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Class 1 Phosphoinositide-3-Kinases (PI3Ks) have been widely studied and mediate

essential roles in cellular proliferation, chemotaxis, insulin sensitivity, and immunity.

Here, we provide a comprehensive overview of how macrophage expressed PI3Ks and

their downstream pathways orchestrate responses to metabolic stimuli and nutrients,

polarizing macrophages, shaping their cellular identity and function. Particular emphasis

will be given to adipose tissue macrophages, crucial players of insulin resistance and

chronic metabolically triggered inflammation during obesity. An understanding of PI3K

dependent wiring of macrophage responses is important as this is involved in various

diseases ranging from obesity, type 2 diabetes to chronic inflammatory disease.
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INTRODUCTION

The PI3K family is a central metabolic regulator, responsible for phosphorylating inositol lipids
at the 3′ position of the inositol ring. PI3K generated phosphatidylinositol-3,4,5-trisphosphate
(PtdIns(3,4,5)P3) triggers the recruitment and activation of several signaling proteins to the
plasmamembrane, thereby relaying various extracellular stimuli including Toll-like receptor (TLR)
ligands, insulin and G-protein coupled receptor ligands (1, 2). Although there are three classes of
PI3K enzymes (3), this mini-review will focus on class I PI3Ks and their function in macrophages
in response to metabolic stimuli that are upregulated during obesity, including insulin, glucose,
cholesterol and free fatty acids (FFAs). Indeed, macrophages that reside in adipose tissue (ATMs)
are exposed to increased levels of these stimuli in the obese state and are significant players in
metabolically triggered inflammation (herein referred to as meta-inflammation), which is crucial in
the pathogenesis of type 2 diabetes (T2D) and atherosclerosis (4–7). Here, we present an overview
of how the aforementioned stimuli regulate macrophage function and propose that PI3Ks are
central integrators of these environmental cues.

THE PI3K PATHWAY AND ITS EFFECTS ON MACROPHAGE
POLARIZATION

In mammals, class I PI3Ks are subdivided into class IA and class IB. Class IA consists of three
catalytic (p110α/β/δ) and five regulatory subunits (p85α/β, p55α/p50α, and p55γ), in part generated
through splicing or alternative transcription (p55α/p50α), associated to mainly receptor tyrosine
kinases. Class IB only features one catalytic (p110γ) and two regulatory subunits (p84/p101)
associated to G-protein-coupled receptors. The catalytic subunit of PI3K heterodimerizes with a
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regulatory subunit that dictates localization and activity of the
complex leading to recruitment of signaling molecules that
bind PtdIns(3,4,5)P3 through their pleckstrin-homology (PH)
domains including protein kinase B (PKB, also known as AKT),
phosphoinositide-dependent kinase 1 (PDK-1), protein kinase
C (PKC) and Bruton’s tyrosine kinase (BTK). PI3K activation
further blocks degradation and increases synthesis of proteins
via mTOR signaling. AKT mediates effects involved in glucose
transport, glycogen synthesis, and protein synthesis. Some of
these metabolic effects are achieved through AKT mediated
phosphorylation of Forkhead (FOXO) transcription factors (8–
10). Given the crucial role of the PI3K pathway in cellular biology,
mechanisms exist to limit its activation. PtdIns(3,4,5)P3 turnover
is terminated by lipid phosphatases, such as phosphatase and
tensin homolog (PTEN), a prominent tumor suppressor (11).

In macrophages, the PI3K pathway regulates the response
to different metabolic and inflammatory signals and
modulates macrophage polarization. Briefly, based on their
microenvironment and the consequent functional programs
elicited, macrophage phenotypes are defined as M1 and M2.
Classically activated M1 macrophages adopt a pro-inflammatory
phenotype in response to interferon gamma (IFN-γ) and
lipopolysaccharide (LPS) and are critical for host defense
against pathogens. Alternatively activated M2 macrophages play
important roles in wound healing and resolving inflammation.
M2 macrophages can further be subdivided into M2a (activated
by interleukin (IL)-4 and IL-13), M2b (activated by immune
complexes and TLR ligands), and M2c (activated by IL-10 and
glucocorticoids). Importantly, these activation states are likely
dynamic and influenced by the changing local milieu, therefore
macrophages may not form clear cut activation subsets in vivo
(12). Indeed, as discussed later, recent evidence indicates that
ATMs adopt a unique metabolically activated state in response
to their microenvironment.

