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ABSTRACT

The tumor microenvironment (TME) encompasses the complex and diverse surroundings in which tumors arise. Emerging insights
highlight the TME’s critical role in tumor development, progression, metastasis, and treatment response. Consequently, the TME has
attracted significant research and clinical interest, leading to the identification of numerous novel therapeutic targets. Advances in
molecular technologies now enable detailed genomic and transcriptional analysis of cancer cells and the TME and the integration of
microenvironmental data to the tumor genomic landscape. This comprehensive review discusses current progress in targeting the
TME for drug development, addressing associated challenges, strategies for modulating the pro-tumor microenvironment, and the
discovery of new targets.
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INTRODUCTION

The tumor microenvironment (TME) plays a crucial
role in regulating the basic survival of tumor cells and
supporting their functions.[1] The development and
persistence of cancer—such as maintaining cell prolif-
eration, evading apoptosis, stimulating angiogenesis,
promoting invasion and metastasis, inciting tumor-pro-
moting inflammation, and evading immune surveil-
lance—are influenced, to varying degrees, by the
complex interactions within the TME.[2] A significant
portion of patients with metastatic disease will inevitably
develop resistance to treatment following cancer ther-
apy, and a comprehensive understanding of the dynamic
changes occurring within the TME during tumor pro-
gression is essential for the development of targeted ther-
apeutic approaches.[2,3] This resistance arises from a
spectrum of biological mechanisms, encompassing DNA
repair, genetic and epigenetic alterations, metabolic
reprogramming, heightened angiogenesis, and modifica-
tions in the TME[2,3] (Figure 1). This comprehensive
review was performed using the PubMed database, and
articles approaching TME components were non-system-
atically pooled by the authors. We aimed to delve into

the latest advancements in TME research, outline the
obstacles and potential pathways for TME modulation,
and provide new perspectives and potential break-
throughs in cancer therapy, particularly in overcoming
treatment resistance associated with the TME.[4] In addi-
tion, we examined the literature covering the emerging
technologies and the role of artificial intelligence in
unraveling the complexities of the TME.

TARGETING TME COMPONENTS

Dendritic Cells
The engagement of the FMS-like receptor tyrosine

kinase-3 (FLT3) with its ligand, FLT3L, plays a crucial
role in regulating dendritic cells (DCs). When FLT3L is
administered, it leads to the expansion of circulating
DCs in vivo, followed by their migration to various tis-
sues.[5] This process not only increases the number of
DCs in the TME but also promotes DC maturation,
enhancing the priming of antitumor T cells. Recombi-
nant FLT3L, such as CDX-301, has been demonstrated
to expand DCs and hematopoietic precursors in healthy
human volunteers.[6] Although phase 1 and 2 trials
(ClinicalTrials.gov ID: NCT00003431) have confirmed
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the immunogenicity and safety of CDX-301, its efficacy
as a monotherapy in tumor remission remains to be
established. A strategy combining radiation and CDX-
301 is currently being studied in phase II trials for
patients with advanced non–small cell lung cancer
(NSCLC) (NCT04491084). In addition, a combination
approach involving radiotherapy, FLT3L, and the costi-
mulatory molecule CD40 is undergoing phase II trials
in patients with lung cancer (NCT04491084).
Granulocyte-macrophage colony-stimulating factor

(GM-CSF) regulates the development of myeloid cell
types in response to stress, infections, and cancers.
Imbalances in GM-CSF levels can either hinder or pro-
mote cancer progression, depending on factors like the
amount of GM-CSF, cancer type, and tumor environ-
ment.[7] Treatments targeting granulocyte-macrophage
colony-stimulating factor (GM-CSF) act as a booster of
antitumor immunity by promoting the differentiation of
DCs. Current clinical and preclinical approaches have
evaluated treatments like GM-CSF monotherapy as well
as GM-CSF combined with chemotherapy, monoclonal
antibodies, or cancer vaccines.
DC vaccines involve loading DCs with tumor-associated

antigens (TAAs) to trigger an immune response in patients,
promoting the development of T cells for a targeted antitu-
mor effect.[8] DCs are derived from CD34-positive precur-
sor cells or monocytes and activated by Toll-like receptor
(TLR) agonists and cytokines like interleukin 1 beta (IL-
1b), interleukin 6 (IL-6), tumor necrosis factor alfa (TNF-a),
and prostaglandin E2 (PGE2). This activation leads to their

maturation into functional DCs. Mature DCs express
major histocompatibility complex (MHC), costimulatory
molecules, and cytokines, ultimately inducing a T helper 1
cells (Th1) immune response.[9] The effectiveness of induc-
ing DC maturation is a critical determinant in the success
or failure of DC vaccine treatments.[10]

