonal translation via the 
miRNA miR-183: in SMN-deficient neurons, miR-183 levels 
are increased, which results in reduced local translation of the 
protein mTOR, a key stimulator of LPS [16]. Furthermore, it 
has now been shown that SMN deficiency severely disrupts 
LPS within motor neuron axons and growth cones, and that 
rescue of localization of the SMN target mRNA encoding 
‘cytoskeleton-associated growth-associated protein 43ʹ 
(GAP43) can rescue axon outgrowth defects in SMA neurons 
[231].

The ALS-associated protein TDP-43 is increasingly recog
nized to affect motor neuron axon structure, which may be 
due to its regulation of axonal mRNA localization. Expression 
of ALS-associated human variants of TDP-43 in zebrafish 
embryos caused motor neuron defects, with shorter axons 
and premature and excessive branching being observed 
[232]. This effect was phenocopied by knockout of the zebra
fish homologue of TDP-43, indicating a loss-of-function 
mechanism, though a neurotoxic gain-of-function effect asso
ciated with TDP-43 mutant aggregation was observed in dis
sociated spinal cord cultures [232]. It has been suggested that 
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TDP-43 regulates axonal outgrowth in motor neurons by 
post-transcriptional regulation of cytoplasmic mRNAs, since 
it was found to be actively transported into axons of primary 
cultured motor neurons, where it colocalizes with known 
axonal RBPs [233]. Like for FMRP, loss of function of TDP- 
43 affects cytoskeletal architecture: knockout affects synaptic 
growth and bouton shape at the Drosophila neuromuscular 
junction [234,235], which is associated with reduced levels of 
Futsch (the Drosophila MAP1B homologue) in distal axons, 
the mRNA of which is bound by TDP-43 [234]. The structure 
of the Drosophila mushroom body was similarly affected by 
overexpression of TDP-43, with smaller axonal lobes being 
observed [235]. Therefore, it may similarly be speculated that 
disease-associated variants of TDP-43 affect axonal function 
through structural alterations associated with changes in LPS 
of cytoskeletal and/or cytoskeleton-associated proteins.

There is also evidence that ALS-associated mutations in 
FUS affect axon branching, though the nature of the effect 
may depend on the neuronal subtype and mutant variant 
studied. In cultured primary cortical cells, expression of FUS- 
R521C led to a reduction in the number of primary axonal 
branches, when compared with wild-type neurons or neurons 
expressing wild-type FUS [236]. These defects were linked to 
the interaction of FUS with SMN: mutant FUS interacted 
more strongly with SMN and perturbed its axonal localiza
tion, and overexpression of SMN was able to rescue the 
branching defects induced by mutant FUS [236]. In human- 
induced pluripotent stem cells differentiated into motor neu
rons, mutant variants of FUS (patient-derived or genome- 
edited) resulted in increased axonal branching [237]. This 
effect was rescued by suppression of aberrant expression of 
transcription factor FOS-B, the mRNA of which was detected 
in axon bundles and is bound by FUS, and which was also 
found to be abnormally upregulated in ventral horn neurons 
in autopsy samples of ALS patients [237]. Together with the 
observation that endogenously expressed FUS is known to 
affect LPS in axonal growth cones of Xenopus retinal ganglion 
cells [58], this suggests regulation of LPS by FUS might occur 
in axons, which could play a role in determining axon 
architecture.

Axonal survival signalling

After axons establish their innervation fields through branch
ing, pruning and presynapse formation, intricate crosstalk 
between signalling pathways and metabolic processes involving 
pro-survival factors and organelles comes into play to support 
the health and survival of mature axons. Early research pro
posed axon degeneration occurs as a consequence of cell body 
death, due to insufficient protein and energy support from the 
soma [238]. This view was first challenged by the identification 
of the Wallerian degeneration slow (WldS) protein, which 
delays degeneration of somaless axons for weeks [239]. WldS 

was subsequently shown to substitute for activity of the labile 
protein nicotinamide mononucleotide adenylyltransferase 2 
(NMNAT2), an axon survival factor with both foldase and 
NAD+ synthase activity [240]. However, it has since been 
demonstrated that NMNAT2 depletion upon axotomy activates 
a specific axonal degeneration programme via the downstream 

effector SARM1 [241], and that modulation of this downstream 
effector’s activity rather than NMNAT2 activity can rescue the 
lethality of NMNAT2 deprivation [242], indicating axon 
degeneration upon injury is initiated by specific signalling 
pathways. Indeed, more evidence has now accumulated that 
demonstrates that axons rely on multiple axon-initiated path
ways for survival [14,15,185] (Fig. 4).

