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Liver cancer ranks as the sixth most common cancer globally, with hepatocellular carcinoma (HCC)
accounting for approximately 75%e85% of cases. Most patients present with moderately advanced
disease, while those with advanced HCC face limited and ineffective treatment options. Despite
diagnostic efforts, no ideal tumor marker exists to date, highlighting the urgent clinical need for
improved early detection of HCC. A key research objective is the development of assays that target
specific pathways involved in HCC progression. This review explores the pathological origin and
development of HCC, providing insights into the mechanistic rationale, clinical statistics, and the
advantages and limitations of commonly used diagnostic tumor markers. Additionally, it discusses the
potential of emerging biomarkers for early diagnosis and offers a brief overview of relevant assay
methodologies. This review aims to summarize existing markers and investigate new ones, providing a
basis for subsequent research.
© 2024 The Third Affiliated Hospital of Sun Yat-sen University. Publishing services by Elsevier B. V. on
behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Primary liver cancer, primarily known as hepatocellular carci-
noma (HCC), has emerged as a significant global health issue. In
2022, approximately 865,269 new cases and 757,948 fatalities were
documented.1,2 Indeed, liver cancer is the sixth most frequently
diagnosed cancer and the third leading cause of cancer-related
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deaths worldwide. The prognosis for liver cancer remains grim,
with a low 5-year survival rate of approximately 20%.1 HCC ac-
counts for 75%e85% of liver cancer cases, while intrahepatic chol-
angiocarcinoma (ICC) represents 10%e15%, along with other rare
subtypes, including HCC and ICC mixed types. Consequently, HCC is
often used interchangeably with liver cancer in general discussions.

Pathogenic sequences of HCC usually encompass liver injury,
chronic inflammation, fibrosis, cirrhosis, and liver cancer.1,2

Notably, the main risk factors for HCC include liver flukes (e.g.,
endemic in northeastern Thailand and the Southeastern Asian liver
fluke Opisthorchis viverrine), abnormal metabolic conditions
(including obesity, diabetes, and metabolic-associated fatty liver
diseases (MAFLD)), excessive alcohol consumption, and hepatitis B
and C virus (HBV and HCV, respectively) infection.3,4 Among
various factors, simple fatty liver, steatohepatitis, and fatty liver
rvices by Elsevier B. V. on behalf of KeAi Communications Co. Ltd. This is an open
c-nd/4.0/).
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cirrhosis are all interrelated conditions classified as fatty liver dis-
eases. The common histopathological features of clinical MAFLD
include inflammatory changes, such as steatosis, ballooning
degeneration of hepatocytes, Mallory body formation, and necro-
sis.5,6 Approximately 10%e20% of patients with MAFLD have stea-
tohepatitis, making it a common complication. Unlike viral
hepatitis, some forms of fatty liver can be reversible. Individuals
with coinfections with HBV and HCV, as well as those with a single
infectionwith hepatitis D virus (HDV) in endemic regions, are at the
highest risk for developing HCC. Additionally, an acute inflamma-
tory response typically resolves once the external stimuli are
eliminated. However, unresolved chronic inflammationmay lead to
liver fibrosis and eventually cirrhosis, which is often followed by
HCC.7 Although preventive interventions to halt the progression to
cirrhosis are crucial in decreasing the incidence of HCC, infections
such as HBV and HCV, as well as conditions like hemochromatosis,
can synergistically lead to HCC without triggering cirrhosis, indi-
cating that cirrhosis is not the sole pathogenic inducer of HCC.8 The
aforementioned main pathogenic factors for HCC may demonstrate
various roles in different regions. In high-risk areas, the key de-
terminants of HCC development are chronic HBV infection, afla-
toxin exposure, or a combination of both. Conversely, in other areas,
HCV infection may be the main cause of HCC.9 The global cancer
data reveals a complex picture, with 21%e55% of HCC cases
worldwide attributed to chronic HBV or HCV infections.2 In high-
risk regions such as China and East Africa, chronic HBV infection
and aflatoxin exposure are the primary risk factors. In contrast, in
Egypt, Italy, and Japan, HCV infection is the leading cause, high-
lighting the variability of risk factors by region. Moreover, in
Mongolia, factors such as HBV and HCV coinfection, HDV infection
in HBV carriers, and alcohol consumption contribute to the highest
incidence of cholangiocarcinoma in both men and women.5,6 In
summary, liver cancer, particularly HCC, has diverse causative fac-
tors, which may differ according to biogeographic regions, envi-
ronmental factors, and lifestyle habits.

HCC has a complex and varied pathogenesis, necessitating
diagnostic methods to adapt to the underlying causative factors
and endemic areas. Currently, serological tests and imaging
techniques are the most common methods for the early diagnosis
of HCC. According to the National Comprehensive Cancer Network
clinical practice guidelines, patients at high risk of HCC develop-
ment (i.e., patients with cirrhosis) must be monitored with
abdominal ultrasonography and alpha-fetoprotein (AFP) screening
every six months.10 However, the effectiveness of ultrasonography
is limited by its dependence on operator competence and the
difficulties in distinguishing between malignant and benign nod-
ules in small cirrhotic livers. A high AFP level is detected in benign
liver diseases such as hepatitis and cirrhosis.11 Thus, early-stage
liver cancer must be subjected to an AFP test. However, even
with a low cutoff value (10e20 ng/mL), the sensitivity of AFP for
diagnosing HCC is approximately 60%, and its specificity needs
improvement.12 In addition, false-negative diagnostic results are
based on AFP, and approximately 15%e30% of patients with
advanced HCC demonstrate a normal AFP level in the blood.13 As a
result, the American Association for the Study of Liver Disease
practice guidelines committee no longer recommends AFP as a
marker for the early detection of HCC.14 Consequently, scientists
have developed several AFP variants as more sensitive and accu-
rate diagnostic biomarkers, including des-gamma-
carboxyprothrombin (DCP), Golgi protein 73 (GP73), and
glypican-3 (GPC-3). However, the diagnostic reliability of each
serum marker is insufficient, and combinations of multiple
markers must be monitored for an appreciable accuracy of 80%e
90%.15e17 The accuracy of marker testing for HCC varies according
to different pathogenic factors, such as HBV and HCV infections,
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hemochromatosis, MAFLD, a1-antitrypsin deficiency, and
cirrhosis. This variability can also be influenced by regional and
ethnic differences, alcohol consumption, lifestyle factors,18e21 and
pathogenic factors that do not adhere to the typical progression of
liver injury, chronic inflammation, fibrosis, cirrhosis, and liver
cancer.22,23 The HCC size also plays a significant role in diagnosis.
According to international standards, HCCs measuring >5 cm are
classified as large, whereas those measuring <2 cm are termed
small. Large HCCs exhibit considerable genomic, proteomic,
metabolomic, and bacteriologic variations. Patients with large
HCCs are typically symptomatic and can be easily diagnosed
through imaging, whereas diagnosing small HCCs is relatively
challenging. Tumor size is closely linked to tumor markers,
emphasizing the importance of early detection through blood
tests for prevention. In recent years, more new potential markers,
such as tumor-educated platelets (TEPs), cancer stem cells (CSCs),
cytokines, and innovative diagnostic assays such as liquid biopsy
and mass spectrometry, have emerged.24e29 In this review, HCC
formation is briefly described, and the diagnostic markers of HCC
are summarized to evaluate the clinical contributions of existing
markers and the application of novel potential markers in early
HCC detection.

2. Origin and development of HCC

The pathogenesis of HCC is a complex, multistep process and
involves genetic susceptibility, interactions between viral and
nonviral risk factors, cellular microenvironment and various im-
mune cells, and underlying chronic liver disease. These are
considered the origin of the malignant transformation of hepato-
cytes and early HCC development. The severity of these factors and
an altered microenvironment are key contributing features to
cancer and are involved in all stages of malignant progression, from
the initial transformation stage to invasion and ultimately
metastasis.30

The cellular origin of HCC remains elusive, probably because
of the heterogeneity of liver cancers within the same tumor and
among different tumor cells. In an animal study, Mu et al.31

used complementary fate-tracking approaches and determined
that HCC in mice originated exclusively from hepatocytes rather
than from the progenitor or biliary compartment. Interestingly,
some mouse models of HCC support the likelihood of mature
hepatocytes, which dedifferentiate into juvenile cells and regain
self-renewal ability, as the cellular source of HCC.32 Further-
more, hepatocyte nuclear factor 4a (HNF4a), a core component
of the liver-specific regulatory network, was reported to play a
vital role in hepatocyte establishment and maintenance.33

Notably, the aberrant expression of HNF4a contributes to the
proliferation and loss of epithelial morphology, exacerbates
dedifferentiation, and induces HCC progression in rodents and
humans.34