Numerous studies have implicated PI3Ks in limiting pro-
inflammatory responses in TLR stimulated macrophages,
especially upon LPS mediated TLR4 activation. The mechanisms
are diverse ranging from indirect effects such as suppression of
TLR4 induced signaling cascades (e.g., MAP kinase signaling)
to direct mechanisms, including AKT mediated modulation of
FOXO transcription factors or the promotion of M2 responses.
Indeed, LPS driven ERK, p38, and JNK pathways in monocytes
and macrophages are enhanced upon pharmacological blockage
of PI3K activity (13). Bone marrow macrophages (BMMs)
deficient in p110γ or p85α exhibit augmented IL-6, IL-12,
and TNF levels following LPS challenge, providing genetic
evidence that PI3Ks attenuate LPS induced inflammation
(14, 15). Further, PTEN deficient macrophages, which exhibit
sustained PI3K activity, display decreased LPS driven pro-
inflammatory cytokine expression and are skewed toward an
M2 phenotype compared to controls (15, 16). In addition,
downstream AKT signaling is required for the dampening effects
of PI3Ks on TLR4 signaling and might involve phosphorylation
and thereby termination of FOXO transcription factor activity.
This is particularly important as FOXO1, which when active
potentiates TLR4 expression (14, 17). Of note, three distinct
isoforms of AKT exist: AKT1, 2 and 3 and studies utilizing

AKT isoform-specific deficient mice suggest unique roles
for the isoforms in mediating pro and anti-inflammatory
signaling (18, 19). LPS stimulated Akt1−/− macrophages
express augmented levels of iNOS (inducible nitric oxide
synthase), NO (nitric oxide), TNFα, and IL-6, whereas LPS
treated Akt2−/− macrophages produce low levels of these
pro-inflammatory mediators suggesting deletion of Akt1
promotes M1 while deletion of Akt2 results in M2 responses
(20). In line, Akt2−/− macrophages express increased levels
of the M2 markers arginase 1 (Arg-1), FIZZ1, and exhibit
more IL-10 upon LPS treatment compared to controls, while
AKT1 deficiency results in enhanced bacterial clearance in vivo
(20, 21). Interestingly, similar to Akt2−/− macrophages the
M2 phenotype of Pten−/− macrophages is associated with
elevated Arg-1 levels that are mediated by binding of the
transcription factor CEBP-β to the Arg-1 promoter, suggesting
sustained PI3K activity impinges particularly upon AKT1 in the
context of macrophage polarization (16, 20). However, whether
specific AKT isoforms are regulated by specific PI3K classes
remains unknown.