The most well-established mechanism to promote axon 
survival relies on the binding of target-derived neurotrophic 
factors secreted by target cells, including NGF, BDNF, neuro
trophin 3 and 4 (NT3 and NT4), to their receptors TrkA, 
TrkB, TrkC and p75 on axonal membranes [243]. Upon 
binding to neurotrophins, receptors are internalized, forming 
signalling endosomes, and subsequently retrogradely trans
ported to the soma by dynein motors [244], where they 
activate trophic signalling pathways, including PI3K and 
mitogen-activated protein (MAP) kinase cascades 
[245,246,247]. This leads to changes in transcriptional profiles 
of the stimulated neurons through induction of various tran
scription factors, including cyclic AMP responsive element- 
binding protein (CREB), which promotes neuronal survival 
[248,249].

Pruning and apoptosis are respectively triggered by local or 
global loss of survival signalling via NGF and the TrkA 
receptor [250], which has downstream effects on both anti- 
apoptotic signalling and the NMNAT2/SARM1 pathway 
[238]. Interestingly, several components of these pathways 
act at least in part on the mitochondria. The anti-apoptotic 
protein Blcw is found in axons [251], which is part of the Blc- 
2 family of proteins that represses the mitochondrial perme
ability transition that is key in apoptotic signalling [252], and 
its loss in small fibre sensory neurons is associated with 
mitochondrial abnormalities and primary axonopathy [251]. 
Furthermore, WldS increases basal mitochondrial mobility 
and calcium buffering [253]. Therefore, these organelles are 
a signalling hub in survival signalling, in addition to being 
important for LPS. Here, we discuss the various intersections 
between axonal survival signalling, LPS, and mitochondrial 
function.

Figure 4. Selected contributions by LPS to synaptic survival and adapt
ability. LPS in the presynaptic terminal contributes to a range of processes 
important for neuronal maintenance, including I. survival signalling, II. remodel
ling of cytoskeletal elements, and III. maintenance of mitochondria.
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Axonal LPS transfers information in survival signalling

The contribution of LPS to soma-independent axonal survival 
pathways first came to light with the discovery that axonally 
synthesized Lamin B2 (LB2), an intermediate filament pro
tein, is critical in preventing axonal degeneration but not in 
axon guidance, which was made using the model system of 
developing Xenopus RGC neurons [14]. Proteomic screening 
demonstrated that stimulation with the guidance cue 
engrailed-1 affected LPS of several hundred proteins, with 
the most robust increase in axonal synthesis rate occurring 
for LB2. The localization of lb2 mRNA and its local transla
tion were then respectively confirmed by fluorescence in situ 
hybridization and by quantitative immunofluorescence in the 
presence and absence of translation inhibitor anisomycin. To 
further validate that laminb2 mRNAs are translated in RGC 
axons in vivo, a grafting experiment was combined with an 
axon-TRAP assay. First, eye primordia from a donor embryo 
expressing GFP-tagged ribosomal protein L10a were trans
planted to a host wild-type embryo. After exiting the eye, 
GFP-RPL10a-positive RGC axons innervated the contralateral 
wild-type brain hemisphere. Next, pulldown of ribosome- 
bound mRNAs from the host brain lysates, using the GFP- 
RPL10 as a ribosome tag localizing exclusively to RGC axons, 
confirmed LB2 was indeed associated with ribosomes in RGC 
axons. It was then demonstrated that axonally synthesized 
LB2 is important for axonal survival: electroporation of 
a translation-blocking antisense morpholino for laminb2 
mRNA into distal axons in vivo resulted in axonal death 
without cell body death after extension into the optic tectum, 
without retrograde transport of the morpholino being detect
able, and expression of exogenous LB2 lacking a nuclear loca
lization signal could almost completely rescue the 
degenerative phenotype.

LPS of survival-related proteins is now also known to be 
triggered by neurotrophin signalling. Neurotrophin signalling- 
related mRNAs have been identified in a range of axons (Fig. 1) 
[9,39,41]. For instance, NGF derived from target cells is detected 
by sensory axons during development, stimulating axonal trans
lation of CREB, which is retrogradely trafficked and promotes 
neuronal survival [254] (Fig. 4). Furthermore, neurotrophins 
can promote axon survival by stimulating local translation of 
anti-apoptotic proteins [185]: using compartmentalized cultures 
of dorsal root ganglion cells stimulated with NGF and BDNF, it 
was demonstrated in that blcw mRNA is transcribed in response 
to retrogradely transported neurotrophins, which is then trans
ported to axons and translated into the anti-apoptotic protein 
Bclw. Neurotrophins may also regulate the local translation of 
blcw mRNA, in addition to its transcription and transport: 
cycloheximide addition to the axonal compartment prevented 
the increase in axonal Blcw observed upon extended neurotro
phin stimulation, whilst addition to the somal compartment had 
no such effect. Importantly, inhibition of local translation pre
vented neurotrophins’ survival-promoting effects, and was asso
ciated with increased activity of caspase 6, which is inhibited by 
Blcw. Protein transfection of Blcw into axons protected from 
neurotrophin withdrawal-induced axonal degeneration, further 
indicating LPS of this protein is particularly key in axonal 
survival.