The blockage of stem cell (SC) differentiation is proposed to be a
crucial driver of tumor formation. However, unlike most other or-
gans, the liver lacks a well-defined SC population. Currently, most
opinions revolve around two types of hepatic SCs, namely, endog-
enous and exogenous hepatic SCs, both of which may play potent
roles in HCC formation. Endogenous hepatic SCs are further sub-
divided into hepatic oval cells, small hepatocytes, and embryonic
hepatocytes. Among these subtypes, hepatic oval cells are believed
to play a dominant role in HCC development.35,36 As illustrated in
Fig. 1 A and B, the central vein serves as the focal point of the he-
patic lobule, around which the hepatic plates, hepatic blood sinu-
soids, and bile ducts are radially distributed. Parenchymal cells
make up most hepatocytes, mainly hepatocytes and biliary
epithelial cells (BECs) or cholangiocytes, which are also known as



Fig. 1. Structure and regeneration of the hepatic lobule. (A) Diagram of the liver structure. (B) The hepatic lobule is the fundamental unit of the liver structure and function,
exhibiting a multifaceted and prismatic nature. It is responsible for vital functions, including metabolic regulation, detoxification, and bile production. The focal point of the hepatic
lobule structure is the central vein, around which the hepatic plates, hepatic blood sinusoids, and bile ducts are radially distributed. These components consist of hepatic
parenchymal (predominantly hepatocytes and BECs) and nonparenchymal cells (e.g., fibroblasts, stellate cells, Kupffer cells, and endothelial cells). (C) Liver regeneration includes the
regeneration of liver parenchymal cells and the reconstruction of the liver tissue structure. Typically, phenotypic fidelity characterizes the regenerative activity in liver regeneration:
that is, the proliferation and self-renewal of the parenchymal cells, including hepatocytes and cholangiocytes. (D) When hepatocyte proliferation is impaired due to excessive cell
death, liver progenitor cells with hepatobiliary characteristics, derived from bile duct cells, may gradually differentiate into hepatocytes. Conversely, if cholangiocyte proliferation is
inhibited by excessive cholangiocyte damage or loss, periportal hepatocytes can also be transformed in situ into cholangiocytes, mimicking similar transformations that occur during
embryonic development. These retrotransformation processes have the potential to contribute to tumorigenesis. Abbreviations: BECs, biliary epithelial cells; HCC, hepatocellular
carcinoma; ICCA, intrahepatic cholangiocarcinoma.
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bile duct cells and are arranged in the biliary tree to alter the
hepatocyte-secreted bile. The remaining small proportions of liver
cells are nonhepatocytes, such as fibroblasts, stellate cells, Kupffer
cells, and endothelial cells.37 As shown in Fig. 1C, the regenerative
activity in liver regeneration is characterized by phenotypic fidel-
ity: hepatic epithelial cells (hepatocytes and cholangiocytes) pro-
liferate, resulting in more identical cells.38 If the proliferative
capacity of liver cells is severely impaired (Fig. 1D), liver SCs are
activated. These cells, also known as oval cells, possess a high
nucleoplasmic ratio and are located in the periportal region of the
Herring canal, where they are considered bipotential progenitor
cells. In cases of excessive hepatocyte death or inhibited hepatocyte
proliferation, progenitor cells with hepatobiliary characteristics
originate from bile duct cells and gradually differentiate into he-
patocytes. If bile duct cell proliferation is inhibited, periportal he-
patocytes transform into bile duct cells in situ, mimicking similar
transformations that occur during embryonic development and are
used for the structural and functional reconstructions of the
220
liver.39e41 These retrotransformation processes may ultimately lead
to tumor cell production.

The investigators utilized diphtheria toxin receptor and green
fluorescent protein knockout mice to examine leucine-rich repeat-
containing G-protein coupled receptor 5 (LGR5)-positive SCs. They
monitored the behavior of these SCs in the liver under physiological
conditions and in response to carbon tetrachloride (CCl4)-induced
liver injury. Additionally, the researchers isolated SCs from mouse
liver and subjected them to an organoid formation test. The results
indicate that LGR5-expressing SCs are only detectable after CCl4-
induced liver injury but not at any stage of the normal mouse
lifespan.42 Another study reported that the LGR5/ReSpo1/Wnt3a
axis promotes the stemness of “hepatoblast-like” HCC cell lines.43

In the study, LGR5 expression was explicitly observed in a specific
subset of HCC cell lines that displayed a hepatoblast-like appear-
ance, along with the expression of liver fetal or progenitor markers.
Furthermore, Cao et al.42 identified a static or slow-circulating cell
population called the label-retaining cells (LRCs), located in the
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mouse gastrointestinal tract and gallbladder.44,45 The isolated sin-
gle LRC can form organoids, carried and expanded in culture for
several months, and differentiated into hepatocytes and bile duct
cells in vitro.

Exogenous hepatic SCs primarily include bone marrow-derived
hematopoietic SCs, mesenchymal SCs (MSCs), as well as pancreatic
and adipose SCs in the blood circulation. Under conditions of liver
injury, bone marrow SCs can migrate to the liver portal area and
differentiate into hepatic parenchymal or bile duct epithelial
cells.46 This theory has been further supported by an in vitro study
demonstrating that CCl4-induced liver injury serum treatment
induced MSC differentiation into hepatocyte-like cells.47 To date,
several surface markers and side populations of HCC have been
isolated, including EpCAM, CD133, CD44, CD13, CD90, CD24, CD47,
and OV6. They identify the presence or absence of CSCs by their
markers, rather than by a defined cell lineage, with the most
common method of identifying hepatic CSCs being the use of the
cell surface antigens CD133 and CD44 as surface markers of liver
SCs to label isolated cells.48e50

HCC can also originate from the accumulation of somatic muta-
tions or epigenetic alterations. Although most HCCs occur in “pas-
senger” genes, some are considered “driver factors” for the activation
of key signaling pathways that may lead to hepatocarcinogenesis.51

For instance, the mutation of telomere reverse transcriptase (TERT)
promoter is barely detected in normal human hepatocytes but is
quite common in dysplastic nodules and patients with HCC.52,53

These alterations are the most frequent recurrent somatic muta-
tions identified in low-grade dysplastic nodules (LGDN) (6%), high-
grade dysplastic nodules (HGDN) (20%), and HCC (60%).54e56

During HCC development, patients typically experience chronic
hepatitis, liver fibrosis, and cirrhosis. Approximately 70%e80% of
liver cancer cases occur in the presence of cirrhosis, which is a
complex process driven by a series of molecular events.30,57 The
onset of hepatitis can be triggered by various factors such as HBV or
HCV, alcoholism-induced alcoholic liver disease (ALD), metabolic
dysfunction-associated steatohepatitis (MASH), drug-induced liver
injury, and other lifestyle factors. A long-term inflammatory
response due to persistent disease may cause sustained damage
and result in liver fibrosis and cirrhosis. Ultimately, the process
terminates with HCC with characteristic precancerous cirrhotic
nodules, commonly known as LGDNs. With the aggravation of
symptoms, LGDNs progress to HGDNs, which are then transformed
into early- or later-stage HCC.58e61 Importantly, in approximately
20%e30% of cases without cirrhosis, HCC may primarily develop in
the presence of both HBV and HCV infections, MASH, or ade-
nomas.62 In general, liver cancer is an irreversible process; there-
fore, early detection and subsequent targeted therapies are the only
ways of increasing patient survival.

3. Common clinical biomarkers of HCC

Current clinical practice guidelines recommend regular
screening for HCC in patients with liver disease due to hepatocyte
regeneration.63 The “China guideline for liver cancer screening
(2022, Beijing)” and the “Expert consensus on early screening
strategies for liver cancer in China” emphasize the importance of
accurate liver cancer screening and effective early screening stra-
tegies for liver cancer,64,65 similar to the “pyramid” hierarchical
screening model and focus on high-risk groups. The European As-
sociation for the Study of the Liver (EASL) e European Organization
of Research and Treatment of Cancer (EORTC) HCC Clinical Practice
Guidelines are the first comprehensive HCC management guide-
lines.66 These guidelines emphasize the importance of early
screening and prevention and recommend monitoring and diag-
nostic strategies for at-risk populations. Blood biomarkers,
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primarily proteins, cytokines, enzymes, and isoenzymes, are still of
great significance for the early diagnosis of liver cancer. Although
many biomarkers associated with liver cancer pathology are
known, none of them, individually, can provide sufficient evidence
for liver cancer detection. Therefore, the diagnostic accuracy and
specificity can be greatly improved by the joint detection of mul-
tiple markers (Table 1).67e84