Sipuleucel-T, a DC-based immunotherapy, for instance,
comprises autologous peripheral blood mononuclear
cells enriched for antigen-presenting cells, which are cul-
tured ex vivo with recombinant PA2024 protein as a
source of antigens to enhance their T lymphocyte activa-
tion properties. Following reinfusion into patients with
asymptomatic prostate cancer with metastatic castration-
resistant disease, this approach led to a modest median
overall survival improvement of 4.1 months compared
with placebo, resulting in United States Food and Drug
Administration (FDA) approval for use in this setting.[11]

Recent progress in novel DC vaccination approaches
holds significant promise, particularly in treating solid
tumors. As an example, in individuals with melanoma,
the combination of a high-dose systemic interferon
alfa-2b (IFN-a2b) and a DC vaccine demonstrates a sig-
nificant extension in both overall survival and progres-
sion-free survival compared with patients treated with
the DC vaccine alone.[10] An overview of DC-based ther-
apeutics in solid tumors is provided in Table 1.

Blood Vessels
Hypoxia, a hallmark of the TME of various cancer

types, can attenuate the efficacy of chemotherapy and

Figure 1. The tumor microenvironment components. The tumor microenvironment is a complex network of diverse cells and secreted factors
that serve as targets for anticancer treatments. It includes various cell types like cancer cells, immune cells (such as T and B lymphocytes, TAMs,
DCs, NK cells, myeloid-derived suppressor cells, neutrophils, and eosinophils), stromal cells (like CAFs, pericytes, and mesenchymal stromal
cells), as well as vascular networks and tissue-specific cells such as neurons and adipocytes. These cells release components like ECM, growth
factors, cytokines, and EVs, crucial for communication within the TME and beyond. CAF: cancer-associated fibroblast; DC: dendritic cell; ECM:
extracellular matrix; NK: natural killer; TAM: tumor-associated macrophage; TME: tumor microenvironment.
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radiotherapy, trigger the secretion of immune-suppres-
sive cytokines, and promote the recruitment and prolif-
eration of immune-regulatory cell population. [12–14]

More recently, studies have been exploring the idea of
vascular normalization. One of the notable advantages of
vascular normalization is its potential for synergizing
with other anticancer treatments, including chemother-
apy, radiotherapy, and immunotherapy.[15–17] One classic
example from clinical practice is the metastatic clear cell
renal cell carcinoma (mRCC) treatment, in which combi-
nations of anti-vascular endothelial growth factor (VEGF)
agents with immune checkpoint inhibitors (ICIs) provide
superior disease control than to single-agent VEGF-tar-
geted therapies, signaling a shift in first-line treatment
approaches.[18] Achieving vascular normalization poses
certain challenges. The optimal dose of anti-angiogenic
therapy and the timing of effective normalization, known
as the “normalization window,” are tightly limited and
vary between individuals, which presents obstacles to its
clinical application.[19] Thus far, most of the mechanistic
understanding regarding vessel normalization has been
derived from inhibiting VEGF signaling pathways with
moderate-to-low doses of monoclonal antibodies or small-
molecule inhibitors targeting tyrosine kinase receptors
(Table 2). However, given that VEGF is a critical survival
factor for endothelial cells, sustained inhibition, even
at low doses, ultimately results in vessel demise or the
increased expression of alternative angiogenic factors.[20]

