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Abstract: Alzheimer’s disease (AD) is a progressive brain disorder and age-related disease
characterised by abnormal accumulation of β-amyloid (Aβ). The development of drugs to combat AD
is hampered by the lack of therapeutically-active molecules able to cross the blood-brain barrier (BBB).
It is agreed that specifically-designed carriers, such as dendrimers, could support the drug penetration
across the BBB. The aim of this study was to design biocompatible and biodegradable dendrimeric
delivery systems able to carry Flurbiprofen (FP), as drug for AD treatment, across the BBB and
liberate it at the target tissue. These dendrons were synthesised using solid-phase peptide synthesis
method and characterised by mass spectrometry and fourier-transform infrared spectroscopy (FTIR).
The results revealed successful synthesis of dendrons having FP been integrated during the synthesis
at their branching ends. Cytotoxicity assays demonstrated the biocompatibility of the delivery
systems, whereas HPLC analysis showed high percentages of permeability across an in vitro BBB
model for FP-integrated dendrons. Results also revealed the efficiency of drug conjugates on the
γ-secretase enzyme in target cells with evidence of eventual drug release by hydrolysis of the carrier.
This study demonstrates that the coupling of FP to dendrimeric delivery systems can successfully be
achieved during the synthesis of the poly(epsilon-lysine) macromolecules to improve the transport of
the active drug across the BBB.

Keywords: Alzheimer’s disease; blood-brain barrier; dendrimers; drug delivery system;
neurodegenerative disease

1. Introduction

Alzheimer’s disease (AD) is an age-related and neurodegenerative disease (ND) characterised
by gradual impairment in memory. It has been reported that the incidence of AD has increased
with 47 million people worldwide living with this disease [1]. AD is typified by plaque
accumulation of abnormally folded extracellular deposits of Aβ-amyloid (Aβ) and tau proteins in the
brain [2]. Aβ species are generated from the amyloid precursor protein (APP) through proteolytic
cleavages initiated by β-secretase (BACE-1), with fragments being further cleaved by γ-secretase.
These fragments of APP are made up of different Aβ isoforms depending on the number of amino
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acids [3]. The most prevalent variant isoforms of Aβ are Aβ40 and Aβ42 which, in AD, form dense
clumps of deposits surrounding neurons and giving rise to senile plaques of ND [4].

The successful treatment of AD requires drugs that can penetrate the blood-brain barrier (BBB)
which is considered the main obstacle in development of new efficacious therapeutics [5]. Indeed,
the presence of the BBB prevents the penetration of almost all drugs, genes, and imaging agents
to their site of action, making NDs incurable and difficult to be diagnosed [6]. Various approaches
have been developed to tackle this issue, including invasive techniques, chemical modifications
and enhanced permeability of the endothelial cells of the BBB via endogenous transcytosis [7].
Meanwhile the endogenous transcytosis approach is considered the most favourable one as it enables
the drug to undergo internalisation into the brain effectively without remarkable cytotoxicity [8].
Adsorptive mediated transcytosis (AMT) is a well-studied endogenous transport system which allows
essential circulating hydrophobic molecules to enter the brain and has been widely used for its
potential in drug delivery across the BBB. In AMT, internalisation occurs mostly via a clathrin-mediated,
energy-dependent endocytosis following charge interaction between positively-charged molecule and
negative charges on the cell membrane [9].

The exploitation of an endogenous transport system that utilises specifically-designed carrier
systems is considered one of the most promising and safest strategies for overcoming the BBB [8].
One carrier system that has recently gained attention for delivering such materials is that of dendrimers
(or their tree-like structure equivalent, the dendrons) [10]. Dendrimers are hyperbranched polymeric
macromolecules that possess unique molecular architecture with well-defined sizes and structures [11].
The high density of their terminal functional groups is the key property in terms of their potential
use in drug and gene delivery and contributes to the molecular surface properties which provide
multiple attachment sites for integration and loading of drugs or other targeting moieties [12].
Dendrimer-based products have been successfully utilised for cancer therapy and in imaging [13].
It has been found that poly(amido amine) (PAMAM) dendrimer complexes with some nonsteroidal
anti-inflammatory drugs (NSAIDs) such as ketoprofen and indomethacin improve the drug permeation
through the skin [14]. In oral drug delivery studies, low-generation PAMAM dendrimers have shown
to cross cell membranes, presumably through adsorptive endocytosis processes [15]. Furthermore,
dendrimer-ibuprofen complexes have been found to enter lung cells more rapidly when compared
to drug alone, suggesting that dendrimers can efficiently carry the encapsulated drug into cells [16].
Sadekar et al. (2013) have used PAMAM dendrimer conjugated with the anticancer drug camptothecin
to enhance its bioavailability within target tissues [12]. Many studies have utilised dendrimers as
drug delivery systems targeting the brain because of their ability to cross the BBB. It was found that a
conjugation of the drug doxorubicin to a polyethelenglycol dendrimer enhanced drug transport across
the BBB and reduced tumour volume of glioma spheroids in vitro [9,17].