ADIPOSE TISSUE MACROPHAGES

Although murine ATMs are a heterogeneous population of
cells, ATMs in the lean state can generally be described
as F4/80+CD11b+CD206+ cells. Physiological adipose tissue
growth is associated with minimal inflammation, while during
pathological fat expansion, characteristic of obesity, limited
angiogenesis of adipose tissue is associated with prevalent
adipocyte hypertrophy, fibrosis and death (22). Here, ATM
numbers dramatically increase due to local proliferation and
recruitment of monocytes into adipose tissue that occurs
partly through a monocyte chemoattractant protein 1/C-C
chemokine receptor type 2 (MCP-1/CCR2) dependent axis
and is influenced by adipose tissue lipolysis (23–26). Indeed,
recruited ATMs express CCR2, but also CD11c, CD64, and
CD9 (27). CD11c+ ATMs overexpress pro-inflammatory genes
and ablation of CD11c+ cells in adipose tissue of obese mice
leads to reduced inflammation and improved insulin sensitivity
(28). Nonetheless, while in obesity, recruited ATMs overexpress
several classic inflammatory (M1) markers e.g., Il6 and Nos2
(29), their phenotype is highly plastic and dependent on the
microenvironment. Here, saturated FFAs (e.g., palmitate) or
cholesterol, insulin and glucose that are prevalent in obese
adipose tissue induce a state of metabolic activation (MMe)
in ATMs, distinct from classic M1 activation. MMe activation
is associated with elevated cell surface expression of lipid
metabolism associated proteins including ATP binding cassette
transporter (ABCA1), cluster of differentiation 36 (CD36), and
perilipin 2 (PLIN2). This is related to augmented peroxisome
proliferator activated receptor gamma (PPAR-γ) binding to the
promoters of these genes. Further, autophagy and particularly
sequestome-1 (p62) are important as opposed to controls
attenuated levels of these lipid mediators occur in p62 null MMe
macrophages (30). MMe activation correlates with lysosomal
biogenesis as more active biogenesis occurs in newly recruited
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CD11c+ ATMs (27, 31). Recent work has corroborated that
ATMs represent a heterogeneous population of cells and that
irrespective of obesity, there are populations of lipid laden
ATMs associated with the vasculature of adipose tissue exhibiting
high endocytic capacity. This suggests active ATM reprograming
in response to diverse macromolecules and nutrients present
in the bloodstream (32). Together, ATMs respond to their
environment by upregulating lipid/lysosomal programs, which
is likely heighted during obesity, allowing them to fulfill their
main function of clearing up dying adipocytes, buffering lipids,
preventing ectopic lipid spill over, and ensuing insulin resistance
(25, 26, 33, 34). But how does PI3K activity within macrophages,
reconcile with the environmental cues that dictate ATM function
and metabolic health? Although cytokines or adipokines secreted
by adipose tissue can influence systemic inflammation as well as
local macrophage responses (31), here we will focus exclusively
on metabolic stimuli relevant to obesity and T2D and their
effects on myeloid cells, particularly macrophages (Figure 1). We
propose that during obesity, the metabolic milieu encountered
by macrophages modulates PI3K signaling driving changes in
macrophage function.

INSULIN STIMULATED PI3KS PROMOTE
CELL SURVIVAL AND ATTENUATES LIPID
LOADING IN MYELOID CELLS

Insulin represents an essential hormone for the maintenance of
whole-body glucose disposal, regulating carbohydrate, protein
and lipid metabolism in insulin-sensitive organs such as adipose
tissue, muscle and liver (10). Upon insulin binding, the insulin
receptor (IR) self-phosphorylates and activates insulin receptor
substrates (IRS) which mediate downstream effects through
engaging central signaling pathways including the PI3K/AKT,
mTOR, and MAPK pathways (9). In this complex network,
PI3Ks are a critical signaling node, mediating many of the
metabolic and mitogenic effects of insulin. Importantly, the
exact function of insulin signaling in immune cells remains
largely unknown, although recently it was shown that T cell
specific insulin signaling promotes a specific metabolic program,
inducing nutrient uptake to support optimal T cell effector
functions (35). Tissue resident macrophages, including ATMs,
liver and peritoneal macrophages (pMOs) express the INSR gene
with pMOs exhibiting highest expression. INSR upregulation in
pMOs is linked with obesity and M1 macrophages exhibit more
expression compared to unstimulated (M0) or M2 macrophages
(36). Further, macrophages mainly express IRS-2 but not
IRS-1 (37, 38). Although insulin stimulation of macrophages
engages the PI3K/AKT signaling cascade (39, 40), it does not
activate some important other nodes of the insulin signaling
network such as the c-Jun N-terminal kinase (JNK) and p38
pathways (36). Macrophage glucose transport is facilitated
mainly via glucose transporter 1 (GLUT1), which is rapidly
induced by insulin, an effect that has been described to be
more prominent in M1 vs. M0 or M2 macrophages, suggesting
possible anti-inflammatory actions of insulin (Figure 1) (36, 41).
In line, insulin promotes IL-10 expression dose dependently