3.1. AFP

AFP, replaced by albumin 2e3 months after birth and encoded
by the q-arm 25th region of chromosome 4, is the most commonly
used marker for diagnosing HCC. AFP is a member of the albumin
family and a glycoprotein composed of 591 amino acids with a
molecular weight of 68 kDa, mainly produced by the fetal liver and
yolk sac during pregnancy.85,86 Individuals with HCC often exhibit
high AFP levels in their bloodstream. Varying degrees of elevation
may precipitate cirrhosis and liver damage.87 In addition, several
physiological factors during pregnancy and gonadal-derived ma-
lignant tumors, such as gastric cancer, can increase the circulatory
levels of AFP.88

AFP is produced in endoderm-derived tissues during embryo-
genesis, and solid cells produce and secrete AFP in the early stages
of development. Notably, the blood level of AFP gradually falls to a
minimal amount of <10 ng/mL in neonates within approximately
300 days, and this occurs along with further development and
maturity of the host tissues and organs.89 Consequently, under
normal conditions, the blood levels of AFP in adults are �20 ng/
mL.90 In other words, endoderm-like cells initiate AFP synthesis
and secretion, which gradually increases during post-embryonic
development. In contrast, AFP secretion gradually diminishes as
the fetus reaches a later stage of development. When a liver tumor
occurs and hepatocytes are damaged, malignant cells lose their
ability for terminal differentiation and remain at a particular stage
of cell development. The proliferation and secretion of products of
immature cells turned out to be abnormal. Thus, AFP is not a tumor-
specific protein but a product of early immature cells with a more
active AFP gene.91 Relying only on the AFP level may not be suffi-
cient for diagnosing liver cancer, as the exact blood level of AFP is
also influenced by tumor size. Moreover, the sensitivity of AFP is
52% in patients with liver cancer with a tumor diameter of >3 cm,
but only 25% in those with a <3 cm-diameter tumor.92 Approxi-
mately 80% of patients with early HCC having small tumors
demonstrate no significant increase in the blood AFP level.

Furthermore, the production of a high blood level of AFP is not
always translated to HCC development. Benign liver lesions, such as
those arising from the repair process after various liver injuries,
must be first excluded before the possibility of endodermal tumors
is considered.93,94 For instance, the process of recovering from liver
injury caused by acute and chronic hepatitis leads to increased AFP
production owing to the regeneration of hepatocytes.95,96 However,
the resulting AFP level rarely exceeds 400 ng/mL in the circulation,
and blood AFP levels gradually return to normal over 3 months as
the regenerating cells differentiate and mature.97

High AFP levels in patients are associated with HCV-positive
liver disease. The normalization of AFP levels is observed in pa-
tients with HCV undergoing interferon therapy. This phenomenon
indicates an inflammatory response in hepatocytes, attributed to
degeneration and necrosis, followed by controlled cellular regen-
eration.98 Approximately 10%e20% of patients with MAFLD have
steatohepatitis, and AFP levels are usually increased in these pa-
tients, with increasing levels of AFP paralleling the extent of hepatic
steatosis.99 AFP testing is frequently used to detect HCC recurrence,
as many patients experience early recurrence after treatment,
which must be closely monitored. Despite the low sensitivity of
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AFP, no perfect combination of reliable biomarkers currently exists
to accurately detect early HCC recurrence.100

Although AFP plays an important role in monitoring HCC
recurrence, its reliability as an early diagnostic biomarker remains
controversial. A review based on several studies indicates that the
sensitivity of AFP for HCC diagnosis only ranges from 54% to 63%,
and the specificity ranges from 82% to 89%. Additionally, 30%e40%
of patients with HCC exhibit low AFP levels in their blood.67e71

Retrospective studies conducted in different regions have identi-
fied the role of different pathogens in the missed diagnosis of pa-
tients with HCC for whom AFP was used as the targeted
biomarker.72 Therefore, a sensitive and specific test must be per-
formed in regions where certain pathogens are endemic to deter-
mine how these pathogens may affect serum AFP levels, potentially
compromising the reliability of AFP as a biomarker for the early
diagnosis of liver cancer.

To date, AFP plays a pivotal role in HCC and has demonstrated
new potential applications. Recent studies have suggested its po-
tential as a target for HCC immunotherapy.101 One such approach is
AFP lentiviral priming combined with AFP499 peptide enhance-
ment, which has shown enhanced therapeutic effectiveness in c-
MYC/myeloid cell leukemia 1 and c-mesenchymal-
epithelial transition factor/beta-catenin mouse models of HCC. The
combined use of the AFP vaccine and anti-programmed death
ligand 1 (PD-L1) antibody has shown promising results, signifi-
cantly obstructing HCC progression and representing a hopeful
advancement in HCC treatment.

3.2. AFP variant (AFP-L3)

AFP variants refer to the lectin lens culinaris agglutinin (LCA)-
binding AFP (AFP-L) proteins. Different sugar chains bind to AFP
and form AFP-L1, AFP-L2, and AFP-L3 variants.102 AFP-L1 is the
nonLCA-bound fraction that constitutes the major glycoform of AFP
detected in the blood of patients with chronic hepatitis and liver
cirrhosis. AFP-L2 is mainly derived from yolk sac tumors and can be
detected in mothers during pregnancy. AFP-L3, also known as AFP
heterogeneity 3, is an abnormal glycosylated AFP, where the special
AFP is produced particularly by liver cancer cells in fragment
binding with LCA.103 In addition, an increase in AFP-L3 levels can be
caused by active hepatitis, pregnancy, and female reproductive
tumors.104,105

The ratio of AFP-L3 to total AFP in serum, referred to as the AFP
heteroplasmy ratio or AFP-L3%, is used clinically. In 2005, the
United States Food and Drug Administration approved the moni-
toring of AFP-L3% for liver cancer as an early warning indicator.
When an AFP-L3% threshold value of �10% is used, it serves as a
highly specific marker for diagnosing liver cancer.73 Therefore, AFP-
L3% is proposed as a diagnostic and prognostic marker for HCC.74 A
retrospective study of 272 patients (166 with HCC and 106 with
benign liver diseases) showed that AFP-L3% was not reported for a
total AFP <10 ng/mL and that all patients with an AFP level
>200 ng/mL had HCC.75 In patients with a total serum AFP of
10e200 ng/mL, an AFP-L3% >10% has a sensitivity of 71% and a
specificity of 63% for HCC diagnosis.75 In contrast, an AFP-L3% >35%
has a reduced sensitivity of 33% but an increased specificity of 100%.

Furthermore, a retrospective study analyzed 689 patients with
liver cirrhosis and HBV infection from a prospective study to
determine the diagnostic effectiveness of AFP, AFP-L3, DCP, and
combined markers in early HCC detection. AFP, AFP-L3, and DCP
levels were compared between the case and control groups at 6 and
12 months, respectively, after HCC detection. At the optimal
threshold (AFP, 5 ng/mL; AFP-L3,4%), the sensitivity and specificity
of the combination of AFP and AFP-L3 were 79% and 87%, respec-
tively, and were not further improved by the addition of DCP.
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Interestingly, AFP-L3 levels began to significantly increase at 6
months in 42 HCC cases but remained unchanged in the control
group.76 Importantly, AFP-L3% is more sensitive and specific than
AFP in patients withminor or early-stage HCC and canmore exactly
reflect tumor characteristics such as poor differentiation and ma-
lignant invasion.77 Despite its appreciable sensitivity and speci-
ficity, AFP-L3% is still only used as a recommended test. Although
AFP-L3 is closely associated with HCC, it can only be detected as a
percentage within the AFP pool and shares with no physiological
threshold. Therefore, the combination with AFP-L3 testing is a
promising method for early HCC detection.

3.3. GP73

GP73, also known as Golgi membrane protein 1 or Golgi phos-
phoprotein 2, is a Golgi transmembrane glycoprotein whose com-
plementary DNA was cloned by differential screening of a
complementary DNA library extracted from the livers of adult pa-
tients with giant cell hepatitis.106,107 GP73 is located in the cis and
medial Golgi cisternae and consists of the cytoplasmic, trans-
membrane, and Golgi lumen domains.106 The N-terminal features a
hydrophobic structure containing a single transmembrane region
with a signal peptide cleavage site, whereas the C-terminal has five
glycosylation sites, an a-helix structural domain, and an acid tail
consisting of and acting as a functional proteineprotein interaction
structural domain.108 GP73 is expressed in various epithelial cells,
including ciliated columnar epithelial cells, distal convoluted tu-
bules, collecting duct epithelial cells, prostate epithelial cells, and
bile duct epithelial cells in the lungs, kidneys, prostate, and liver,
respectively.109 After the cleavage by preprotein convertase, mature
GP73 is released from the Golgi and secreted into the
bloodstream.110

Studies on various liver diseases, such as HBV, HCV, autoim-
mune hepatitis, and ALD, have shown that while no significant
differences exist among affected liver tissues, the expression level
of GP73 in diseased tissues is approximately 70 times higher than in
normal tissues.111 Furthermore, a study involving 352 patients
found that the serum GP73 levels in patients with HCC were
significantly higher than that in patients with liver cirrhosis.78 In
the same study, the sensitivity and specificity of GP73 for the
diagnosis of HCC were reported to be 69% and 75%, respectively.