Furthermore, the resistance to VEGF targeting regulated
by immunosuppression suggests the involvement of addi-
tional regulators in tumor promotion through immuno-
modulation. These findings indicate that analyzing the
immune profile within the altered TME could offer the
potential for enhancing treatment efficacy through a
combination of vessel-targeting and immunotherapy
strategies.[21] Another potential mechanism that indi-
rectly reduces the proliferation of endothelial cells is
by acting on the mTOR/AP-1/VEGF pathway and con-
sequently inhibiting angiogenesis.[22] In addition, the
hypoxia-inducible factor (HIF)-2a inhibitor belzutifan
recently demonstrated a significant clinical benefit
among patients with mRCC previously treated with
VEGF inhibitors and ICI.[23]

Macrophages
Experimental models have revealed that tumor cells

could recruit and polarize macrophages to an M2-like
phenotype, called tumor-associated macrophages (TAMs),
through the secretion of specific chemokines such as
the C–C motif chemokine family (CCL2, CCL3, and
CCL5).[24–26] Then, these TAMs facilitate the acquisition
of malignant traits by tumor cells, such as proliferation,
angiogenesis, immune evasion, and metastasis.[27] Some
studies have translated these experimental data to clini-
cal settings, such as the observation of a statistically posi-
tive association of inferior survival with high tissue levels
of CCL5 through microarray assay in patients with

breast-localized phyllodes tumors.[26] Similar results
were also demonstrated by Yang et al.,[24] who found a
positive correlation between tumor colony-stimulating
factor 1 receptor (CSF-1R), a tyrosine kinase transmem-
brane receptor involved in tissue macrophage mainte-
nance, expression through immunohistochemistry,
and more aggressive clinical and pathological tumoral
features, besides inferior survival in a cohort of 268
patients with resected clear cell renal cell carcinoma.[28,29]

Corroborating these findings, a meta-analysis involving
55 studies with a total of 8692 patients diagnosed with
solid tumors also showed that an increase in the density
of TAMs, identified through immunohistochemistry for
CD68 in tumor samples, was associated with a decrease
in overall survival (1.15-fold higher relative risk for mor-
tality), which was more pronounced in breast, endome-
trial, prostate, bladder, ovary, and urothelial cancers.[30]

The previous analysis highlighted that the clinical ben-
efit from some cytotoxic chemotherapy agents may
derive in part from their actions on TAMs by reducing
their tumoral population (e.g., structurally related marine-
derived compounds trabectedin and lurbinectedin) or
inducing phenotypic changes toward an M1 profile (e.g.,
the anti-metabolites gemcitabine and 5-fluorouracil).[31,32]

Aiming to deplete the TAM population, pexidartinib,
a CSF1R inhibitor, was evaluated in a phase 2 dose
extension study with a total of 23 patients harboring
tenosynovial giant-cell tumors. From these, 12 had a
partial response with a median duration of response
above 8 months, and 7 had stable disease.[33] A posterior
phase 3 trial has confirmed pexidartinib efficacy in this
setting, resulting in its FDA approval. Although it was
tolerable in most patients, a few cases of liver failure
have resulted in a Boxed Warning with the FDA
approval.[34] Other phase I trials have assessed CSF1R
blocked (with antibodies or small molecules) in combi-
nation with cytotoxic agents or immunotherapy in dif-
ferent histologies, and efficacy studies are necessary.[35]