in pMOs and RAW264.7 macrophages and insulin priming
attenuates TLR4 expression, LPS induced nuclear factor kappa
B (NF-κB), p38 MAPK activation, and IL-1β production
(42). Further, treatment of obese individuals with insulin
reverses the pro-inflammatory phenotype of macrophages,
eliciting anti-inflammatory effects (43). Concordant with a
potential role in resolving macrophage mediated inflammation,
insulin-stimulated macrophages exhibit increased expression of
phagocytosis associated NAPDH oxidase activity and decreased
apoptosis (44, 45). Nonetheless, insulin and PI3K signaling are
unlikely to solely promote anti-inflammatory effects. Insulin is
reported to increase TNF-α release in human monocytes (46).
LPS-stimulation of IR deficient macrophages failed to induce IL-
6 and IL-1β expression suggesting insulin signaling might be
required for inflammation (47).

In obesity, surprisingly, mice deficient for the IR specifically
in myeloid cells exhibit a protective phenotype associated
with decreased ATM accumulation and improved insulin
sensitivity (48). A recent report has reproduced these findings,
additionally suggesting that there are less pro-inflammatory
(F4/80+CD11c+CD206−) and more anti-inflammatory
(F4/80+CD11c−CD206+) ATMs present in obese mice
lacking the IR in myeloid cells, proposing myeloid cell specific IR
signaling modulates ATM phenotypes (38). The authors of this
study additionally demonstrated that in obesity, myeloid specific
Irs2−/− mice exhibit impaired insulin sensitivity, associated
with more pro-inflammatory (F4/80+CD11c+CD206−) and
less anti-inflammatory (F4/80+CD11c−CD206+) ATMs.
This suggests distinct differences between IRS2 and IR in
regulating ATM phenotypes. These differences were explained
by findings showing that IL-4 promotes M2 macrophage
polarization through IRS-2 and post obesity, hyperinsulinemia
through engagement of the IR, leads to macrophage IRS-2
downregulation (38). Further, several studies have identified
myeloid dysfunctions associated with macrophage cell intrinsic
insulin resistance. In this context, macrophages were rendered
insulin resistant through pre-incubation with high-dose insulin,
genetic deletion of the INSR or by pharmacologic inhibition of
insulin signaling. Pre-treatment of macrophages with high-dose
insulin leads to INSR downregulation and suppression of insulin
signaling, which is also observed in freshly isolated macrophages
from insulin-resistant mice, such as the leptin-deficient ob/ob
mouse (49). In line, monocytes isolated from diabetic subjects
show decreased surface expression and tyrosine kinase activity of
the IR and diminished insulin-stimulated PI3K/AKT signaling
(50). In response to free cholesterol (FC) loading, Insr−/−

macrophages exhibit attenuated AKT phosphorylation and
an augmented ER stress response, that is independent of the
degree of FC loading. This suggests macrophage PI3K signaling
through the IR is required to withstand stressful stimuli.
The functional consequences of this are increased apoptosis,
unconnected to obvious changes in pro/anti-apoptotic gene
expression. Indeed, western diet-fed mice with IR deficiency
on an Ldlr deficient background in hematopoietic cells develop
larger, more complex lesions with increased necrotic cores
and apoptotic cells (40, 51). Furthermore, insulin resistant
macrophages, post-transcriptionally upregulate CD36 and
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FIGURE 1 | The PI3K signaling cascade integrates signals from extracellular nutrients and influences cellular function. Depicted are the positive (plus) and negative

influences of PI3K on the cellular responses to insulin, glucose, TLR4, free cholesterol and adipose exosomes. Insulin signaling in macrophages has no direct impact

on JNK activation (cross). Dashed arrows indicate potential connections, see text for further details. ABCA1, ATP-binding cassette 1; CD36, cluster of differentiation