Moreover, temporal expression trends of GP73 and glucose-
regulated protein 78 (GRP78) are similar under pressure from the
endoplasmic reticulum (ER) stress. It is a fundamental cellular
stress response that maintains cellular protein homeostasis in
response to endogenous or exogenous stimuli.112 As an example of
endogenous factors, the accumulation of natural mutations in the
HBV genome during viral infection can produce several mutant
HBV-encoded proteins, mainly including three S open reading
frame (ORF) small, medium, and large, and one C ORF protein HBC
core antigen (HBcAg).113 The accumulation of the mutant proteins
stimulates ER stress in infected hepatocytes. As a required hetero-
dimer partner, GP73 deficiency causes a significant reduction of
intracellular GRP78. In contrast, the protein level of GRP78 is
strongly induced by GP73 overexpression.114 In addition, a mouse
study found that GP73 secretion into the bloodstream is rapidly
upregulated under ER stress.115 The high levels of GP73 increase the
opportunities for interaction with GRP78, facilitating subsequent
signal transmission to the target cells. However, in the absence of
GP73, ER stress is not transmitted among cells, confirming that
GP73 is a key ER stress transmission factor. More importantly, GP73
likely affects the microenvironment in viral hepatitis, MASH, and
ALD-induced tumors by promoting the activation and transmission
of intracellular ER stress.116e119 Taken together, these molecular
events mediated by GP73 are collectively deposited for
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tumorigenesis and metastasis, which highlights the possibility and
reliability of GP73 as an HCC biomarker.

However, GP73 may not serve as a reliable diagnostic biomarker
for gastrointestinal tumors unless it is detected in combinationwith
other polypeptide markers, such as AFP or DCP.120,121 The reason for
this is that GP73 is expressed in the epithelial cells ofmany organs or
tissues, except for the liver. Therefore, when using GP73 as a
biomarker for early HCC detection, it is challenging to exclude
contributions from other tumor tissues located outside the liver.

3.4. DCP

DCP is a novel serological biomarker for HCC and is induced by
the absence of protein induced by vitamin K or by the action of the
antagonist-II. As an abnormal prothrombin moiety, DCP is pro-
duced by the carboxylation defect of the prothrombin precursor
after translation, enabling its occurrence in HCC cells.122 Moreover,
because the production of normal prothrombin is tied to vitamin K
sufficiency, DCP is released under physiological conditions with
insufficient vitamin K levels. Four functional domains exist within
DCP: a gamma-carboxyglutamic acid (GLA) domain, two annular
domains, and a catalytic domain. Among these domains, 10 GLA
residues are vitamin K-dependent at the amino terminus of the
peptide chain. Under sufficient serum vitamin K conditions, all 10
residues are converted into GLA, forming a normal prothrom-
bin.123,124 In contrast, vitamin K deficiency induces the formation of
the abnormal prothrombin DCP. In addition, the anticoagulant drug
warfarin, a potent vitamin K antagonist, can block the redox cycling
of vitamin K, causing a significant increase in DCP levels and a
corollary increase in the levels of DCP-inducible proteins.125,126

Vitamin K deficiency not only directly affects redox cycling, but
also significantly increases blood DCP levels in affected patients.
Furthermore, because vitamin K is well absorbed by the small in-
testine only in the presence of bile salts, patients with intrahepatic
cholestasis, in which decreased bile salt is a common disease
feature, experience interference of vitamin K absorption, leading to
increased DCP levels.127,128 Currently, the specific mechanism by
which vitamin K interferes with prothrombin/thrombin homeo-
stasis in patients with HCC remains incompletely understood.
Additionally, local synthesis of prothrombin may be compromised
in the presence of liver damage, resulting in the production of
abnormal prothrombin DCP.129e131

As a tumor marker, DCP, unfortunately, has a half-life of
approximately 40e72 h in the blood, which is 3e5 days shorter
than that of AFP, stressing its potential curative effects on HCCmore
expeditiously.132 In addition, monitoring AFP and DCP levels in
patients with HCC after treatment reveals that the 5-year and long-
term survival rates are significantly higher in the group with
normal DCP levels post-treatment than in the group with abnormal
DCP levels. Comparatively, DCP is more valuable in assessing the
prognosis of patients with HCC; however, its diagnostic specificity
is much lower than that of AFP.133

Within the context of HCC diagnosis, DCP is barely monitored
alone as a diagnostic marker but is more usually assessed alongside
AFP and AFP-L3, particularly in areas with a higher incidence of
HBV infection, such as East Asia and Africa. Notably, DCP is signif-
icantly more effective than either AFP or AFP-L3 in differentiating
HCC from cirrhosis, with 86% sensitivity and 93% specificity.79 More
importantly, the combined application of DCP and AFP can improve
the diagnostic sensitivity for HCC by 80% for tumors with diameters
of 3e4 cm and by 70% for tumors with diameters of 2e3 cm.80

Because it arises from vitamin K imbalance or deficiency with un-
known mechanisms, DCP is poorly specific as a sufficient tumor
marker for detecting HCC. Thus, similar to GP73, the use of DCP as
an HCC diagnostic biomarker requires its combination with other
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biomarkers to enhance diagnostic accuracy and achieve reliable
tumor detection.

3.5. GPC-3

GPC-3, also called OCI-5, DGSX, GTR2-2, MXR7, SDYS, SGB, SGBS,
and SGBS1, is a protein that was first identified in the rare undif-
ferentiated epithelial cell OCI-5.134 GPC-3 belongs to the heparin
sulfate (HS) proteoglycan family and is composed of a core protein
and two HS glycosaminoglycan chains. Outside the cell membrane,
GPC-3 is anchored through glycosylphosphatidylinositol (GPI), the
main component mediating cell interactions with the extracellular
matrix.135 After being digested from the GPI anchor site on the outer
surface of the cell membrane by the lipase Notum, soluble GPC-3 is
released into the bloodstream.136 GPC-3 is abundantly expressed
during early embryonic development and takes on essential roles in
tissue morphogenesis and growth. Notably, GPC-3 expression is
undetectable in healthy adult livers but is significantly elevated in
most human liver cancers compared to colorectal cancer cells.137e139

GPC-3 plays a role in early tumorigenesis by activating the
classical Wnt signaling through autocrine and paracrine manners,
resulting in the high expression of Wnt target genes. In addition to
functioning as a Wnt ligand, GPC-3 acts as a coreceptor or storage
site interacting with other ligands, such as fibroblast growth factors
(FGF), via the HS side chains. GPC-3 facilitates ligands to bind to
their receptors and initiate the signaling pathways involved in HCC
development and invasion.140,141 Studies have shown that soluble
GPC-3, which is cleaved at the GPI anchor domain and diffuses from
the cell membrane, can block Wnt signaling and extracellular
signal-regulated protein kinase 1/2 (Erk1/2) and protein kinase B
(Akt) phosphorylation in Huh6-, Huh7-, and HepG2-derived tu-
mors.142,143 Antiangiogenic effects have also been observed in those
tumors. Thus, the firmness of the GPC-3 attachment to the cell
membrane positively correlated with the detectability of early
HCC.144

GPC-3 is expressed explicitly in HCC liver tissues but not in
normal liver tissues, cirrhosis, or benign lesions and thus is widely
used to distinguish HCC from ICC.145,146 Impressively, GPC-3 levels
correlate with HCC stages, with higher levels observed in moder-
ately and poorly differentiated HCC compared to well-
differentiated HCC, enabling both classification and assessment of
the HCC staging.147 Notably, Li et al.148 showed that GPC-3 can
distinguish AFP-negative HCC from benign liver nodules, under-
scoring the potential discriminating quality of GPC-3 as a veritable
biomarker for the detection of HCC detection.