Recently, interest in the effect of NSAIDs, specifically Flurbiprofen (FP), as γ-secretase modulators
(GSMs) has grown due to their potential effectiveness in the treatment of AD [18]. FP is able
to selectively decrease Aβ42 secretion by subtly altering γ-secretase activity without significant
impairment for Notch signalling or other APP processing pathways. FP is supposed to act only
on presenilin, the catalytic subunit of γ-secretase which is initially involved in APP cleavage and
production of Aβ42 [5]. This action is different from non-selective γ-secretase inhibition by other
inhibitor therapies which drastically affects the metabolism of total amyloid proteins which, in turn,
regulate various neuronal and synaptic functions [19]. On the other hand, some published data have
revealed unsatisfactory results for FP suggesting that targeting γ-secretase is not clinically efficient
for AD treatment and that FP improves learning deficits only when administered prior to plaque
deposition [20,21]. However, FP is still a recommended medication in reducing the symptoms of AD,
particularly at early stages, and it offers neuroprotective effects by preventing mitochondrial calcium
overload generated from Aβ toxicity [22,23].

FP is a drug approved by the United States Food and Drug Adminstration and commercially
available as both an effective pain reliever and an anti-inflammatory drug and commonly used for
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rheumatoid arthritis and osteoarthritis [24]. It is a small (244.26 g/mol), poorly water-soluble molecule
and a generally well-absorbed drug with 4 h biological half-life and that is fully excreted from the
body within 24 h [25]. Therefore, FP was deemed to be a good drug candidate for coupling with a
nanocarrier system such as the dendrimers. This choice was motivated by FP low brain permeability
bringing the drug concentration at the target tissue site below the required therapeutic concentration
(150–250 µM) needed to exert pharmacologically-significant effect on γ-secretase activity [26,27].
Most drugs fail to cross the BBB due to the presence of tight junctions in between the brain endothelial
cells which block the paracellular pathway [5]. Indeed, Phase II clinical studies of FP have shown
improvement of cognitive functions only in AD patients at the early stage of disease [26,27]. Therefore,
the design of a delivery system capable of overcoming the BBB and transport the drug into the brain
via alternative pathways such as AMT is advocated. Hence, this study reports a method of synthesis
of poly(epsilon-lysine) dendrons that are designed with a molecular root made of a hydrophobic
phenylalanine facilitating the penetration of the BBB and the presentation of more than one FP
molecule at the ends of the molecular branches.

Low generation (G) 0 and 1 lysine (K) dendrons were synthesised using solid-phase peptide
synthesis (SPPS) and successful integrations of FP molecules (G0K-FP and G1K-FP) during the
synthesis were achieved as confirmed by mass spectrometry and Fourier-transform infrared
spectroscopy (FTIR). The potential cytotoxicity of the studied delivery systems and their BBB
penetration potential in a transwell system were tested using immortalised bEnd.3, brain endothelial
cells with tight junctions similar to those of the BBB endothelium. Study of cell membrane
integrity and of metabolic activity were considered as parameters of potential cell cytotoxicity,
while trans-endothelial electrical resistance (TEER) and high performance liquid chromatography
(HPLC) analysis were used to assess changes in FP and FP-dendron complex permeability across
an in vitro BBB model. In addition, the effect of conjugation on drug activity against its target cells
was tested using immortalised cells with an astroglial-like phenotype. The present study showed
that the complexed drug still retained the capability of reducing this cellular enzymatic activity.
The degradation of complexes and release of drug were also investigated revealing the ability of the
carrier to undergo hydrolysis and release the drug. This study demonstrates the successful designing
of biocompatible and biodegradable dendrimeric delivery systems with the potential to improve drug
transport across the endothelial component of the BBB.

2. Results

2.1. Characterisation of Flurbiprofen (FP)-Loaded Dendrons

The mass spectra demonstrated the successful loading of FP to both G0- and G1-dendron with
peaks corresponding to the expected molecular weight (MW) (745.33 Da for G0K-FP and 1454.7 Da for
G1K-FP) as presented in Figure 1a,b, respectively. Other peaks appearing in the spectra result from the
ionisation of the molecule and the solvent or machine noise, as well as, the sodium salts formed due to
interaction of ions with glass vessels [28].

FTIR analysis revealed a shift in peaks due to the formation of an amide linkage at 3200 cm−1 and
1640 cm−1 that also confirm the attachment of drug to both G0- and G1-dendrons (Figure 2).
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Figure 1. Mass spectra of (a) G0K-FP (flurbiprofen) showing a peak at 745.33 represents the exact 
molecular weight (MW) of product and the highest peak of 767.31 represents the sodium salt. (b) G1K-
FP showing a peak of 1454.68 representing the exact MW of product and the highest intensity peak of 
1475.69 representing the sodium salt in addition to the double charged ion appeared in 746.84 m/z. 

 
Figure 2. Fourier-transform infrared spectroscopy (FTIR) spectra of (a) FP alone, G0K and G0K-FP, 
(b) FP alone, G1K and G1K-FP. The spectra show shifting of peaks due to formation of peptide 
linkages at 3200 and 1646 cm−1. FP spectrum shows a strong carbonyl band seen at 1700 cm−1, related 
to its COOH functional group that disappeared in the G0K-FP and G0K-FP spectra due to amide 
linkage formation. Appearance of peaks at 782 cm−1 corresponded to the aromatic ring of FP with its 
C=C peak at 910 cm−1 in the G0K-FP and G1K-FP spectra confirms the FP attachment to the dendrons. 