Disruption of LPS has, to our knowledge, not yet been 
shown to be causative in specific diseases associated with dis
rupted survival signalling. However, it is known that local loss 
of survival factors can contribute to disease. In TDP-43- 
associated ALS, for example, there is splicing defect-associated 
loss of the survival factor stathmin-2 (STMN2), a microtubule- 
destabilizing factor essential for axonal microtubule integrity, 
resulting in impairment of neurite growth and neuronal repair 
after injury [255]. Restoring levels of this survival factor could 
rescue TDP-43-associated phenotypes in human pluripotent 
stem cell-derived human motor neurons [255]. Notably, it has 
been suggested that STMN2 (also known as superior cervical 
ganglion 10, SCG10) is locally synthesized in response to axo
nal injury in proximal axons [256] (Fig. 4), and it is prominent 
in a range of axonal transcriptomes (Fig. 1) [9,10,40]. 
Furthermore, in a mouse model of SMA, it has been shown 
that mutation of SMN causes a reduction of muscle cell secre
tion of C1q/TNF-Related Protein 3 (CTRP3), which in turn 
regulates axonal LPS via the mTOR pathway, including SMN 
itself [257].

Axonal mitochondria are closely associated with LPS and 
axon survival

As uncovered by a series of studies examining local compo
nents essential to axon viability, axonal mitochondria have 
been increasingly recognized to contribute to axonal integrity 
and survival. Suboptimal mitochondrial activities, which fail 
to provide sufficient energy, metabolites and calcium buffer
ing, may result in comprised axon survival [258]. 
Experimentally, it has been demonstrated that the presence 
of mitochondria in axons of C. elegans protects against degen
eration following axotomy [259]. In fact, mitochondrial dys
functions are known to be associated with several 
neurodegenerative disorders with prominent axonal pheno
types [260,261], suggesting that axons are particularly sensi
tive to disturbance to mitochondrial integrity. For instance, 
mutations of mitochondrial proteins and lamins may cause 
Charcot-Marie-Tooth type 2B (CMT2B) diseases, an inherited 
neuropathy characterized by sensory axon degeneration 
[262,263]. Similarly, CMT2A is commonly caused by muta
tions in the gene encoding the mitochondrial protein mitofu
sin-2 (MFN2) and is associated with degenerative changes in 
axonal mitochondria in patient sural nerve biopsies [264]. 
MFN2 promotes inter-mitochondrial fusion as well as tether
ing of ER to mitochondria; compromising of this latter func
tion (rather than altered bioenergetics) may be the main cause 
of pathologically altered mitochondrial morphology and 
transport in CMT2A, as has recently been reported in patient- 
derived fibroblasts as well as mutation-carrying primary 
mouse motor neurons [265,266].

Mitochondrial function is linked to LPS as well as to axon 
survival, since mitochondria likely play an active role in LPS 
as a local energy source [267]. Their localization is affected by 
local energy demands: globally, signalling energy consump
tion of neurons and their subcellular compartments correlates 
with mitochondrial positioning, with dendrites using over half 
of the energy required for signalling, and containing over half 
of the mitochondria [25,268]. Furthermore, mitochondria 
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cluster to locations with high rates of LPS: dendritic mito
chondria are stably ‘compartmentalized’ to provide ATP for 
activity-dependent LPS, with mitochondrial filaments of 
around 30 μm being anchored near spines by tethering to 
the cytoskeleton [269]; in axons, mitochondria accumulate at 
branch points, which contributes to actin-dependent branch
ing [116,181].

Importantly, one of the major categories of mRNAs that is 
localized to and translated in axons in vivo is those related to 
mitochondrial function [9] (Fig. 1), suggesting that axon- 
resident mitochondria require a local supply of proteins for 
their upkeep. A recent publication suggests LPS is important 
for mitochondrial maintenance at synapses: stimulation of 
synaptosomes with NMDA and glutamate induced LPS of 
mitochondrial proteins, which were shown to be incorporated 
into respiratory complexes by radiolabel tracing, and pertur
bation of LPS by knockout of fmr1 was associated with mor
phology defects in synaptosome mitochondria [270]. 
Therefore, axonal mitochondria potentially both maintain 
and are maintained by LPS, making LPS of mitochondrial 
proteins key for continued axon survival: disruption of mito
chondrial function may compromise LPS, which then, in turn, 
compromises mitochondrial function, and vice versa.