36; CD206, cluster of differentiation 206; ER, endoplasmic reticulum; FC, free cholesterol; FFA, free fatty acids; GLUT-1, glucose transporter 1; IL1β, interleukin 1β;

IRS2, insulin receptor substrate 2; JNK, c-Jun N-terminal kinase; LDLR, low-density lipoprotein receptor; LPS, lipopolysaccharide; NF-κB, nuclear factor

kappa-light-chain-enhancer of activated B cells; PI3K, phosphoinositide 3-kinase; Plin2, perilipin-2; PPAR-γ, peroxisome proliferator-activated receptors gamma;

TLR4, toll-like receptor 4; TNF, tumor necrosis factor.

scavenger receptor A (SR-A), with increased CD36 protein
levels dependent on defects in insulin stimulated PI3K signaling
and proteasomal and lysosomal catabolism (40, 49). SR-A
levels are coupled to increased ER stress as they are increased
upon treatment with ER stress inducers (40). In agreement,

primary Insr−/− macrophages exhibit enhanced binding and
uptake of modified LDL. Conversely, in vivo treatment of

ob/ob mice with rosiglitazone, an insulin sensitizing agent and

PPAR-γ activator, reverses this phenotype resulting in improved
insulin signaling and decreased modified LDL uptake (49).

Interestingly, in human macrophages, both CD36 and SR-A

basal levels are reported to depend on PI3K activity as selective
pharmacological inhibition of Class IA p110β or δ and Class IB
p110γ attenuates their expression and is associated with reduced
macropinocytosis and foam cell formation upon modified LDL
challenge (52). Thus, although there may be species-specific
differences, intrinsic murine myeloid cell insulin stimulated
PI3K dependent signaling promotes myeloid cell survival and
modulates lipid metabolism, decreasing foam cell formation.

Consequently, cell intrinsic macrophage insulin resistance
and associated downregulation of PI3K signaling results
in elevated macrophage lipid burden and death, impacting
ectopic lipid spillover, further contributing to pathogenesis
in obesity.

PI3KS PROMOTE GLUCOSE DEPENDENT
ALTERNATIVE MACROPHAGE ACTIVATION

Hyperglycemia is a hallmark of T2D and glucose levels modulate
intracellular macrophage metabolism through environmental
glucose uptake and subsequent pyruvate and fatty acid generation
and there are numerous excellent reviews on this topic (53, 54).
Stable overexpression of GLUT1 in RAW264.7 macrophages
promotes glucose uptake and metabolism (41). GLUT1, 3 and 5
expression increases asmonocytes differentiate intomacrophages
and high expression is observed in foamy macrophages, which
are typically found upon modified lipoprotein challenge and
are reminiscent of ATMs (55–57). Enhanced glucose uptake
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might promote macrophage survival as Insr−/− macrophages,
exhibit increased cell death upon glucose deprivation (Figure 1)
(40), an effect that could be particularly relevant in the
context of modified lipoprotein presence (58). Interestingly,
recent work indicates that GLUT1 and glucose transport is
critical for the uptake of apoptotic cells (also known as
efferocytosis), suggesting glycolysis may also promote anti-
inflammatory phenotypes in macrophages in part through
SLC16A1 mediated lactate release (Figure 1) (59). Other reports
demonstrate that glucose promotes BMM proliferation and
decreases LPS induced MHC-II expression, suggesting glucose
levels might impact macrophage polarization (60). In line, high
glucose levels have been described to induce the expression
of Arg-1 and CD206 in macrophages in a PI3K dependent
manner (61). Further, evidence of an importance for glucose
in M2 responses is provided by studies demonstrating that
PI3K-AKT dependent glucose utilization is critical for IL-4
responses (62, 63).