Enzyme-linked immunosorbent assay showed no significant
difference in sensitivity, specificity, or accuracy from reverse
transcription-polymerase chain reaction (RT-PCR) in detecting
GPC-3 in tumor tissues and blood.149 A Meta-analysis yielded 55%
sensitivity and 58% specificity, which are less promising compared
with AFP. Consequently, GPC-3 is often used in combination with
AFP, GP73, and DPC to predict HCC and is appropriate for the
assessment of the HCC prognosis.81,82

3.6. a-L-fucosidase

Alpha-L-fucosidase (AFU) is a lysosomal acid hydrolase that is
widely distributed in mammalian tissues and body fluids and is
mainly involved in the catabolism of macromolecules, such as gly-
colipids, glycoproteins, andmucopolysaccharides containing fucose
groups.150 It can be broadly detected in organs and tissues such as
the placenta, fetal tissues, brain, liver, lungs, pancreas, kidney,
serum, urine, saliva, and tears. As a valuable biomarker for HCC
diagnosis, the HCC group demonstrated higher blood AFU levels
than the cohort group with benign hepatic disease.151 In
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approximately 85% of HCC cases, AFU detectionprecedes ultrasound
findings by 6 months.152 Notably, the study shows that the area
under the receiver operating characteristic curve (AUC) for AFUwas
0.68, with 56.1% sensitivity and 69.2% specificity at a cutoff value of
24 U/L. In contrast, the AUC for AFP was 0.83, with 58.2% sensitivity
and 85.2% specificity at a cutoff value of 20 ng/mL.83 Another study
indicated that in the detection of early-stage HBV-HCC and HCV-
HCC in the test group, AFU sensitivity was 63.9% and specificity
was 67.1%. In this study, a clinical investigation involving 921 par-
ticipants (including298HCCpatients,154 chronic hepatitis patients,
122 liver cirrhosis patients, and 347 healthy controls) demonstrated
that the combined diagnosis using AFP and AFU achieved a sensi-
tivity of 52.5% and a specificity of 91.6% for detecting early-stage
HCC. This combined approach showed better overall performance
compared to using AFP alone, which had a sensitivity of 44.3% and a
specificity of 93.7%.72 In addition to HCC, blood AFU levels increase
within weeks of pregnancy. Interestingly, after delivery, the blood
AFU level decreases rapidly and returns to normal levels in 5
days.153,154 Furthermore, AFU detection is also affected in patients
with fucosidase accumulation because the absence or reduction of
AFU activity in congenital tissues, organs, and body fluids results in
glycoprotein or glycolipid metabolism disorders.155

An increase in AFU activity in patients with liver cirrhosis re-
flects the diagnostic value of AFU, particularly for the detection of
smaller tumors.156 In contrast, AFP is not appropriate for the
diagnosis of smaller tumors. Therefore, it may be of great trans-
lational achievement to apply and popularize AFU as a new diag-
nostic index for HCC, particularly more significant in diagnosing
AFP-negative and small-cell liver cancers, and more suitable for
men and women with non-ovarian tumors.
3.7. OPN

Osteopontin (OPN), a protein that undergoes extensive modifi-
cation and can bind to integrins in the extracellular matrix, is
expressed in various cell types, including immune, epithelial,
smooth muscle, osteoblasts, and tumor cells.157 This diversity un-
derscores the wide-ranging implications of the associated research.
OPN plays a critical role in restructuring body tissue following an
inflammatory response and acts as an inflammatory chemokine,
particularly in triggering the inflammatory response in liver cells
after an injury.158,159 Like other cytokines, interactions of OPN with
integral and CD44 family proteins are vital in determining the
oncogenic potential of different cancers.160

OPN is commonly used in combination with other biomarkers;
however, its individual diagnostic sensitivity and specificity are 71%
and 80%, respectively. When OPN was used in combination with
AFP, the overall diagnostic sensitivity and specificity reached 82%
and 77%, respectively.84 Moreover, OPN can significantly enhance
the diagnostic sensitivity and specificity of AFP in patients with
viral hepatitis-induced HCC.161 The expression level of OPN is also
closely related to the clinicopathological characteristics of HCC,
such as envelope infiltration, vascular invasion, lymph node
metastasis, and clinical stage. Although the diagnostic sensitivity is
significantly lower in other liver diseases, particularly ALD, OPN
demonstrates a striking suitability for early HCC detection in in-
dividuals with a high HBV infection rate, particularly in Asia.162e164

However, the concentrations of OPN in the blood may be increased
by HBV infection; consequently, the association between OPN and
HCC may not be attributable to tumor development but to HBV
infection. Therefore, OPN is more applicable as an indicator of tu-
mor staging and prognosis and monitoring patients with HBV-
related HCC.
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3.8. DNA methylation

DNA methylation is an epigenetic mechanism involving the
transfer of a methyl group onto the 5’ carbon position of the
cytosine to form 5-methylcytosine, which regulates gene expres-
sion by recruiting proteins involved in gene repression or inhibiting
the binding of transcription factors to DNA.165

Among epigenetic mechanisms, methylation of cytosine-
phosphate-guanine (CpG) islands in gene promoters is considered a
common transcriptional regulation.165,166 CpG islands are DNA frag-
ments approximately 1000 base pairs long that have a higher CpG
density than the rest of the genome but are usually not methylated.
Most gene promoters (approximately 70%) are located in CpG
islands,165 particularly the promoters of housekeeping genes. It is
associated with the occurrence and development of certain cancers
suchasHCC,167e169which thereforemakesaberrantDNAmethylation
in gene promoters a promising biomarker for early diagnosis.170,171

The pathogenesis of HCC is triggered by the interactions of the
living environment, biogenetic, and epigenetic factors,172 in which
epigenetics is associated with HCC pathogenesis,173 and abnormal
DNA methylation serves as a major mediator of epigenetic changes
in HCC.174 As described above, DNA methylation catalyzed by DNA
methyltransferases (DNMTs, mainly including DNMT1, DNMT3a,
and DNMT3b) occurs through the coupling of methyl groups to the
5’ carbon position of the cytosine ring. In cancer, the expression of
tumor-suppressor genes is frequently silenced by the hyper-
methylation of CpG islands in the promoter region.175 That is,
DNMT upregulation promotes cancer development,176 which is
mainly manifested by significantly higher mRNA levels of DNMT in
HCC than in nontumor liver tissues.177 In addition, DNMT-mediated
epigenetic changes regulate metastasis, invasion, progression, and
development of HCC.178

In CD133þ/CD44þ cells, an HCC subpopulation with CSC char-
acteristics, OPN enhanced HCC metastasis by regulating DNA
methylation. Suppressing DNMT1 expression to inhibit migration
by knocking down OPN in CD133þ/CD44þ cells reduced the
methylation of tumor-suppressor genes, such as RASSF1, GATA4, and
CDKL2, and delayed tumor initiation in the CD133þ/CD44þ sub-
population of HCC cells.179

DNMT3 is involved in the epigenetic regulation of metastasis-
associated protein 1 (MTA1, associated with tumor invasion,
angiogenesis, metastasis, and survival) gene during HCC metastasis
and invasion.180 In particular, in HBV-induced HCC, HBV X proteins
enhance MTA1 expression through epigenetic regulation, as
demonstrated by the molecular mechanism by which HBV X pro-
teins induce MTA1 transcription by increasing promoter methyl-
ation and recruiting DNMT3a and DNMT3b to release p53.181

Thus, the DNA methylation status and DNMT levels may be
potential HCC biomarkers and attractive therapeutic targets for
HCC treatment.
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4. New potential biomarkers

Blood protein biomarkers are crucial for HCC detection because
of their high molecular weight and stability. Recent scientific and
technological advancements have deepened our understanding of
the molecular mechanisms underlying HCC, leading to the discov-
ery of diverse potential biomarkers. This opens up the possibility of
exploring innovative strategies for the early and precise detection
of HCC. Although not exhaustive, several new potential markers,
along with their characteristics, are summarized in Table 2.
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4.1. CSCs

Because of the unsatisfactory early diagnosis and predictive
treatment of liver cancer, more biomarkers must be collected to
improve the therapeutic outcomes. With advancements in tech-
nology, more accurate and specific biomarkers are expected for the
diagnosis and treatment of liver cancer. Among them, increasing
evidence shows that CSCs may be involved in multiple steps of
tumorigenesis, progression, and recurrence.182

Some surface markers that have been identified include CSCs,
such as CD44, CD133, epithelial cell adhesion molecule (EpCAM),
CD90, and leucine-rich repeat-containing G protein-coupled re-
ceptor 5 (LGR5).183e185 As a small subset of tumor cells, CSCs can
maintain stemness and self-renewal to induce resistance to
external stimuli and can remain dormant for a long time in cancer.
CSCs are the main cause of cancer metastasis and recurrence and
are therefore a key factor in the failure of cancer treatment.182 Thus,
CSCs take on an important role in tumorigenesis and progression
and are closely associated with tumor invasion, metastasis, drug
resistance, and recurrence after treatment.186 Identifying specific
phenotypic markers for CSC populations in HCC may contribute to
the development of new and effective therapies for this type of
cancer. As described above, the origin of the liver SCs is currently
unclear. Similarly, liver tumor SCs have not been identified. CD44, a
multistructural and multifunctional transmembrane glycoprotein,
serves as a receptor for hyaluronic acid, also known as hyaluronan,
a major component of the extracellular matrix, and acts as a cor-
eceptor for many growth factors and cytokines.187 CD44 has
attracted widespread attention for its important role in mediating
intercellular and cell-matrix interactions and its association with
malignant processes, particularly in the context of cancer dissem-
ination.188 In contrast, CD44 is the most common CSC surface
marker, crucial for communicationwith themicroenvironment and
regulating stemness properties.189 Other common CSC surface
markers for HCC include CD90 and CD133.190e192

In HCC, a high CD44 expression promotes high serum AFP
concentrations, which emphasizes the potential of CD44 as an HCC
biomarker.193,194 However, the surface antigen proteins are often
used for immunohistochemistry, evaluation, and staging of the
prognosis rather than for early HCC detection.195 The reason for this
is that the surface antigen proteins, including CD44, are difficult to
detect and obtain under normal circumstances.