Loss of mitochondrial function triggers degenerative path
ways, including following compromised LPS of key mitochon
drial proteins. Depolarization of the mitochondrial membrane 
activates the Wallerian degeneration pathway [271], and is 
a key step in the apoptotic pathway generally as part of the 
mitochondrial permeability transition [272]. As shown in 
multiple studies, loss of maintenance of axonal mitochondrial 
membrane potential is associated with compromised axonal 
integrity [14,179,273,274]. This can arise as a consequence of 
attenuation of local mitochondrial protein production, as was 
demonstrated for LB2: axonal LB2 localizes to mitochondria, 
and local depletion of LB2 results in a significantly reduced 
mitochondrial membrane potential and elongated morphol
ogy, which is indicative of mitochondrial dysfunction [14] 
(Fig. 4). Inhibition of LB2 local translation caused axon 
degeneration by disrupting mitochondrial function and alter
ing mitochondrial trafficking in axons. As phosphorylation of 
LB2 triggers nuclear membrane fragmentation during cell 
division [262], LB2 might control mitochondrial membrane 
cleavage during mitochondrial fission, which could explain 
the observed elongated mitochondrial morphology and 
decreased membrane potential in LB2 knockdown axons. 
laminb2 mRNA is transported into axons by the RNA- 
binding protein SPFQ [14,275], rare fALS-associated variants 
of which mislocalize away from axons [276], and on late 
endosomes [179]. These endosomes localize to the proximity 
of mitochondria, and are known to act as translation plat
forms for local synthesis of mitochondrial proteins, a process 
that is perturbed by mutations associated with Charcot-Marie 
-Tooth type 2B neuropathy [179].

Neuronal stresses and stress responses

Given their long lengths and large surface areas, neurons are 
likely to be exposed to environmental insults that, if not dealt 
with, may perturb intracellular homoeostasis, resulting in 

impaired neuronal functions and potentially jeopardizing 
their long-term survival. Some of these insults are unique to 
the nervous system, such as compartmentalized stresses, exci
totoxicity, and neuroinflammation. While many other stres
sors are shared by other cell types, including ER stress, amino 
acid deprivation, hypoxia, heat shock, viral infection and 
oxidative stress, their impact on neurons with specialized 
morphology and functions is not always comparable to that 
on other cells and tissues. Neurons therefore have specialized 
stress responses, which may involve LPS.

Neuronal RNA is susceptible to oxidative damage

Oxidative stress, an imbalance between reactive oxygen spe
cies and antioxidant, is considered to be one of the major 
threats to neuronal survival in the CNS. Calcium signalling, 
glutamate uptake, high ATP demand, the importance of redox 
reactions, and low endogenous antioxidant defence in neu
rons all contribute to the neuronal vulnerability to oxidative 
stress [277], but the engagement of RNA oxidation in neuro
degenerative diseases has been appreciated only recently.

Similar to proteins and DNA, RNA suffers oxidative 
damage. In fact, it is even more susceptible to oxidation 
than other cellular components [278,279], due to its storage 
in the form of membraneless RNP granules, resulting in its 
direct exposure to cytoplasm, where thousands of other che
mical reactions take place, and due to its single-strandedness, 
which means it provides accessible sites for oxidative enzy
matic reactions [278,279].

RNA oxidation can be functional, as it helps to break down 
damaged RNA in healthy cells [280], but can also compromise 
translation. Oxidatively damaged RNAs are altered structu
rally and are translated less efficiently owing to an increased 
frequency of ribosome stalling because of the failure in ribo
some quality control [281]. Furthermore, the overall RNA 
levels including rRNA and tRNA, are significantly lower 
upon RNA oxidation, leading to compromised ribosome 
functioning and reduced availability of mRNA for translation 
in affected brain areas [282,283]. The consequences of trans
lation attenuation resulting from RNA oxidative stress may be 
even more severe in axons and dendrites, where local transla
tion takes place. In developing axons, a large proportion of 
RNA granules were found to localize adjacent to mitochon
dria as a major source of reactive oxygen species [179,284]. 
Moreover, neurites and synapses host activities associated 
with high metabolic rates and oxidative stresses, such as 
synaptic transmission.

Unsurprisingly, excessive RNA oxidative damage is asso
ciated with neurological disorders, mostly independent of 
genetic inheritance [285]. A high level of RNA oxidation 
has been detected in brains of AD, PD, and ALS patients, 
even preceding the development of pathological hallmarks 
like protein aggregation [286,287,288,289,290]. Furthermore, 
oxidative damage to RNA increases with aging due to pro
gressive accumulation of free radicals that exceeds the cap
ability of anti-oxidant defences, possibly accounting for the 
functional decline in aging brains and late onset of many 
neurodegenerative diseases [291,292]. However, there is 
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currently insufficient evidence to determine whether RNA 
oxidative damage is disease-causative or a consequence of 
disease [287].