PI3KS CAN INFLUENCE FFA SIGNALING
AND ATM ACCUMULATION

While physiologically FFA release through adipose lipolysis
provides an important source of fuel, this process is dysregulated
in the obese and insulin resistant state. The general dogma,
particularly drawn from experimental murine studies, is that
while unsaturated FFAs are anti-inflammatory, saturated FFAs
are pro-inflammatory (64). Indeed, saturated FFAs such as
palmitate promote skeletal muscle insulin resistance in part by
blocking insulin mediated IRS-1 tyrosine phosphorylation and
PI3K activity (65, 66). Given IRS-2 is predominantly expressed in
macrophages (37), to our knowledge, no studies have addressed
whether saturated FFAs decrease IRS-2 phosphorylation and
render macrophages insulin resistant. Most studies utilizing
macrophages in conjunction with palmitate have focused on
its inflammation promoting effects. Indeed, palmitate triggered
inflammation is JNK dependent, which is negatively regulated
by PI3Ks (Figure 1) (67, 68). Although, palmitate has been
suggested to mediate its effects via TLR4 (53), recent data
indicates that JNK activation by palmitate is TLR4 independent
(Figure 1). While LPS induced TLR4 signaling rapidly activates
MAPK and NF-κB signaling and TLR4 endocytosis, palmitate
activates these pathways much later and does not induce
TLR4 endocytosis (54). The authors of this study demonstrated
that LPS priming of macrophages altered cellular metabolism,
gene expression and macrophage membrane lipid composition,
which were necessary for palmitate induced inflammation
(54). Notably, the effect of palmitate on inflammation might
also depend on macrophage differentiation status. In fully
differentiated macrophages, palmitate treatment elicits a pro-
inflammatory phenotype, that is dependent on ER stress, as
it is abrogated upon incubation with ER stress inhibitors
(60). This is consistent with studies demonstrating that
palmitate activates ER stress (64). However, during BMM
differentiation chronic palmitate exposure been described to
inhibit proliferation and promote an anti-inflammatory M2

phenotype, associated with increased PPAR-γ and CD206
expression (60).

Palmitate treatment of monocytes leads to macrophage
inflammatory protein 1-alpha and beta upregulation (MIP-
1α/β, also known as CCL3 and 4, respectively) and this
occurs in a MAPK, NF-κB, and PI3K dependent manner
indicating that PI3Ks can directly promote FFA mediated
inflammation (69, 70). Interestingly, both chemokines are
involved in neutrophil and monocyte recruitment, respectively
(71), suggesting FFA mediated PI3K dependent signaling
could promote increases in ATM number. Further evidence
that palmitate mediated PI3K activation within myeloid cells
regulates ATM content is provided by observations that
palmitate treatment of macrophages induces netrin-1 and its
receptor Unc5b, mediators that promote ATM retention and
accumulation (72). Interestingly, in other cellular systems,
netrin-1 acts in concert with its receptor in a PI3K dependent
manner (73), although the functional relevance of PI3Ks to
palmitate mediated ATM retention remains unexplored. These
studies suggest that PI3Ks integrate signals derived from FFAs
and thereby influences ATM accumulation and inflammatory
status. However, many of the studies cited are limited by their
exclusive use of in vitro models, disregarding the complexity of
signals present in vivo.

CHOLESTEROL ACTIVATES THE PI3K
PATHWAY

Cholesterol exists as free cholesterol (FC) or as cholesterol
esters. During obesity, adipose tissue accumulates FC and this
correlates with increased ATM content (74). Cholesterol and
modified lipoproteins are taken up by macrophages through
macropinocytosis, scavenger receptors (e.g., CD36, SRA-1) and
the low density lipoprotein receptor (LDLR), leading to foam
cell formation that impacts inflammation and viability (Figure 1)
(75). FC is reported to impact macrophage inflammation in a
concentration dependent manner, with lower and higher levels
promoting anti and pro-inflammatory phenotypes, respectively
(76). In macrophages, FC also induces AKT phosphorylation
indicating it activates the PI3K pathway (40). Macrophages
use cholesterol efflux pathways to maintain cellular lipid
homeostasis with ABCA1 mediating the transport of cholesterol
and phospholipids to lipid-free apolipoproteins such as apoA-
I (75). ABCA1 upregulation in turn selectively attenuates FC,
dampening inflammation by reducing TLR trafficking to lipid
rafts, indicating the presence of feedback loops that resolve
inflammation (77).