4.2. CTCs

Circulating tumor cells (CTCs) are predominantly composed of
epithelial cells in tumor-efferent vessels; however, they can be
transformed from an epithelial to a mesenchymal phenotype
through SMAD family member 2 (Smad2) and b-catenin-mediated
signaling pathways.196 CTCs propagate through the portal vein and
systemic circulation and undergo dynamic processes of aggregation
and disaggregation and changes in shape and size in the blood-
stream.197 Usually, CTCs have a half-life of 1e2.5 h in the blood
circulation, after which they are eliminated by the immune system;
however, a small fraction can survive and seed distant metastatic
sites.198

At present, CTCs can be used as an alternative biomarker for
early HCC detection, whereas epithelial cell adhesion molecule
(EpCAM), as the most widely used CTC biomarker, also has some
limitations.199 Regarding CTC separation techniques, they are
broadly categorized into two types. One is mainly through the
physical properties of CTCs, such as filter machine size, density,
migration ability, and deformability.200 The latter relies primarily
on antigeneantibody binding overlying EpCAM.201 Because EpCAM
is not expressed in blood cells, it can be used to isolate CTCs from
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epithelioid HCC, which has become a common way to capture
circulating cancer cells, such as immunomagnetic bead sorting,
flow sorting, and microfluidic capture CTCs.202,203 However, only
35% of HCC cases are positive for the marker, which significantly
reduces the sensitivity of the method.204 Only 0e86 CTCs were
detected in 5 mL of blood. These findings raise questions about the
appropriateness of using EpCAM as a CTC marker for diagnosing
HCC progression.205 However, the development of next-generation
sequencing (NGS) enables the complete genome of CTCs to be
deciphered, paving the way for finding new and stable CTC
markers.

4.3. ctDNA

Somatic mutations detected in cell-free DNA (cfDNA) could be
used as biomarkers for HCC diagnosis. Tumor cell-derived circu-
lating tumor DNA (ctDNA) refers to DNA fragments carrying certain
characteristics, including mutation, deletion, insertion, rearrange-
ment, copy number abnormality, and methylation, from the tumor
genome, which is constantly flowing through the human blood
circulation system. ctDNAs mainly consist of necrotic or apoptotic
tumor cells, CTCs fragmented by shear stress, and exosomes
secreted by tumor cells.206 ctDNA may show great diagnostic value
in HCC, with higher sensitivity and better clinical correlation.207 For
example, ctDNA methylation is a hot direction for early diagnosis,
which may be because the methylation pattern is unique for each
cell and remains highly stable under physiological or pathological
conditions. Therefore, identifying different methylation patterns
may be a discriminatory tool for HCC detection and diagnosis; thus,
changes in methylation may offer the best hope for early cancer
detection. Aberrant methylation was found in serum DNA in cases
diagnosed 1e9 years before the clinical diagnosis of HCC.208 Ras
association domain family protein1 isoform A (RASSF1A) had the
highest hypermethylation rates, with at least one positive sample in
35 (70%) cases, compared with 22 (44%) and 12 (22%) cases for p16
and p15, respectively, and had an overall predictive accuracy of 89%,
sensitivity of 84% and specificity of 94%. If ctDNA is used in com-
bination with traditional HCC biomarkers, it may have a better ef-
fect.209 However, ctDNA has limitations, including false negatives,
missed detections, and absent relevant driver genes, which pose
significant challenges for testing.

4.4. TEPs carrying noncoding RNAs

Platelets are produced by megakaryocytes in the hematopoietic
tissue in the bone marrow. Multifunctional hematopoietic SCs
differentiate directionally to form primitive megakaryocytes, which
then mature into mature megakaryocytes.210,211 Many depressions
form on the surfaces of mature megakaryocyte membranes and
extend into the cytoplasm. The adjacent stressed cell membranes
fuse in the deep part of the depression such that part of the cyto-
plasm of the megakaryocytes is separated from the parent.212

Finally, these components, separated from the cytoplasm of
megakaryocytes and surrounded by cell membranes, are further
severed from megakaryocytes to allow their entry into the blood-
stream through the blood sinuses in bone marrow hematopoietic
tissue to become platelets.213,214

Platelets can absorb and carry proteins, nucleic acids, and other
substances, including messenger RNAs (mRNAs), pre-mRNAs,
microRNAs (miRNAs), long noncoding RNAs, circular RNAs
(circRNA), and mitochondrial RNAs throughout their life cy-
cle.215,216 During tumor occurrence and development, tumor cells
directly or indirectly affect the RNA and protein levels of platelets
through various signaling molecules or receptors, giving rise to
what is known as TEPs.217 Its concept is rooted in Theodor Billroth’s
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discovery in 1878, which found that thrombi rich in specific tumor
components are involved in tumor cell metastasis.218 Further
research on the interaction among megakaryocytes, platelets, and
cancer has contributed to the development of the TEP concept.219

Consequently, TEPs do not act directly in HCC. In a liquid biopsy
study examining platelet RNA, Ras homolog gene family member A,
b-catenin, and serine peptidase inhibitor Kazal type-1 were found
to be significantly up-regulated, with increases of 3.2-fold, 3.3-fold,
and 3.18-fold, respectively, in patients with HCC compared to those
with cirrhosis. In contrast, interferon-inducible transmembrane
protein 3 and serpin family D member 1 showed increases of 2.24-
fold. This also implies that the expression levels of TEPs mRNA
could be a valuable tool for early diagnosis of HCC in patients with
underlying cirrhosis.220
4.5. miRNA

Transcribed from endogenous genes, miRNAs are a class of
noncoding single-stranded RNA molecules with a length of
approximately 20e24 nucleotides that are currently considered the
highest constituent of TEP RNA.221 In addition to their wide
expression in various animals, plants, and bacterial viruses, miRNAs
also impressively demonstrate many critical functions such as
binding to mRNA, blocking the expression of protein-coding genes,
controlling gene expression, and cellular processes by negatively
regulating target mRNA expression and modulating tumor occur-
rence and development.222

Notably, miRNA-21, one of the most abundant miRNAs in blood
circulation, is considered one of the earliest miRNAs associated
with tumorigenesis. miRNA-21 is highly expressed in most solid
cancers (e.g., HCC) and acts as an antiapoptotic and prosurvival
agent in tumor cells.223 For example, the roles of miRNA-21 as an
effector of tumor-suppressor genes, programmed cell death factor
4, phosphatase, and tensin homolog deleted on chromosome 10,
and tissue inhibitor of metalloproteinase 3 have been extensively
studied.224e226 Furthermore, miRNA-21 is more specifically pro-
duced by the liver, and its regulatory function in liver development
and pathology has also been established. In addition to miRNA-21,
previous studies found that the expression of miRNA-122 is
significantly reduced in the liver tissues of patients with HCC;
however, the circulatory level is enhanced in the patient’s
blood.227,228 Thus, miRNA-21 and miRNA-122 may have excellent
prospects for tumor prediction.
4.6. CircRNA

CircRNAs are a class of RNAs with a conservative structure,
stable sequence, and rich circulating content and can regulate gene
expression at the posttranscriptional level.229 CircRNAs have great
potential as cancer biomarkers in patients with HCC for several
reasons: Firstly, circRNAs are easy to detect owing to their stability,
abundance, and retention in human cells. Secondly, circRNAs often
show specific expression in tissues, particularly at the develop-
mental stage. Lastly, circRNAs are widely present in the serum,
plasma, and other body fluids, making them accessible for extrac-
tion in humans.28,230 Because containing complementary only
contains binding sites for miRNAs, circRNAs act as a sponge for
miRNA in the cytoplasm, where circRNAs competitively sequestrate
miRNAs and interfere with the biological functions of miRNAs.231

Among circRNAs, circRNA-7 (ciRS-7), broadly expressed in many
tissues particularly enriched in the brain, is the first family member
proven to contain >70 conservative binding sites for miRNA-7.232

The following study further indicates that like miRNA-7, ciRS-7
also plays an essential role in HCC occurrence and development.233
227
Thus, ciRS-7 has been recommended to serve as a potential
biomarker for HCC diagnosis.