The compromised activity of the antioxidant enzyme 
superoxide dismutase 1 (SOD1), responsible for removing 
superoxide anions, is associated with multiple diseases, high
lighting the importance of antioxidative defence system in 
neuronal health and survival [293,294,295]. Neurons expres
sing a pathogenic SOD1 mutant show defective axonal trans
port, distinct axonal transcriptomes and altered mitochondrial 
morphology and distribution along axons [53,296]. 
Intriguingly, oxidative stress is found to decrease RBP solubi
lity through cysteine oxidation and to promote the formation 
of neuronal aggregates, such as stress granules [297]. RBP– 
RNA interactions may also be weakened due to RNA oxida
tive damage and RBP structural alterations, potentially enhan
cing RBP aggregation propensity. Consistently, the addition of 
mutant SOD1 aggregates effectively triggered the cytoplasmic 
aggregation of another ALS-associated protein, TDP-43 [298]. 
As discussed, the tight control of RBP solubility and cytoplas
mic viscosity is key to axonal transport and LPS, which plays 
an important role in axonal mitochondrial functions and axon 
survival. Therefore, changes in axonal trafficking and the 
axonal transcriptome, together with perturbations of mito
chondrial integrity in SOD1 mutant axons, point towards 
a hypothesis that SOD1 mutations are associated with 
impaired axonal protein synthesis, due to the failure of neu
ronal antioxidative defence.

Neurons form stress granules with distinct properties in 
response to stress

De novo formation of translationally repressed stress granules 
(SGs) with diameters of 100 nm to 2 µm is widely observed 
upon exposure to a range of stressors and across an extensive 
range of cell types. Historically, the term ‘stress granule’ refers 
to cytoplasmic RNP granules containing polyadenylated RNA 
and certain ‘SG markers’, including poly(A)-binding protein 
(PABP), T cell intracellular antigen 1 (TIA-1), TIA-1-related 
protein (TIAR) and Ras GTPase-activating protein-binding 
protein 1 (G3BP1) [299,300]. During stress, RBPs present in 
SGs may selectively recruit mRNA targets to protect them 
from degradation, as demonstrated for Zipcode-binding pro
tein 1 (ZBP1) [301]. In addition, mRNA deadenylation, which 
often precedes mRNA degradation, appears to be inhibited in 
SGs, implying a connection exists between SGs and RNA 
stability [302].

Formation of SGs occurs when translation initiation is 
limited by stress-induced eIF2α phosphorylation, resulting 
in local accumulation of mRNAs, translation initiation fac
tors, small ribosomal subunits, and associated RBPs 
[299,303]. Facilitated by the ability of IDD-containing 
RBPs to phase separate, these factors coalesce into 
a compact structure, which serves as a stable SG ‘core’ to 
recruit other SG components as a more dynamic SG ‘shell’ 
[304]. It is an open question whether classic SG markers like 

TIA-1 and G3BP act as scaffolding proteins in the SG core 
or as shuttling components in the shell [304–306]. However, 
depletion of G3BP1 to inhibit SG formation did not seem to 
abolish stress-induced translation repression [307], nor did 
it accelerate mRNA degradation [305], suggesting that the 
accumulation of SG marker-containing SGs may be 
a consequence rather than a prerequisite for of cellular stress 
responses.

In narrow neuronal processes, accumulation of large SGs 
can pose a great risk to cargo transport and local proteostasis. 
In addition to SGs acting as ‘roadblocks’, mRNAs and trans
lational machinery may be sequestered by stable SGs from 
their cytoplasmic pool, disengaging them from mRNA trans
lation. For instance, axonal G3BP1-associated SGs have been 
shown to act as a negative modulator of LPS by sequestering 
a subset of mRNAs [308]. In cultured primary neurons, TDP- 
43/FUS-containing RNP granules are evident in axons in 
which aggregation-prone FUS mutants or FUS with altered 
PTMs are present, resulting in perturbed mRNA localization 
and LPS [56,58]. It is widely accepted that hyper-stable, amy
loid-like deposits resulting from chronic stress in neurons are 
pathological hallmarks of neurodegenerative disorders 
[304,309,310], and pharmacological inhibition of SG forma
tion and accumulation has been shown to delay neurodegen
erative disease progression [311,312]. Therefore, 
understanding the role played by SG-modulated LPS during 
disease development may provide further insights into LPS- 
based therapeutic treatments.