  

Figure 1. Mass spectra of (a) G0K-FP (flurbiprofen) showing a peak at 745.33 represents the exact
molecular weight (MW) of product and the highest peak of 767.31 represents the sodium salt.
(b) G1K-FP showing a peak of 1454.68 representing the exact MW of product and the highest intensity
peak of 1475.69 representing the sodium salt in addition to the double charged ion appeared in
746.84 m/z.
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Figure 2. Fourier-transform infrared spectroscopy (FTIR) spectra of (a) FP alone, G0K and G0K-FP,
(b) FP alone, G1K and G1K-FP. The spectra show shifting of peaks due to formation of peptide linkages
at 3200 and 1646 cm−1. FP spectrum shows a strong carbonyl band seen at 1700 cm−1, related to its
COOH functional group that disappeared in the G0K-FP and G0K-FP spectra due to amide linkage
formation. Appearance of peaks at 782 cm−1 corresponded to the aromatic ring of FP with its C=C
peak at 910 cm−1 in the G0K-FP and G1K-FP spectra confirms the FP attachment to the dendrons.
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2.2. Cytotoxicity and Biocompatibility Studies

MTT (1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan thiazolyl blue tetrazolium) assays were
carried out after 24 and 48 h treatment of post confluent bEnd.3 cells with increasing concentrations of
FP-loaded dendrons. The results demonstrated cell viability in excess of 70% in relation to the control
untreated cells (Figure 3) and values still within acceptable cytotoxic range (International-Standards
2009) suggesting that drug-loaded dendrons were not toxic to these cells even at the highest
concentration used (400 µM). In addition, there was no significant differences (p > 0.05) between
the corresponding concentrations after 24 or 48 h exposure.
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2.3. Penetration of Drug-Integrated Dendrons Across an in Vitro Model of The Blood-Brain Barrier (BBB) 

Penetration of free drug and drug-loaded molecules across the bEnd.3 monolayer culture using 
a Transwell system was carried out at the day 6 of culturing. Trans-endothelial electrical resistance 
(TEER) values of cultured bEnd.3 increased to a highest reproducible value at day 6 (at confluence) 
in comparison to the cultured human umbilical vein endothelial cells (HUVEC) and the cell-free 
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Figure 3. MTT (1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan thiazolyl blue tetrazolium) results
after 24 and 48 h treatment of bEnd.3 cells with: (a) G0K-FP and (b) G1K-FP. The absorbance was
measured and the cell viability was calculated as a percentage of absorbance in relation to control cells.
The data represent mean ± SD (standard deviation) of n = 6.

The results of the lactate dehydrogenase (LDH) assay supported the findings of the MTT assay
with low values of LDH release after 24 and 48 h treatment of bEnd.3 cells with FP-loaded dendrons in
a range of concentration up to 400 µM. Both results are significantly different (p < 0.001) to the positive
control (100% complete lysis) with no significant differences (p > 0.05) in between each other (Figure 4).
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Figure 4. Lactate dehydrogenase (LDH) results after 24 and 48 h treatment of bEnd.3 cells with:
(a) G0K-FP and (b) G1K-FP. The absorbance was measured and the LDH release of each was calculated
as a percentage of absorbance in relation to untreated, complete lysis control cells with significantly
different to the positive control (p < 0.001). The data represent mean ± SD of n = 6.

2.3. Penetration of Drug-Integrated Dendrons Across an in Vitro Model of The Blood-Brain Barrier (BBB)

Penetration of free drug and drug-loaded molecules across the bEnd.3 monolayer culture using
a Transwell system was carried out at the day 6 of culturing. Trans-endothelial electrical resistance
(TEER) values of cultured bEnd.3 increased to a highest reproducible value at day 6 (at confluence) in
comparison to the cultured human umbilical vein endothelial cells (HUVEC) and the cell-free inserts
values (Figure 5).



Int. J. Mol. Sci. 2018, 19, 3224 6 of 18

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  6 of 18 

 

 

Figure 5. Trans-endothelial electrical resistance (TEER) measurement of the cultured bEnd.3 cells, 
human umbilical vein endothelial cells (HUVEC) and cell-free inserts (membrane). 

The penetration analysis was performed using HPLC after 1 and 4 h of application of the 
materials to the apical surface of the cells. A series of dilutions of FP, G0K-FP and G1K-FP in (phenol-
free) Dulbecco’s modified eagle’s medium (DMEM) solution were analysed and the relative standard 
curves constructed (Figure 6). For free drug, the amount that permeated, as measured by drug 
appearing in the basolateral chamber, was not more than 8.5% of applied concentration after 4 h. The 
percentage of permeability of G0K-FP after 1 and 4 h were 5.3 and 12.5%, respectively, of that 
uploaded in the apical chamber, with no significant differences (p > 0.05) found from that of the free 
drug of corresponding time of incubation. The calculated amounts of the G1K-FP were 4.3 and 14.8% 
of the initial applied amount, which are significantly different (p < 0.05) from that of the free FP in 
both time intervals (Table 1). It is worth mentioning that the G0K-FP bearing 2 more moles of drug 
moieties while G1K-FP having 4, in turn this could increase the bioavailability of drug upon 
dissociation at target tissue. 

Table 1. Permeability % of flurbiprofen (FP) and FP-loaded dendrons across an in vitro blood-brain 
barrier (BBB) model. 