Blocking the chemokine-dependent recruitment of
TAMs was assessed in phase 1 trials based on combina-
tion antibodies or small molecules with cytotoxic
agents with modest tumor activity. Carlumab, an anti-
CCL2 monoclonal antibody, presented mild efficacy
(one partial response in 53 patients) in combination
with cytotoxic standard chemotherapy in a phase 1b
trial in individuals harboring solid tumors. Although a
brief initial reduction in serum CCL2 was followed by
its increase along chemotherapy treatments, non-dis-
tinct new adverse events regarding standard agents
were related.[36] A CCL2 receptor blocker, PF-04136309,
was analyzed for patients with metastatic ductal pancre-
atic cancer in combination with nab-paclitaxel and
gemcitabine in the phase 1b study. Besides a non-
increase in the objective response rate of 23.8%, a high
incidence of pulmonary toxicity, one case with grade 4,
was related.[37]
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Despite this biological rationale and preclinical evi-
dence, the combination of motolimod, a TLR8 agonist,
to the EXTREME regimen (combination therapy using
cetuximab antibody and platinum-based chemother-
apy) in a randomized phase 2, double-blinded, placebo-
controlled trial with patients diagnosed with recurrent/
metastatic squamous cell carcinoma of the head and
neck did not demonstrate the gain in progression-free
survival or overall survival. Otherwise, a statistical bene-
fit in these two endpoints was demonstrated in patients
with human papilloma virus (HPV)–positive oropharyn-
geal cancer. The addition of motolimod was associated
with a higher incidence of adverse events related to
local injection reactions, acneiform eruptions, chills,
and pyrexia.[38] Promising results were achieved with
the combination of pembrolizumab and intratumoral
vidutolimod, a TLR9 agonist, in a phase 1b study involv-
ing 44 patients with advanced melanoma who had never
responded to previous anti-programmed cell death 1
(PD-1) therapy. This combination resulted in an objec-
tive response rate of 25% and a satisfactory safety
profile.[39]

In a distinct mechanism of pattern recognition TLR
activation, CD40 signaling can induce an epigenetic
reprogramming to the end of polarizing macrophages
toward proinflammatory and anti-tumoral phenotypes
experimentally.[40] These findings were corroborated in
a phase 2 trial of sotigalimab, a CD40 agonistic anti-
body, in combination with nivolumab that achieved an
overall response rate of 15%, most of them lasting more
than 18 months, in 38 patients with metastatic mela-
noma who had previously progressed on anti-PD1 ther-
apy. In this trial, sotigalimab-related grade 3 adverse
events were evidenced in 13% and have been repre-
sented as systemic inflammatory reactions.[41]

Despite the description of many mechanisms in vivo
and in vitro justifying the pivotal role of TAMs in many
steps of the natural history of tumors, the clinical

diffuse use of therapies targeting many aspects of the
biology of these cells still needs more clinical evidence
of benefit, which could be achieved upon appropriate
patient selection based on biomarkers in large clinical
trials.

T Cells

Immune checkpoint inhibitors
ICIs are a cancer treatment strategy that enhances T-cell

responses within the TME. Certain molecules in the co-
stimulatory pathway send inhibitory signals to activated
T cells, regulating the strength of the immune response
and functioning as “checkpoint” molecules.[42] The most
recognized T-cell checkpoint molecules are cytotoxic T
lymphocyte antigen 4 (CTLA4) and PD-1. Research
advancements on these checkpoint molecules have led
to the development of T-cell targeting antibodies that
exhibit high efficacy across various cancers.[1] Two of the
most evolving checkpoint inhibition approaches widely
used in the past decade involve blocking the PD-1/PD-L1
and CTLA-4 pathways.[42] Other targets, including inhibi-
tory receptors such as T-cell immunoglobulin and mucin
3 (Tim-3), V-domain immunoglobulin suppressor of T-
cell activation (VISTA), T-cell immunoreceptor with
immunoglobulin and ITIM domain (TIGIT), and lym-
phocyte activation gene 3 (Lag-3), as well as activating
molecules like OX40 (CD134) and glucocorticoid-induced
TNFR-related protein (GITR), are currently under
investigation.[42,43]

Cellular therapy
Tumor-infiltrating lymphocytes (TILs) are a specific

type of immune cell known as T cells. These cells iden-
tify and attack antigens on the surface of cancer cells,
penetrating solid tumors to destroy them. When a
tumor is surgically removed from a patient, tissue sam-
ples are sent to a lab where TILs are extracted and culti-
vated over 3 weeks, allowing them to multiply into
billions of cells. Before reinfusing the TILs into the
patient, the individual undergoes chemotherapy and
receives IL-2, an immune-stimulating chemical. This
treatment temporarily depletes existing immune cells,
creating space for the newly introduced TILs.[44]