Since SG formation is dispensable for activating the stress 
response yet may negatively impact on LPS-supported neu
ronal function, it is possible that neurons strategically pre
vent the formation of large rigid SGs during the stress 
response. Efforts to reveal the differences between acute 
stress-induced RNP granules and pathological aggregates 
have identified common components, especially RBPs, the 
mutations and aberrant PTMs of which are disease-relevant 
[309,313], suggesting a shared molecular origin between 
early SGs and pathological assemblies. Intriguingly, the for
mation and expansion of neuronal SGs are reported to be 
delayed and slow over the prolonged course of neurodegen
erative diseases [57,314,315], in contrast to the rapid appear
ance of SGs in other cell types under stress [316]. This 
suggests specific factors are in place in neurons to control 
SG maturation. Indeed, a study combining proximity label
ling and mass spectrometry revealed a large population of 
neuron-specific SG proteins, including neurodegeneration- 
associated proteins ELAVL2/3/4 [317]. Furthermore, SGs in 
neurites show different protein compositions compared to 
somal SGs, suggesting SGs may participate in compartment- 
specific activities. Notably, chaperones involved in protein 
folding and transport, as well as autophagy factors, are 
among the top-ranked neuronal SG proteins [317]. 
Chaperones have been shown to interact with stress granules 
to regulate their dynamic assembly and disassembly [318] 
and their role in clearing pathological aggregates is increas
ingly being appreciated in neurodegenerative disease studies 
[319,320].
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Neurons utilize compartmentalized stress responses to 
cope with stress

As long-lived cells, neurons incapable of coping with cellular 
stresses can come to suffer from chronic stress due to the 
accumulation of subtle stress-triggered alterations over years, 
which ultimately can lead to catastrophic consequences. 
Therefore, neurons must adopt various strategies to cope 
with distinct stresses.

A cellular stress response that is used widely by neurons as 
well as other cell types is the unfolded protein response 
(UPR). The UPR is activated to reduce the misfolded protein 
load when misfolded proteins come to accumulate in the ER, 
a process known as ER stress. The first cellular response to 
alleviate ER stress is to minimize further protein synthesis, 
which is mediated by the protein kinase RNA-like endoplas
mic reticulum kinase (PERK) pathway. Essentially, upon UPR 
activation, PERK proteins, which are the transmembrane pro
tein kinases of the pancreatic eIF-2α kinase (PEK) family, 
oligomerize and autophosphorylate. PERK also phosphory
lates eIF2α, a component of the ternary translation initiation 
complex (which consists of eIF2, initiator methionine transfer 
RNA and guanosine triphosphate (GTP)). p-eIF2α decreases 
the availability of the ternary complex and thus global protein 
synthesis by inhibiting the activity of the guanine exchange 
factor eIF2B, which is responsible for loading GTP onto the 
ternary complex after each round of translation initiation 
[321]. Paradoxically, certain mRNAs escape such translation 
repression and are instead translated more efficiently upon 
eIF2α phosphorylation, facilitated by upstream open reading 
frames located at the 5ʹUTR of their mRNAs. One such 
mRNA is that encoding activating transcription factor 4 
(ATF4), which activates the transcription of pro-apoptotic 
gene CCAAT-enhancer-binding protein homologous protein 
(CHOP). Protein synthesis repression caused by UPR activa
tion is associated with a wide range of neurodegenerative 
disorders, including AD, PD, and prion diseases, and restora
tion of translation activity is neuroprotective in disease mod
els [322].

While the signalling pathway resembles that found in other 
cell types, the neuronal UPR features the spatiotemporal segre
gation of specific components, resulting in a compartmentalized 
stress response unique to neurons. For instance, in a study in 
which hippocampal axons were exposed to AD-associated pep
tide Aβ1-42, axonal p-eIF2α levels increased, indicating UPR 
activation. Unexpectedly, in contrast to the canonical stress 
response that results in global translational repression, axonal 
protein synthesis was significantly increased, including axonal 
ATF4 synthesis. Over the next 24 hours, ATF4 was retrogradely 
transported to the soma, where it activated CHOP-dependent 
apoptosis and led to neuron death [323]. The authors demon
strated that inhibition of local synthesis of ATF4 or its retrograde 
transport upon axonal Aβ1-42 treatment could effectively reverse 
CHOP activation and cell loss, exemplifying a form of inter- 
compartmental signalling propagation in neurodegenerative 
diseases.

Interestingly, while activation of the UPR is extensively 
associated with human diseases, the pathway itself has evolved 
to be a robust pro-survival pathway to mitigate cellular stress 

in adverse situations, particularly when the insult is mild and 
transient [324]. The UPR also has various physiological func
tions, such as protein quality control and metabolism 
[325,326]. Neurons also use the UPR or individual compo
nents of the pathway to regulate physiological activities in the 
absence of classical stress or pathology [327,328]. In develop
ing retinal ganglion cell axons, the increase in LPS upon 10 
min of stimulation by the guidance cue Semaphorin 3A 
(Sema3A) is partly mediated by the PERK pathway [329]. 
Sema3A stimulation induces PERK activation and eIF2α 
phosphorylation, but similar to the Aβ1-42-induced response, 
axonal protein synthesis is also significantly increased. 
Therefore, it has been proposed that this differential outcome 
of eIF2α phosphorylation can be explained by Sema3A stimu
lation eliciting rapid local synthesis and dephosphorylation of 
eIF2B, generating a higher level of ternary complexes for 
translation initiation [329]. This unique Sema3A-induced 
PERK activation in axons provides a first insight into how 
neurons engage a modified stress response to meet their 
developmental demands.