Molecule Time No. of 
Readings 

% Of Permeability 
(Mean ± SD) 

p Value to 
FP 

p Value to 
G0K-FP 

FP 1 h 6 2.71 ± 1.52  
 

4 h 6 8.50 ± 1.32 

G0K-FP 1 h 6 5.31 ± 2.73 >0.05 
4 h 6 12.48 ± 3.42 >0.05 

G1K-FP 
1 h 6 4.32 ± 1.05 <0.05 >0.05 
4 h 6 14.79 ± 2.06 <0.05 >0.05 

2.4. Evaluation of Drug-Integrated Dendrons Activity on γ-Secretase Enzyme 

As illustrated in Table 2; the calculated amount of γ-secretase from set of C6 glial control cells 
were in an average of 28.4 pg/mL, while treated cells with FP significantly decreased (p < 0.05) the 
levels to 8.2 pg/mL. The results showed that the cells treated with G0K-FP significantly decreased (p 
< 0.05) the amount of the enzyme to an average of 12.7 pg/mL when compared to that of the control, 
and not significantly different (p > 0.05) from FP. The analysis also found a significant decrease (p < 
0.05) in γ-secretase activity levels for the set of cells that were incubated with G1K-FP in comparison 
to both control and free drug with an average value of 16.0 pg/mL. 

Figure 5. Trans-endothelial electrical resistance (TEER) measurement of the cultured bEnd.3 cells,
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The penetration analysis was performed using HPLC after 1 and 4 h of application of the materials
to the apical surface of the cells. A series of dilutions of FP, G0K-FP and G1K-FP in (phenol-free)
Dulbecco’s modified eagle’s medium (DMEM) solution were analysed and the relative standard curves
constructed (Figure 6). For free drug, the amount that permeated, as measured by drug appearing in
the basolateral chamber, was not more than 8.5% of applied concentration after 4 h. The percentage of
permeability of G0K-FP after 1 and 4 h were 5.3 and 12.5%, respectively, of that uploaded in the apical
chamber, with no significant differences (p > 0.05) found from that of the free drug of corresponding
time of incubation. The calculated amounts of the G1K-FP were 4.3 and 14.8% of the initial applied
amount, which are significantly different (p < 0.05) from that of the free FP in both time intervals
(Table 1). It is worth mentioning that the G0K-FP bearing 2 more moles of drug moieties while G1K-FP
having 4, in turn this could increase the bioavailability of drug upon dissociation at target tissue.

Table 1. Permeability % of flurbiprofen (FP) and FP-loaded dendrons across an in vitro blood-brain
barrier (BBB) model.

Molecule Time No. of
Readings

% Of Permeability
(Mean ± SD) p Value to FP p Value to

G0K-FP

FP
1 h 6 2.71 ± 1.52
4 h 6 8.50 ± 1.32

G0K-FP
1 h 6 5.31 ± 2.73 >0.05
4 h 6 12.48 ± 3.42 >0.05

G1K-FP
1 h 6 4.32 ± 1.05 <0.05 >0.05
4 h 6 14.79 ± 2.06 <0.05 >0.05

2.4. Evaluation of Drug-Integrated Dendrons Activity on γ-Secretase Enzyme

As illustrated in Table 2; the calculated amount of γ-secretase from set of C6 glial control cells were
in an average of 28.4 pg/mL, while treated cells with FP significantly decreased (p < 0.05) the levels to
8.2 pg/mL. The results showed that the cells treated with G0K-FP significantly decreased (p < 0.05) the
amount of the enzyme to an average of 12.7 pg/mL when compared to that of the control, and not
significantly different (p > 0.05) from FP. The analysis also found a significant decrease (p < 0.05) in
γ-secretase activity levels for the set of cells that were incubated with G1K-FP in comparison to both
control and free drug with an average value of 16.0 pg/mL.
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Table 2. Quantification of γ-secretase enzyme after exposure to free FP, G0K-FP and G1K-FP.

Molecule No. of Readings
γ-Secretase Enzyme

Concentration pg/mL
(Mean ± SD)

p Value to FP p Value to Control

Control 6 28.43 ± 8.32
<0.05FP 6 8.20 ± 3.80

G0K-FP 6 12.69 ± 4.85 >0.05 <0.05
G1K-FP 6 16.04 ± 3.18 <0.05 <0.05

2.5. Degradation Investigation

To test the hydrolysis of the synthesised macromolecule and the dissociation of the attached
drug in an environment mimicking the inflamed tissue typical of AD, acidic buffer (pH 4.5) was used.
The results of the qualitative HPLC analyses of G0K-FP and G1K-FP demonstrated that different peaks
appeared in each analysis signifying the dissociation of molecules into various products. The peaks at
13.1 min elution are clearly representing the drug release, while those before 6 min of run are related
to the buffer (background). Alternatively, the remaining detected peaks that are not related to the
drug-bound carriers are most likely representing the amino acid residues that have been used in the
assembly of the dendrons including lysine, phenylalanine, or to the shorter peptides that formed due
to the hydrolysis. These hydrolysed products have been detected with a reduction in retention time in
the HPLC column which is due to their lower MW and hydrophobicity (Figure 7).
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3. Discussion

The effective therapy in AD and other NDs remain a huge unsolved problem [29] as many
therapeutics are unable to permeate through the BBB. Several strategies to improve the delivery of
molecules to the brain have been developed including local injection or BBB opening and enhancing the
permeability and targeting delivery [30]. Accordingly, the endogenous transport systems available on
the BBB is the most potential and safest way to deliver molecules into the brain. Indeed, certain peptides
and some macromolecules can pass through BBB via transcytosis mechanisms either by AMT or
receptor mediated trancytosis [31]. Generally, endocytosis in AMT is promoted by the interaction of
the cationic molecule with phospholipids and the glycocalyx at membrane. In this process, the formed
vesicle (from molecule-membrane interaction) circulates across the cytoplasm, and eventually releases
the content into the abluminal side by exocytosis [9]. Currently, dendrons offer an important
non-invasive strategy in drug delivering and targeting, arising from their structural characteristics.
Dendrons provide the possibility of multi-functionalisation, as well the ability to act as intra-cellular
drug carriers and cross biological barriers via adsorption [32]. In addition, their biocompatible and
biodegradable properties make them successful drug shuttles [33]. In the present study, dendrimeric
complexes with low generations of molecular branching were used as carrier systems able to avoid the
formation of complexes with a hydrodynamic radius too large to penetrate the cells while ensuring
sufficient drug loading capacity. In addition, the design of the complex with a molecular root presenting
a relatively hydrophobic amino acid, the phenylalanine, was deemed appropriate to facilitate the
penetration of the phospholipid bi-layer of the BBB endothelial cell membrane.