4.7. Cytokines

Cytokines are mostly low-molecular-weight (6e70 kDa) soluble
proteins secreted by lymphocytes, macrophages, natural killer cells,
mast cells, and stromal cells. As crucial signaling molecules, cyto-
kines can work with various cell types and regulate biological ac-
tivities, including immune system mediator activities. Cytokines
are involved in the immune response and play an important role as
mediators in the communication network of the immune system.
The altered levels of cytokines may cause immune-inflammatory
storms and diseases.234,235 Thus, irregular dynamics in cytokines
in various biological fluids such as blood, feces, urine, and sweat can
provide valuable information for the diagnosis, staging, and prog-
nosis of multiple diseases.236 Common cytokines, including trans-
forming growth factor-b (TGF-b), FGF, hepatocyte growth factor,
and vascular endothelial growth factor, have been identified as
valuable biomarkers for HCC detection.237e239 For example, TGF-b
signaling acts as a master regulator for immune cell proliferation,
differentiation, development, and survival.240 In addition, TGF-b
activity has been linked to the activation of cancer-associated
fibroblasts.241

Another recent animal study reported that lenvatinib-treated
recurrent tumors had lower expression of PD-L1 and regulatory
T-cell (Treg) infiltration than primary tumors. PD-L1 down-
regulation by lenvatinib-initiated blocking of FGF receptor 4
(FGFR4)-glycogen synthase kinase 3b enhances proteasomal
degradation of the PD-L1 axis and HCC cell sensitivity to T-cell
killing.242 Conversely, IL-2 is increased after the treatment with
anti-PD-1; however, IL-2-mediated Treg differentiation is blocked
by lenvatinib by inhibiting FGFR4 signaling pathways, including
phosphorylations of signal transducer and activator of transcription
5.243 This illustrates the potential of monitoring FGFR4 expression
as a parameter for assessing the treatment effects in patients with
HCC using lenvatinib plus anti-PD-1 therapy. Collectively, these
studies support that cytokines are critical in HCC pathogenesis.

5. Techniques for biomarker discovery

Early cancer detection is crucial in reducing cancer mortality
and saving patient outcomes. Therefore, investing in new tech-
nologies for exploring HCC markers is imperative. Cancer bio-
markers encompass various biochemical entities, including nucleic
acids, proteins, sugars, small metabolites, cytogenetic and cellular
kinetic parameters, and whole tumor cells in body fluids. These
biomarkers can be utilized for risk assessment, diagnosis, prog-
nosis, and prediction of treatment outcomes. Current advance-
ments in cancer biomarkers are outlined, and their suitability for
early HCC diagnosis was assessed using multiple biomarkers.

With the aid of multidisciplinary technology, cancer diagnostic
tests are undergoing a revolution to identify biomarkers at the
cellular and genetic levels. Based on the existing experience of re-
searchers, utilizing mouse-intubated animal models provides valu-
able insights for the discovery of novel cancer biomarkers and for
addressing ongoing challenges in the field. To overcome these ob-
stacles, a concerted and substantial effort is required, necessitating
collaboration from diverse talents, including chemists, biologists,
clinicians, materials scientists, and engineering and technology re-
searchers. Conceivably, successful exploration will soon enable the
reliable, sensitive, and noninvasive detection of cancer, facilitating
immediate diagnosis and individualized treatment. Various bio-
technologies were listed for finding tumor markers, including
second-generation sequencing, metabolomics, intestinal flora, and



Fig. 2. New potential biomarkers and early diagnostic techniques for HCC. Sources of potential biomarkers include nucleic acids, cells, and cytokines, which are investigated
using various biotechnologies to identify possible HCC tumor markers for early diagnosis. Abbreviations: circRNAs, circular RNAs; CSCs, cancer stem cells; CTCs, circulating tumor
cells; ctDNA, circulating tumor DNA; HCC, hepatocellular carcinoma; miRNAs, microRNAs; ncRNAs, non-coding RNAs; TGF-b, transforming growth factor b.
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artificial intelligence (AI) prediction, with a brief description of their
rationale and scope of application, to discover potential HCC tumor
markers through these technological pathways (Fig. 2).

5.1. NGS

The emergence of NGS technologies has revolutionized the field
of genomics, enabling the rapid and cost-effective generation of
genome-scale sequence data with precise resolution and accuracy.
Currently, NGS technologies are used in various applications, such
as the discovery of rare variants by whole-genome resequencing or
targeted sequencing, transcriptome analysis of cells, tissues, and
organisms, or identifying epigenetic markers for disease diagnosis.

NGS technologies, including RNA sequencing, whole-exome
sequencing, and whole-genome sequencing, form the foundation
of today’s discovery-based genomics research.244 DNA sequencing
228
of bulk HCC tumors has revealed a median of 50e70 protein-
altering mutations and an average of 2e6 driver mutations across
all tumor stages.55 The most prevalent driver gene mutations are
found in the TERT promoter, TP53, CTNNB1, AXIN1, ARID1A, and
ARID2, which cause changes in the activation of several pathways,
including telomere maintenance, P53 cell regulation, Wnt/b-cat-
enin, Akt/mTOR, MAP kinase, and oxidative stress.245,246 Most
driver mutations tend to occur simultaneously, proposing a syn-
ergistic effect of multiple mutations during tumorigenesis and
progression. However, not all synergistic effects are promotive; for
example, AXIN1 and TP53 mutations are mutually exclusive, sug-
gesting the redundant or deleterious effects of these concurrent
mutations. These findings highlight the different mutations and
combinations of mutations present in different tumors, which may
contribute to the heterogeneity of patients with HCC.55,247

Although the heterogeneity of tumor tissues results in limited
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tissues obtained by biopsy, which does not cover the entire tissue,
the assay results do not fully represent the expression of genetic
information throughout the tumor tissue. Admittedly, NGS has
paved the way for the development of several HCC classification
systems. A study showed that almost all individuals contain distinct
genotype B and genotype C HBV sequences.248 Previous studies
have shown that co-infection of HBV with different genotypes oc-
curs, and that inter-genotypic HBV co-infection has been widely
reported as a prerequisite for the occurrence of HBV recombination.
These findings certainly emphasize the importance of using NGS to
study the distribution of different genotypes within individuals.248

However, these classification systems have not yet been approved
for clinical use, and the journey toward exploring diagnosis,
treatment, and prediction remains daunting.
5.2. Metabolomics

Metabolomics is the analysis of metabolites in biological fluids,
cells, and tissues and is commonly used for biomarker discovery.
Thanks to innovative developments in informatics and analytical
techniques, metabolomics analyses can now be expanded to un-
derstand the system-level effects of metabolites.

The main approaches to metabolomics are nontargeted (global)
andmass spectrometry-based targetedmetabolomics. Nontargeted
metabolomics intends to measure the widest range of metabolites
in extracted samples, and due to differences in analytical methods,
produces a complex dataset requiring certain methods to identify
and correlate metabolites in different samples and study their
interconnectedness in metabolic pathways with phenotypic or
aberrant processes.249 In contrast, targeted metabolomics is
analyzed based on prior information and therefore has higher
sensitivity in analyzing specific metabolites and metabolic
pathways.250

An untargeted metabolomics analysis using liquid
chromatography-mass spectrometry collected serum (portal and
central venous), liver tissue (HCC tumors, adjacent nontumor, and
normal livers), and fecal samples from 102 patients in the discovery
cohort (52 patients with HCC and 50 healthy controls) and 100
participants in the fecal samples for the independent validation
cohort (50 patients with HCC and 50 healthy controls).251 Detailed
metabolomics assessments revealed different clusters of metabo-
lites when comparing the serum, liver tissue, and fecal samples
from patients with HCC and control individuals. Among them,
Fig. 3. Mouse bile duct cannulation and bile collection. An approximately 10-week-old C5
After anesthesia, a midline incision was made in the abdomen to expose the liver and du
connected to a tube for bile collection, then fixed with sutures, as shown in the left picture.
sutures, and the end of the collection tube was left outside the abdominal muscle. The bile co
After 24 h, the abdominal skin was reopened, and the collected bile could be observed
approximately 2 mL of dark green bile was collected from an adult C57BL/6 mouse.
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patients with HCC had significantly higher levels of portal serum
and HCC tissue metabolites, including DL-3-phenyl lactic acid, L-
tryptophan, glycopyrrolate, and 1-methylnicotinamide than
healthy controls, which were associated with impaired liver func-
tion and poor survival. On the contrary, fecal samples from patients
with HCC had lower levels of linoleic acid and phenol in the portal
vein than in healthy controls. This may imply that metabolites
depleted in the portal are protective against HCC in vitro.