Conclusion and further perspectives

In both neurodevelopmental and neurodegenerative disor
ders, dysfunction of axons and synapses has been proposed 
to be central to the observed pathology. Neurodevelopmental 
disorders like FXS and ASD result from failure in the estab
lishment of synaptic connectivity [330]. In contrast, in neu
rodegenerative disorders, such as AD, Huntington’s disease 
and prion diseases, synapse loss is among the first pathologi
cal signs, and the extent of synapse loss is the best correlate 
for cognitive decline [331,332,333]. In the case of ALS, the 
‘dying-back model’ has been proposed, in which loss of the 
axon and motor neuron innervation is initiated in the distal 
compartment [334]. Encouragingly, it has been reported for 
several animal models of neurological disorders that synaptic 
dysfunction and concurrent cognitive impairments are rever
sible during neurodevelopment and at the early stage of neu
rodegenerative diseases [335,336,337,338], making research 
into the underlying mechanisms that compromise synapse 
integrity highly attractive for therapeutic development.

In this review, we have discussed evidence that LPS in 
neurites is critical to neuronal function, and that it is com
promised in neurological disorders. As LPS supports the 
autonomy of distal compartments, both through the support 
of homeostasis and as a localizable regulatory response med
iator, its dysregulation particularly affects neuritic mainte
nance and function. Expectedly, failure in LPS regulation 
may directly contribute to the neurite dysfunction found in 
many neurological disorders. However, it should be borne in 
mind that LPS deficiency can also be downstream of disrup
tion in other processes key to neurite survival, such as axonal 
trafficking. Therefore, a major challenge to thoroughly under
standing the role of LPS in neuropathy is to elucidate the 
causal relationship between LPS perturbation and various 
disease-associated pathophysiology.

It is not always straightforward to prove an alteration in 
LPS rather than somatic translation accounts for a disease 
phenotype. In recent years, several methods have been 
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developed to perform unbiased screens for axonally synthe
sized proteins in culture [339]: both laser-capture microdis
section [10,340] and compartmentalized culture systems, such 
as modified Boyden Chambers [39,43,341], allow for axon- 
only samples to be collected. Similarly, microfluidic devices 
enable the spatial separation of neuronal cell bodies and axons 
into fluidic isolated compartments connected by 150–600 µm 
long microgrooves. This not only allows the somatodendritic 
and axonal material to be collected separately, but also enables 
specific manipulations to be performed on the axonal com
partment without affecting the soma, including methods that 
selectively label axonal mRNAs and proteins or inhibit mRNA 
translation locally [44,342]. However, trafficking between the 
axonal and somal compartments makes this kind of compart
mentalized culture experiment less reliable for the investiga
tion of processes that occur on timescales of days. 
Furthermore, these systems do not recapitulate the range of 
cues observed in the in vivo context, for instance during 
synapse formation, which may be important regulators of 
LPS. These challenges mean the role of compromised LPS in 
synapse formation and maintenance in neurological disorders 
is still largely unknown, and further technical advances are 
being developed to address this.

Subcellular in vivo multi-omics technology has emerged in 
the past few years as a method of choice to elucidate the role 
of LPS in the interconnected neuronal context of animal 
models of disease, as shown by three recent studies. The 
first two of these studies employed the RiboTag (also known 
as axon-TRAP) system to identify cell-type-specific ribosome- 
bound mRNAs in axons [9,152]. The neurons chosen in these 
studies, RGCs and auditory cortical TE3 neurons, have their 
axons and somas situated at spatially distinct locations, which 
can therefore be surgically separated in vivo. As revealed by 
the RiboTag approach, the repertoire of ribosome-associated 
mRNAs in mouse RGC axons changes with the developmen
tal stage to support various functional requirements during 
axon development and maintenance [9]. The study in audi
tory cortical axons showed that the translatome was altered 
during the consolidation of associative memory, for instance 
with mitochondrion-related genes being upregulated and 
cytoskeleton-related genes being downregulated [152]. In the 
third study, a method for determining the transcriptome and 
proteome of growth cones of selectively labelled neurons was 
developed: in vivo fluorescent labelling of callosal protein 
neurons of only one hemisphere through in utero electropora
tion, allowed purification of trans-hemispheric growth cones, 
by homogenization of the appropriate hemisphere, subcellular 
fractionation, and use of a modified fluorescence-activated 
cell sorting setup. This allowed comparison of different neu
ronal subtypes and highlighted the molecular specialization of 
the growth cone, where both the mTOR kinase protein and 
mRNAs containing mTOR-dependent motifs were accumu
lated [343]. Furthermore, labelling of nascent proteomes 
in vivo can be achieved by cell-type-specific metabolic label
ling using a methionine analogue, azidonorleucine 
[344,345,346]. Although it is yet to be applied to study the 
axonal compartment, this technical procedure has shown 
great compatibility with surgical separation of subcellular 
compartments in vivo. Assisted by these powerful in vivo 

methods, similar comparisons of the local translatome in 
disease models and healthy animals at different developmental 
stages would provide further insight into the extent to which 
LPS is disrupted in neurological disorders.