FP is one of GSMs that have emerged to the forefront of AD therapy as a profound disease
modifying agent, especially at early stages [4]. Despite their unclear mechanism of action, GSMs are
selectively reducing the production of pathogenic Aβ42 isomer, yet without affecting the total amount
of Aβ formed [18]. On the other hand, FP failed in clinical trials to improve poor cognition and
other Alzheimer’s symptoms due to the existence of BBB [4,26]. It has been found that the drug’s
low permeability across the BBB reduces its levels at the brain target cells below its pharmacological
doses [24,26]. Hence, in this work branched lysine-dendrons (G0 and G1) carriers were designed to
load the drug and enhance its BBB permeability. To achieve this purpose, microwave-based SPPS was
employed which ensured a high percentage of productivity and purity of the peptidic carrier [34].

The data resulted from mass spectra analysis for FP-integrated dendrons indicated the successful
synthesis and drug loading via amide linkage for both by giving the expected molecular weight
(Figure 1). The formation of the amide linkage is dependent upon the side-chain protectors of amino
acids which can ensure the chemical reaction of Fmoc in the site of interest only. Therefore, using the
appropriate Fmoc type prevents unwanted reactions that could result in the formation or incorporation
of dipeptide derivatives. Subsequently, it can help in the purification of the final product due to smaller
amounts of secondary products [35]. The peptide linkage formation was confirmed by the FTIR results
(Figure 2), this bond is important for the later biodegradability of the peptide and release of drug.

The success of any carrier systems or biomaterials to be used in drug or gene delivery is the
appropriate biocompatibility and biodegradability properties [33]. Concentrations of FP-integrated
dendrons up to 400 µM did not affect cell viability after 24 h and 48 h below 77%, signifying no
considerable effect on mitochondrial function when compared to control cells (Figure 3). Furthermore,
they did not show any significant effect on the cell membrane according to the cell lysis results of
LDH assays as results were far lower than that for positive control where cell membrane integrity
was deliberately disrupted (Figure 4). These findings indicate the biocompatibility of these synthetic
products and are consistent with other studies that showed no cytotoxic impact when investigating
the low generation of dendrimers. Previous studies have stated that the dendron cytotoxicity appears
with higher concentration and generation which is attributed mainly to the end group present on
its periphery [36,37]. Generally, amine-terminated dendrimers display concentration-dependent
toxicity [32,38]. These positively-charged groups interact with the negatively-charged cell membranes
causing cell membrane damage [32] thus increasing LDH release and affecting the mitochondrial
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function and the overall cell viability. For this reason, cell activity and membrane integrity are affected
only upon exposure to relatively high concentrations of both FP-dendrons, but still within acceptable
ranges indicating that these systems can be used safely as carriers for drug delivery.

To assess the permeability of molecules towards the BBB, a valid model mimicking primarily the
endothelial tight junctions should be used. The brain endothelial cell line used in the study (bEnd.3)
was cultured on microporous Transwell® inserts as it has previously been shown to have great potential
as a BBB model and widely utilised for drug transport studies [39,40]. TEER measurements in bEnd.3
were found greater than that of HUVEC and membrane only suggesting a sufficient formation of tight
junctions to produce an integral cell layer. This finding is in agreement with other studies that have
proved the validity of this cell line for simulation of the in vivo situation [41–43].

The permeability examination of free drug and drug-complexed dendrons across the in vitro
BBB model showed improvement when drug attached to the carrier systems (Table 1). Free FP was
found to penetrate less than 9% of its initial payload concentration; a finding to some extent similar
to previous study results which revealed that the FP diffusion through bEnd.3 cells monolayer was
approximately 10%, a level that is not sufficient to induce its pharmacological effect [5]. Alternatively,
an increase in penetration was observed for FP-conjugated dendrons (G0 and G1) to be 12–14% when
compared to free drug. This can be attributed to both the positive charges of the dendron amine
groups and the hydrophobic character of the phenylalanine root which are likely to facilitate the
complex cellular transport. Indeed, earlier investigations found that the cationic dendrimers such as
poly-lysine, poly-propylene imine, and PAMAM could interact electrostatically with negative charges
of the biological membranes leading to profound applicability for intracellular drug delivery [32,44].
As documented previously, folic acid has been efficiently delivered to the target when conjugated with
polyethyleneglycol 5000-dendrimer [45]. Furthermore, paclitaxel (anticancer drug) when conjugated
with PAMAM dendrimer demonstrated 12-fold greater permeability across brain endothelial cells
and Caco-2 cell monolayers than paclitaxel alone [46]. In addition, the permeation of ketoprofen and
diflunisel through skin tissue improved when integrated into PAMAM dendrimers [14], while G0
PAMAM dendrimer conjugated to naproxen showed high permeability across intestinal Caco-2
cells [47,48]. Cationic peptide can enter cells and mostly undergo endocytosis through different
mechanisms and it is assumed that they possibly undergo AMT to cross the BBB [31]. However,
the transcytosis in cationic carriers may need longer time for exocytosis than other pathways thus
making them suitable for a sustained drug delivery. This proposition is supported by many scientists
suggesting that dendrimers enhanced uptake with consequent release of cargo into target cells [32,49].
It has been observed that ibuprofen-dendrimers complexes rapidly undergo endocytosis by cells
and subsequently sustain the release of the drug [16]. Likewise, studies have demonstrated that the
conjugate of PAMAM with erythromycin or azithromycin have also high drug payload and sustained
release [50].