The above studies have shown that metabolomics has signifi-
cant advantages in identifying tumor markers; that is, hematology
mass spectrometry analysis is quitewell established, perhaps a new
source of mass spectrometry would be a good direction to go.67 In
HCC, tumor-associated substances may enter the bile earlier,
although bile extraction is not an easy task. Several studies have
demonstrated the advantages of bile over blood for the analysis of
tumor heterogeneity,252 and it may be feasible to extract bile and
identify new tumor markers thanks to a mouse bile duct intubation
procedure.253
5.3. Liquid biopsy method for obtaining bile

Liquid biopsy of tumors involves the collection of blood or other
fluid samples, such as urine, ascites, saliva, and pleural effusion,
from patients using a minimally invasive or noninvasive method to
detect tumor cells or other disease markers. Currently, liquid bi-
opsies are mainly based on blood samples. The blood tests for pa-
tients with cancer mainly focus on detecting CTCs, ctDNA,
circulating tumor miRNAs (ctmiRNAs), exosomes, and TEPs, and
analyzing related disease information.206 The liver, being an organ
with an abundant blood supply, may be advantageous for detecting
tumors and metastases; hence, serological testing techniques are
intensive.

Bile, a body fluid that is not readily accessible, remains under-
explored and may hold significant secrets. Recently, a case
describing the experimental method of bile duct intubation in mice
presented a possible way for obtaining bile and mass spectrometry.
As shown in Fig. 3, this study highlights the ability to collect bile by
artificial bile duct cannulation in mice,253 raising the possibility of
using bile as an alternative liquid biopsy material.

The bile, produced by hepatocytes, is mainly composed of bile
salt, pigment, cholesterol, lecithin, potassium, sodium, and calcium
but lacks digestive enzymes, and the contents are relatively more
stable before flowing into the intestine. Bile is already used as a
7BL/6 mouse was anesthetized; its abdominal fur was shaved, and the skin was cleaned.
odenum area. A thin catheter was inserted into the bile duct, and the catheter was
The incisions in the abdominal muscle and subcutaneous membrane were closed with
llection tube was placed between the subcutaneous membrane and the abdominal skin.
in the collection tube, as shown in the middle picture. As shown on the right side,
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valid biopsy sample for ctDNA detection to evaluate biliary tract
and gallbladder malignancies.252,254 Kinugasa et al.255 performed
cytology and NGS on 30 patients with gallbladder cancer, analyzing
bile and tumor tissue to detect possible mutations in 49 oncogenes
from the isolated DNA samples. Of these patient samples, 87.5% of
the bile ctDNA samples had identical mutations, illustrating the
same percentage of concordance between cytology and bile ctDNA
analysis. The frequency of ctDNAmutations is approximately half of
that detected in the tumor tissue DNA. However, the concordance
between bile ctDNA and tissue DNA samples indicates that mutated
tumor DNA can also be detected in bile by NGS, supporting that bile
liquid biopsy may be used to diagnose gallbladder cancer and HCC.

However, the use of bile for the biopsy diagnosis of HCC en-
counters many unpredictable challenges.256,257 First, no standard
collection and analysis protocol has been established based on the
bile as a biopsy sample. Second, bile is secreted continuously,
although it is mainly concentrated in the gallbladder under con-
ditions of food deprivation. Third, whether the liquid biopsy
removal of partial water and other components in bile causes a
significant alteration of bile in patients with HCC is unknown.
Finally, the greatest challenge is the difficulty in obtaining bile, a
process that is nearly impossible without invasion. Despite the
current challenges associatedwith using bile liquid biopsy to detect
HCC, advances in biotechnology and the output of mechanistic in-
vestigations may help overcome all the barriers and realize the
potential use of bile as an important vehicle to detect biomarkers.
In the future, the mouse bile duct cannulation model can be further
optimized to improve the diagnostic and prognostic values of the
innovative surgery model. Although the bile flown out from one
branch is collected for all assays, the other branch may collect the
flow-out bile to rejoin into the enterohepatic circulation of the
mouse. Thus, a long-term dynamic model is hoped to be developed,
inwhich the investigators can not only detect HCC biomarkers at an
earlier stage and potentially identify novel markers but also track
the post-therapeutic effects of HCC mouse models based on long-
term and real-time bile analyses. Owing to the difficulties of bile
sampling, this technique may be suitable only for basic research at
this time. However, the ability to dynamically display changes in
bile will undoubtedly advance the development of hepatic
metabolomics.

5.4. Potential of AI in identifying HCC biomarkers

Recent advancements in high-throughput and histological
technology and the reduction of application cost, have enabled a
transition from cell line studies to individual patient assessments,
from tissue analyses to single cell investigations, and from single
time point to multi-dimensional time point. In HCC, various related
maps are drawn using large amounts of data and fewer abnormally
expressed genes, proteins, and metabolites to predict and find
possible candidate biomarkers; however, the established predic-
tion and prognosis strategies are still limited.258 Recently, as a new
technical discipline, AI has been applied to improve the accuracy of
medical imaging diagnosis of HCC and predict the risk of HCC
development in patients with liver disease, making it possible to
find a reliable biomarker or a group of biomarkers.259,260

According to ClinicalTrials.gov (https://clinicaltrials.gov/), seven
studies are undergoing on the relationship between AI and HCC,
including AI-based optimization of early treatment of HCC drugs,
deep learning (DL), prediction of liver failure after hepatectomy,
and accuracy in CT diagnosis of HCC (Supplemental Table 1). A
deeper understanding of the HCC phenotypes is essential for
improving targeted therapies and clinical translation.

Li et al.261 proposed an extreme learning machine
(MFCeCNNeELM) structure combined with multiple fully
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connected convolution neural networks for the nuclear grading of
HCC. The results show that the MFCeCNNeELM algorithm has a
good performance in the nuclear grading of HCC.

Chen et al.262 used histopathological hematoxylin and eosin
images from the public database of genomic data to train the neural
network (INSTERATIONV3) for automatic classification, with a
performance level close to that of a 5-year experienced pathologist,
with an accuracy of 96.0% for distinguishing between benign and
malignant tumors, and 89.6% for classifying highly, moderately and
poorly differentiated tumors.

Chaudhary K et al.263 proposed a DL-based HCC model and
established a DL-based survival sensitivity model on data from 360
patients with HCC, providing two optimal patient subgroups with
significant survival differences (P ¼ 7.13 � 10�6) and good model
adaptability (C-index ¼ 0.68). The more aggressive subgroups were
associated with frequent TP53 inactivation mutations, high expres-
sion of dry biomarkers (KRT19 and EpCAM), and tumor marker
BIRC5, as well as activated Wnt and Akt signaling pathways.263

Liang et al.264 proposed an interpretable human-centered DL
guidance framework called PathFinder (patholo-
gyebiomarkerediscoverer), which can assist pathologists in finding
new tissue biomarkers fromwell-performing DLmodels. PathFinder
can realize the localization, characterization, and verification of po-
tential biomarkers while ensuring the most advanced prognostic
performance and verifying their potential in clinical prognosis ac-
cording to the criteria recommendedby the tumormarkerprognostic
study report. This represents a successful example of introducing DL
into clinical practice throughknowledge anddiscovery,which shows
the feasibility of AI in identifying biomarkers.264

AI provides effective information for biomarkers and specific
treatment decisions for HCC and can serve as a decision-making
reference for exploring potential biomarkers, predicting prog-
nosis, and clinical treatment of HCC. However, providing sufficient
clinical tumor-related effective learning samples for AI has certain
limitations.
6. Conclusions

This review compiles a relatively extensive list of HCC markers,
detailing their advantages and disadvantages while emphasizing
their diagnostic accuracy and specificity, which are essential for
diagnosis and prognosis. Currently, commonly used serum bio-
markers for early HCC diagnosis include AFP, AFP-L3, and DCP, with
emerging potential biomarkers such as AFU, GP73, and OPN,
enhancing accurate detection and facilitating early treatment.
Furthermore, markers like ctDNA and CSCs are under-investigated
because of population differences and various injury mechanisms
that may affect diagnostic results.

HCC is a heterogeneous disease with such a complex genomic
landscape, making it challenging to understand its occurrence and
progression for biomarker identification and targeted therapy
development. In clinical practice, imaging and serologic diagnosis
often fail to accurately determine the nature of the liver-occupying
lesions, particularly in decompensated cirrhosis, complicating the
differentiation between HCC and atypical cirrhotic nodules.
Consequently, monitoring tumor markers associated with HCC has
significant adjuvant value.

By summarizing past results, the review further discusses
techniques for identifying new biomarkers, such as metabolomics,
NGS, and AI, providing a new direction for exploring tumormarkers
along with their underlying rationale.

http://ClinicalTrials.gov
https://clinicaltrials.gov/
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