To fully establish a causative link between LPS and neuro
logical disorders, however, methods for in vivo local inhibi
tion of LPS will need to be developed. So far, it has been 
successfully demonstrated for Xenopus retinal projection that 
the local introduction of mRNA-specific anti-sense oligonu
cleotides (morpholinos) can inhibit local mRNA translation 
[14,116]. However, in vivo manipulation of axonal translation 
is more technically challenging in less accessible mammalian 
neurons. Surgical exposure of axon bundles in live animals 
followed by local compound treatment or dye labelling is 
sometimes possible for certain peripheral neurons, such as 
the sciatic nerve in the hind limb [347]. Excitingly, the past 
decade has witnessed the rapid development of novel optoge
netic approaches for neuroscience research conducted on 
small mammals in vivo [348]. Meanwhile, elegant optogenetic 
tools to manipulate intracellular organelle positioning [349], 
protein phase states [350] and translational activities [351] 
have been designed and refined to yield new discoveries 
with high spatiotemporal precisions. All these technical 
advances in optogenetics, although yet to be tested, hold 
great promise for facilitating the investigation of LPS in ani
mal models in vivo.

In addition to further investigating the complex regulation 
of axonal LPS in the in vivo context, the role of LPS in other 
neuronal compartments and non-neuronal cells should also 
be considered. We have used the axon as an example of the 
ways LPS can support distal compartments, as it is the most of 
a highly polarized neurite, but it should be noted that LPS also 
supports some unique functionalities of dendrites that are 
disrupted in neurological disorders. For instance, LPS is asso
ciated with long-term depression triggered by metabotropic 
glutamate receptors in dendrites. Loss of FMRP protein 
enhances this response, resulting in altered synaptic plasticity 
[352]. Furthermore, there are also other unique features of 
neuronal tissues that can create unique vulnerabilities, to 
disruption of LPS as well as to other insults. In particular, 
neuronal connectivity has here been simply taken to give rise 
to unique functional requirements that are supported by LPS 
and compromised in neurological disorders, but the intercon
nected nature of neurons itself can be a source of vulnerability 
in some disorders. In neurodegenerative diseases that are 
associated with protein aggregation, aggregates often the first 
form in particular regions of the brain, and then ‘spread’ 
through a characteristic sequence of other brain areas in 
a prion-like manner, which mirrors the brain’s internal con
nectivity [353]. Additionally, there is also ample evidence that 
the function of non-neuronal cells is compromised in neuro
logical disorders, which affects neuronal function, and can 
again be linked to LPS in some cases. LPS occurs in non- 
immune glial cells (astrocytes and oligodendrocytes), where it 
is known to be important to cell function and health, and LPS 
of key proteins in protrusions of glial cells has found to be 
reduced in ALS [354]. Furthermore, stresses originated in 
non-neuronal cell types can strongly affect neuronal cell 
populations and neurite homoeostasis. Stress within glia 
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themselves may also be detrimental to neuronal survival, as 
has been shown for activation of the unfolded protein 
response in astrocytes [355]. Another notable example of 
such a stress is neuroinflammation: activation of microglia 
following neuronal damage can result in proinflammatory 
signalling that can result in neuronal death in several ways 
[356]. Excitotoxicity due to excessive glutamate signalling is 
another stress that is associated with signalling between neu
rons as well as glia: it can occur through astrocyte dysfunc
tion, and is associated with neurodegenerative diseases as well 
as ischemic stroke [357].

As a final note, this review has limited itself to neurological 
disorders for which there is an identifiable genetic basis, 
allowing disease models to be developed relatively easily, 
and thus does not reflect the full variety of neurological 
disorders. Some sporadic neurodegenerative cases may be 
associated with a range of interacting genetic risk factors of 
low penetrance, or with exposure to environmental factors, or 
both, and model systems in which these factors can to an 
extent be replicated would be very informative. Furthermore, 
some neurological disorders can clearly be considered to be 
‘acquired’, such as following traumatic injury, which can be 
more readily replicated in experimental systems. Intriguingly, 
for example, it has been shown for substance addiction that 
LPS and its upstream signalling networks are affected by the 
altered activity of microRNA networks [358] and specific 
RNA-binding proteins [359]. It would be interesting to con
sider the similarities and differences between LPS in these 
different forms of neurological disorders.
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