The moderate penetration of the complexes observed in this study could be ascribed to the low
generation of dendrons used. Previous studies have observed that cationic dendrimers with different
branching generations (G0-G4) differ in their permeability across Caco-2 cell monolayers and increasing
with the branching generation [51]. In another study, G3-NH2 dendrimer was found to have a lower
rate of cellular entry when compared with G4-NH2 due to fewer surface charges [52]. At the same time,
it is also worth reiterating that the toxicity of dendrimers increases with the generation and size.

Even if the percentage of permeability might only moderately increase with higher branching
generations, the quantity of drug conjugated within dendrons (2 more in G0 and 4 more in G1) is
double for each branching generation. Hence, the carrier design should take into account penetration
efficiency, cytotoxicity and drug payload.

Despite permeability was significantly improved by the complexation of FP with the dendrimers,
the conjugation of drug to the dendronised carrier might negatively influence its pharmaceutical
activity. For this reason, C6 glial cells were cultured to investigate the activity of the FP-loaded
dendronised carrier systems against γ-secretase enzyme activity.
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The C6 cell line possesses most of the regulatory control mechanisms and phenotypic features of
the neuroglial cells and in particular those of astrocytes. It has been used in many neurological studies
as a model that mimics the in vivo phenotype or primary brain cell culture for different research
aspects [53,54] and in particular for its ability to express the gamma secretase enzyme that is involved
in the amyloid protein precursor cleavage leading to amyloid formation [5]. The results generated from
the quantification of the γ-secretase enzyme activity showed that the drug-conjugates still retained the
drug action in reducing the activity of γ-secretase of C6 glial cells. However, they were not as active as
the free drug, possibly due to the steric hindrance. Several studies have previously provided a line of
support to this explanation in which some therapeutic agents lacked their efficiency upon conjugation
with a carrier due to steric hindrance [55,56]. A variety of chemistries have been employed to design
the delivery system capable of attaching drugs covalently via spacer or biodegradable linkage, such as
lysine, to ensure free drug release and preserve its activity [57].

The amide linking between the drug and dendron is the key for the degradability and release of
drug as it is hydrolysed enzymatically in the cell. The complexation via hydrolytically labile linkages,
such as amides, is more suitable for a better control over drug release and targeting than that can be
achieved by encapsulation/electrostatic complexation [17,58]. The structure of the carrier system and
the drug is the most important factor that determines the type of reaction and facilitates the chemical
conjugation via formation of the functionalities such as amide, ester, acetyl-hydrazone, or disulfide
groups [57]. It is noteworthy to mention that FP molecular structure containing carboxyl group
facilitated its coupling to dendron via amide linkage. The results of the present investigation assessing
the degradation of the drug/carrier complex in acidic conditions, similar to those in vivo, highlighted
that only negligible amounts of original integrated molecules remained not degraded. Most of the
drug molecules were liberated in the buffer solution alongside with numerous amino acids and small
peptides residues. These outcomes suggest that the in vivo administration of the dendronised FP
can, in the long-term, lead to the releasing of the free fully active drug. The findings of this study
are consistent with a previous study of doxorubicin-aminoethyl polyacrylamide conjugate resulted
in releasing doxorubicin via amide linkage cleavage at pH 4.0 (acidic pH encountered in lysosomal
enzyme) in less than 24 h and in more than 96 h at pH 7.5 (physiological pH) [59]. Further study
has found that cationic G2 and G3 dendrons biodegraded into their building monomers using acidic
buffer solution with a rate decreasing with the higher generation number [60]. Our results are also
supported by previous finding of methotrexate coupling to poly-lysine polymer via amide linkage,
which revealed full drug pharmacological action signifying degradation of linkage as the action
needs drug detachment from polymer [55]. Finding from several studies have also demonstrated that
linkages in polyamide dendrimers, in comparison to other types of linkages, have higher stability due
to relatively lower rate of hydrolysis in blood circulation [61]. Direct amide linking of naproxen with
PAMAM dendrimer showed higher chemical stability in plasma and liver homogenate and in different
pH buffers including 7.4 and 1.2 than that of ester linking [52]. This feature is necessary to minimise
the non-specific interaction of dendrimers with systemic circulation and ensuring that the drug-loaded
dendronised system will not be cleared off very rapidly, but rather achieve the delivery of therapeutic
doses to the target cells.

The failure of phase II clinical trials for AD patients treated with FP-based drugs (i.e., Flurizan) or
other γ−secretase inhibitors (e.g., Semagagestat) has been ascribed to the poor drug penetration across
the BBB that demands the administration of high and toxic doses not only failing to treat AD, but also
leading to adverse side effects [62,63]. It has been advocated that an improved BBB penetration could
allow a treatment at lower and repeated doses [63].