PI3K DEPENDENT UPTAKE OF ADIPOSE
EXOSOMES

Exosomes are small (30–150 nm) endosomal derived membrane
microvesicles secreted from cells that carry proteins, lipids,
nucleic acids, and can reprogram recipient cells (78). Recent
work demonstrates that the uptake of adipose exosomes
(AdExo), promotes BMM differentiation into ATM like
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FIGURE 2 | Nutrient accumulation during obesity is associated with rendering macrophage insulin resistant. In the lean state ATMs buffer lipids and insulin promotes

survival through PI3K. Insulin resistant ATMs display enhanced foam cell formation associated with increased lysosomal biogenesis, ER stress, apoptosis, and

exacerbated inflammation. See text for further details. ER, endoplasmic reticulum; FC, free cholesterol; FFA, free fatty acids; LPS, lipopolysaccharide.

cells by inducing lysosomal biogenesis (79). Interestingly,
AdExo do not carry FFAs but are particularly rich in FC and
triglycerides and are taken up by macrophages through
macropinocytosis, PI3K dependently, suggesting PI3Ks
might modulate macrophage lipid loading in response to
AdExos (Figure 1). They thus represent a novel intercellular
communication route for the transfer of these lipids to
macrophages (79).

PI3KS INTEGRATE THE ENVIRONMENTAL
CUES THAT DICTATE MACROPHAGE
PHENOTYPES IN OBESITY

Within adipose tissue during obesity, the metabolic stimuli
outlined above, although elevated, likely exist at differing
levels within the microenvironment and synergize their
signaling with other stimuli, notably, LPS. This poses the
question of how do myeloid cells respond to the combined
actions of these stimuli and where do PI3Ks fit into
this context during obesity? We propose a model where
attenuated PI3K signaling within myeloid cells is central
to meta-inflammation.

HOW MIGHT PI3KS AFFECT THE
SYNERGY BETWEEN METABOLIC
STIMULI IN MACROPHAGES IN OBESITY?

Obesity alters the gut microbiome and is associated with

increased circulating LPS, which initiates adipose tissue
inflammation and macrophage activation in a manner

dependent on intact TLR4 signaling, a phenomenon coined

“metabolic endotoxemia” (80, 81). Interestingly, TLR4 ligation

and palmitate presence synergistically augment macrophage

ceramide production through de novo synthesis in the ER and
this is implicated in augmenting IL-1β synthesis (82). This

might be especially relevant given TLR4-dependent priming

of macrophages is reported to be necessary for FFA induced

inflammation and thus might act as a initiating stimulus
promoting FFA mediated inflammation (Figure 2) (67, 83).
Numerous studies demonstrate that ceramides alter PI3K
signaling by promoting insulin resistance through either
dephosphorylating AKT or through blocking AKT translocation
to the plasma membrane (84–86). Together a potential synergy
between LPS and FFAs might impact macrophage intrinsic
insulin sensitivity through PI3Ks.
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As TLR4 dependent signaling is increased in obesity,
as outlined earlier, PI3Ks would presumably limit pro-
inflammatory responses through various mechanisms including
the promotion of M2 responses (13–16). Generation of
alternatively activated macrophages would also be favored by
prevalent hyperglycemia in obesity in a PI3K-AKT dependent
manner (61–63). However, high doses of insulin render
macrophages insulin resistant, decreasing PI3K signaling and
thus inhibiting insulin stimulated glucose uptake through
GLUT-1 (36). Together, decreased myeloid cell PI3K signaling
in the insulin resistant state would shift macrophage phenotypes
toward pro-inflammation through a synergistic effect of high
insulin, glucose, and LPS.