The present work demonstrates that dendrimers integrating FP in their structure can be
synthesised with high degree of purity. The hyperbranched carrier increases the drug payload,
improves the penetration across endothelia with particularly impermeable tight junctions and allows
a gradual release of the γ-secretase inhibitor to the target cells. Although the carrier-coupled drug
shows a reduced inhibitory effect towards the γ-secretase enzymatic activity, its gradual release from
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the carrier has the potential to produce a protracted therapeutic effect. Therefore, the combination of
an increased BBB penetration and a longer therapeutic activity has the potential to reduce adverse
reactions and improve the efficacy of FP-based treatments of AD.

4. Materials and Methods

4.1. Synthesis of Delivery Systems

Generation 0 and 1 lysine dendrons were synthesized with a phenylalanine root using SPPS by the
aid of microwave synthesizer (Biotage Initiator, Hengoed, UK). The FP molecules were attached during
synthesis at the amino ends by amide linkages to produce G0K-FP (chemical formula: C45H45F2N3O5

with MW: 745.3 Da), and G1K-FP (chemical formula: C87H91F4N7O9, with MW: 1454.6 Da) (Figure 8).
The assembly started on a Tentagel resin (0.5 g) using 0.4 mmol of phenylalanine (Fmoc-Phe-OH) as a
core and lysine (Fmoc-lys(Fmoc)-OH) for G0, and 2 more Fmoc-lys(Fmoc)-OH (Novabiochem, UK) in
case of G1.
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The synthesis process including coupling, deprotection and cleavage was performed according to
a previously discussed method [64]. FP molecules were coupled before cleavage as one molar for each
molar NH2 end branch, 2 moieties in G0 and 4 in G1. After cleavage, the mixture was filtered through
a glass wool and collected in chilled diethyl ether to be centrifuged and washed 3 times, then the
precipitant freeze dried [65]. In order to remove any impurities and undesired by-products, Zeba spin
desalting columns (Fisher scientific, Southampton, UK) were used and the final pure product was used
for subsequent experiments.

4.2. Characterisation of The FP-Loaded Dendrimeric Delivery Systems

4.2.1. Mass Spectrometry (MS)

The dried powder of FP-loaded dendrimeric delivery systems were characterised by
electrospray/ionisation-time of flight (ESI-TOF MS) (Bruker Daltonics, Coventry, UK) at high voltage
(4 kV). In electrospray/ionisation mode, samples mass sample mass (m/z) gives rise to multiple
charged related-ions typically labelled with a number of charges (n) as (MW + nH) n+, in which
H = mass of proton (1.008 Da).
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4.2.2. Fourier Transform Infra-Red (FTIR)

FTIR spectroscopy (Perkin Elmer Spectrum 65, Llantrisant, UK) was used to investigate the
structural and functional group changes in each of the synthesised molecules. A few milligrams of the
dried sample was used with a 32-scan run in a 550–4000 cm−1 range.

4.3. Preparation of Cell Lines

The immortalised brain endothelial cell line, bEnd.3, Dulbecco’s modified eagle’s medium
(DMEM), human umbilical vein endothelial cells (HUVECs) and C6 glial cells were obtained
from ATCC (USA). The bEnd.3 cells were cultured, according to ATCC-product sheet instruction,
in DMEM containing 10% foetal bovine serum (FBS) and 1% of 500 U/mL Penicillin/Streptomycin
(Gibco, Gaithersburg, MD, USA). Cells were seeded at a density of 5 × 104 cells per cm2 in 24-well
plates then incubated at 37 ◦C and 5% CO2. The HUVECs were seeded according to the supplier’s
recommendations in endothelial basal medium (F-12K) consisting of 0.05 mg/mL endothelial cell
growth supplement, 0.1 mg/mL heparin (ATCC, Manassas, VA, USA) and 10% FBS.

C6 glial cells were cultured in a complete growth medium made according to the ATCC-product
sheet by addition of FBS to a final concentration of 2.5% v/v and horse serum (Gibco, Germany) to a
final concentration of 15% v/v to F-12K medium. The C6 glial cells seeded in a density of 5 × 104 cells
per cm2 and incubated at 37 ◦C and 5% CO2.

4.4. Cytotoxicity and Biocompatibility Assays

Experiments were performed when cells reached confluency and a range of concentrations
(25 to 400 µM) of each G0K-FP and G1K-FP were used in each experiment. MTT (Sigma Aldrich,
Gillingham, UK) assay was used to measure cell viability [66] after 24 and 48 h treatment
exposure. The absorbance values were measured at a wavelength of 540 nm in a spectrophotometer
(Thermo Multiskan Ascent, Rochford, UK) and were expressed as percentage of the untreated
control cells.

LDH assay provides an indication of loss of cell membrane integrity and was measured using
a Promega CytoTox96® non-radioactive cytotoxicity assay kit (UK) after 24 and 48 h treatment.
Absorption was read spectrophotometrically at 492 nm and converted to a percentage of the total LDH
released from the positive control (untreated cells with complete lysis).

4.5. Examination of FP-Loaded Dendrimeric Delivery Systems Penetration Across the in Vitro BBB Model

The lyophilised powders of synthesised molecules (G0K-FP and G1K-FP) as well as free drug
(FP) were dissolved in the FBS-free; phenol-free culture media in a concentration of 200 µM.
Quantitative analysis of drug and drug-attached dendrons penetration was conducted using HPLC
(Agilent technology/1260 infinity, Stockport, UK). The analysis was carried out using a hydrophobic
C18 column (150 × 4.6 mm) and a UV-detection wavelength 248 nm which is the λmax of FP [5].
The gradient of eluent of the mobile phase was run from 75:25 to 25:75 of water: acetonitrile over
20 min. The standard curve for each molecule was obtained to calculate the percentage of transported
amount across the in vitro BBB model.

To establish an in vitro BBB model, bEnd.3 cells were cultured on microporous membrane (0.4 µm
pore size) of 12-Transwell inserts (Fisher Scientific) with complete culture media. TEER values between
apical and basolaterl chambers was measured using an Evom voltometer (Sarasota, FL, USA) to
determine the day of maximum values indicating tight junction formation. The measurements were
taken up to day 8 of culturing and compared to the results of HUVECs which were also cultured into
Transwell-clear inserts. Cell-free Transwell inserts were included to exclude the resistance related to
the inserts membrane alone. The apical chambers of bEnd.3 culture were then treated with 200 µM of



Int. J. Mol. Sci. 2018, 19, 3224 14 of 18

each samples. After 1 and 4 h incubation, 200 µL samples were taken from the basolateral chambers
and percentage of permeability calculated according to the following [39]:

PMaterial % = ((CAcceptor × VAcceptor)/(CDonor × VDonor)) × 100% (1)

where PMaterial %: the percentage of permeability of the tested material, CAcceptor: the concentration of
the tested material in basal chamber, VAcceptor: the volume of the culture media in the basal chamber,
CDonor: the initial concentration of the tested material in the apical chamber, VDonor: the volume of the
culture media in the apical chamber.

4.6. Evaluation of Drug-Integrated Dendrons Activity on γ-Secretase Enzyme

The investigation is based on sandwich enzyme-linked immune-sorbent assay (ELISA) technology
using γ-secretase enzyme kit (Abbexa Ltd., Cambridge, UK). C6 glial cells were cultured in 24-well
plates at density 5 × 104 cells per cm2, and at confluence, they were treated with 200 µM FP, G0K-FP,
or G1K-FP dissolved in F-12K media. Wells containing untreated C6 cells were also included as a
control. After 4 h incubation, cells were washed with PBS and lysed via freezing to −20 ◦C and
thawing to room temperature 3 times. The well plates were centrifuged at 1500× g for 10 min to
remove any cellular debris and the supernatant was collected for assaying the γ-secretase activity
(according to kit instructions). The collected samples were used immediately to avoid any degradation
and denaturalisation. The standard curve of γ-secretase standards (supplied with kit) was constructed
and the concentration of γ-secretase was calculated for each sample.

4.7. Degradation Investigation

The dendron-FP complexes were analysed for the hydrolysis of the amide linkage that coupled
amino acids residues, as well the drug. The hydrolysis of the synthesised complex was evaluated in a
physiological condition using an acidic solution to mimic the lysosomal pH conditions that are likely
to be found in an inflamed tissue such as that of AD-affected brain tissue.

The acidic buffer solution was prepared according to supplier’s instructions, by dissolving an
acidic buffer (phthalate) tablet (Thomas Scientific, Swedesboro, NJ, USA) in 100 mL of distilled water
and the pH was adjusted to 4.5. G0K-FP and G1K-FP were incubated at 37 ◦C in the acidic buffer
solution at a concentration of 200 µM. Samples were then collected after 24 h incubation and filtered
with a 0.22 µm filter before analysis by HPLC. HPLC analysis was performed for free FP, G0K-FP and
G1K-FP using the same gradient of eluent of the mobile phase mentioned above. Buffer alone samples
also included as a background.

4.8. Statistical Analysis

Mean values were calculated for the number of readings (n) in each experiment and the error bars
refer to the standard deviation (SD). Results were statistically analysed using one-way ANOVA with
Tukey’s tests. Significant difference was identified by a p value < 0.05.

Author Contributions: S.A.-a. and D.M. performed the experiments and wrote the manuscript; A.L.G., G.P.,
and M.S. supervised the experimental work, interpreted the data and revised the manuscript; M.S. designed and
supervised the entire study.

Acknowledgments: This work was funded by Iraqi ministry of higher education and scientific research through a
S.A.’s PhD studentship through the Iraqi Culture Attaché in the UK, the representative of Iraqi ministry of higher
education and scientific research.

Conflicts of Interest: The authors declare no conflict of interest.



Int. J. Mol. Sci. 2018, 19, 3224 15 of 18

Abbreviations

AD Alzheimer’s disease
AMT Adsorptive-mediated transcytosis
Apo-E Apolipoprotein E
APP Amyloid precursor protein
Aβ β-amyloid
BBB Blood brain barrier
bEnd.3 Immortalised brain endothelial cells
CNS Central nervous system
DMEM Dulbecco’s modified eagle’s medium
ELISA Enzyme-linked immune-sorbent assay
FBS Foetal bovine serum
FP Flurbiprofen
FTIR Fourier transform infra-red
G Generation
G0K-FP Generation 0 lysine dendron-2Flurbiprofen
G1K-FP Generation 1 lysine dendron-4Flurbiprofen
GSMs γ-secretase modulators
HPLC High performance liquid chromatography
HUVEC Human umbilical vein endothelial cells
LDH Lactate dehydrogenase
m/z Mass to charge ratio
MTT 3-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan
MW Molecular weight
ND Neurodegenerative
NSAIDs Nonsteroidal anti-inflammatory drugs
PAMAM Poly amido amine dendrimers
SD Standard deviation
SPPS Solid phase peptide synthesis
TEER Transepithelial electrical resistance
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