High glucose/insulin/palmitate stimulation of macrophages
leads to upregulation of lipid metabolism genes (ABCA1,
CD36, and PLIN2) and cellular programs associated
with lysosomal biogenesis and autophagy, mimicking the
effects of FC (30, 75). FC activates the PI3K pathway and
elevated AdExos in obesity are taken up by macrophages
through macropinocytosis, PI3K dependently (40, 79).
Decreased PI3K signaling in insulin resistant macrophages
would therefore contribute to enhanced systemic levels
of these metabolic stressors. Furthermore, attenuated
PI3K signaling in insulin resistant macrophages leads to
upregulation of scavenger receptors and compensatory
proteasomal and lysosomal catabolism (40, 49). This in
turn induces a vicious cycle of modified lipid uptake, further
promoting ER stress and apoptosis, which is aggravated
in insulin resistant macrophages (40, 58). Consequently,
we propose in obesity, cell intrinsic macrophage PI3K
signaling would be downregulated and result in elevated
lipid burden and death. This would impact the lipid
buffering capacity of ATMs, further promoting ectopic lipid
spillover and meta-inflammation (Figure 2). To sum up, the
different metabolic inputs outlined in this review affect the
degree/strength of PI3K signaling and together synergistically
determine macrophage cell survival, lipid metabolism, and
inflammatory phenotype.

CONCLUDING REMARKS

Slightly over 25 years ago, the concept of meta-inflammation
was born by the discovery that adipose expressed TNF reduced
adipose GLUT4 levels and neutralization of TNF in obese
rats improved insulin sensitivity (5). Supportive of the key
role of peripheral inflammation in obesity, obese myeloid-
specific IKKβ or JNK deficient mice exhibit improved systemic
insulin sensitivity (6, 7). Peripheral NF-κB activation is critical,
as inhibiting this pathway in hepatocytes prevents IL-1β and
insulin induced IR tyrosine phosphorylation and p85 association
with IRS-1 (7). Since then, the contribution of ATMs to
systemic inflammation has received much attention with the
dogma that inflammatory pathways attenuate downstream PI3K
signaling and initiate and exacerbate inflammatory responses,

particularly in peripheral metabolic tissues such as the liver.
However, only recently the importance of how environment
re-programs and wires tissue resident macrophages has been
appreciated (87).

We present an emerging paradigm where environmental
stimuli encountered by ATMs during obesity reprogram them
in a manner that is associated with macrophage intrinsic insulin
resistance and drastic changes in intracellular lipids leading
to oxidative and ER stress and upregulation of lysosomal and
proteasomal programs. We propose myeloid cell PI3K activation
integrates these environmental cues through its influences on
saturated FFA responses, ATM accumulation, cell survival and
the degree of lipid loading. This would presumably have
consequences on ectopic lipid spill over and peripheral insulin
sensitivity. While mice possessing global deletions of p85α/β
and p55α/p50α exhibit improved insulin sensitivity (88–90)
and mice with global deletions in p110α and p110β display
impaired insulin sensitivity (91, 92), given that these subunits
are deleted in all insulin sensitive tissues the exact function of
myeloid cell specific PI3Ks during obesity and insulin resistance
remains an enigma. To our knowledge, there is only one study
that conditionally deleted a PI3K subunit in myeloid cells.
By crossing floxed p110γ mice with mice expressing the Cre
recombinase under the control of the Tie2 promoter, Breasson
and colleagues demonstrated efficient deletion of p110γ in
endothelial cells and adipose associated immune cells. These
animals exhibited improved insulin sensitivity associated with
increased CD206 expression in adipose tissue, independent of
differences in ATM content, suggesting p110γ is dispensable
for ATM recruitment but promotes M1 responses in obesity
(93). Undoubtedly, myeloid cell specific deletions of class 1
PI3Ks in the context of obesity coupled to isolating primary
macrophages from these mice and challenging them with the
metabolic stimuli outlined in this review, will yield fruitful
insights into the contribution of class I PI3Ks to obesity and
ATM function.
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