Patients diagnosed with stage IIIC or IV melanoma,
who had experienced disease progression following
treatment with checkpoint inhibitors or BRAF/MEK tar-
geted therapy (for those harboring BRAF V600 muta-
tions), underwent extraction and ex vivo expansion of
tumor tissue-derived T cells via a controlled manufac-
turing process (Lifileucel). Following nonmyeloablative
lymphodepleting cytotoxic treatment, autologous rein-
jection of Lifileucel was administered, followed by up to
six doses of IL-2. Encouraging outcomes from this sin-
gle-arm trial, including an overall response rate of
31.5% (with a recommended dosing range of 7.5-72 3
109 viable cells) and a median duration of response not
yet reached, led to its FDA-accelerated approval for

Table 2. Agents targeting the vasculature currently in clinical
use

Signaling Targets Drug

VEGF signaling VEGF Bevacizumab
VEGFR IMC-1121B (Ramucirumab)
VEGFR Sunitinib (Sutent)
VEGFR Sorafenib (Nexavat)
VEGFR Pazopanib (Votrient)

FGF signaling FGFR BMS-582664 (Brivanib)
PDGF signaling PDGF SU6668
EGFR signaling EGFR Cetuximab (Erbitux)

EGFR Panitumumab
EGFR Erlotinib
EGFR Gefitinib

mTOR signaling mTOR Everolimus

EGFR: epidermal growth factor receptor; FGF: fibroblast growth
factor; mTOR: mammalian target of rapamycin; PDGF: platelet-
derived growth factor; VEGF: vascular endothelial growth factor.
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these refractory patients.[45] Also, the combination of
TILs and ICIs is being evaluated in a phase I clinical trial
(NCT05576077).

CAR T cell
The T-cell receptor (TCR) can be engineered to recog-

nize a specific antigen and augment a targeted immune
response. Building on this strategy, chimeric antigen
receptor (CAR) T cells have been developed, revolution-
izing the treatment landscape for certain refractory
tumors.[46] Supported by compelling clinical trial data,
CD19-targeted and B cell maturation antigen-targeted
CAR T cells have received FDA approval for the treat-
ment of patients with B cell lymphoma,[47] B cell acute
lymphoblastic leukemia,[48] and multiple myeloma,[49]

respectively, who have relapsed or progressed following
prior therapies. These approaches have demonstrated ele-
vated rates of complete and durable responses in either
these or the other hematological malignancies.[50,51]

Regarding solid tumors, CAR T-cell trials have shown
promising albeit less robust preliminary outcomes in
neoplasms with historically poor prognoses and resis-
tance to conventional treatments. A phase I/II clinical
trial (NCT00902044) demonstrated encouraging out-
comes using HER2 CAR T cells in the treatment of 19
patients with HER2-positive sarcomas, including 16
osteosarcomas, one primitive neuroectodermal tumor,
one Ewing sarcoma, and one protofibroblastic small
round cell tumor.[51]

IL-13Ra2 is significantly expressed in glioblastoma
(GBM) tumor cells but rarely found in normal brain
cells, making it a compelling target for CAR T-cell ther-
apy in glioblastoma. In a study by Brown and col-
leagues[52] (NCT02208362), multi-dose treatment with
IL-13Ra2-CAR T cells led to complete tumor regression
for almost 8 months in a patient with disseminated
glioblastoma. Another target in GBM tumors, epidermal
growth factor receptor (EGFR), was examined in a phase
I clinical trial in which 10 patients with recurrent
EGFRvIIIþ glioblastoma were treated with EGFRvIII
engineered CAR T-cells (NCT02209376).[53] This study
demonstrated an antitumor effect with a median overall
survival (OS) of approximately 8 months in all patients.
Other CAR T-cell targets in solid tumor include MUC1,
CD133, MSLN, CEA, and GD2.[54] However, these CAR-
T trials frequently report high incidences of inflamma-
tory reactions, highlighting the need for comprehensive
support from specialized teams to manage these
cases.[55]

Recently, CAR natural killer (NK) cells and CAR-macro-
phages (CAR-M) have been introduced as alternatives or
complements to CAR T-cell therapy for solid tumors. CAR
NK cells might be a favorable substitute for CAR T cells
because they do not require human leukocyte antigen
(HLA) compatibility and have limited toxicity.[54] How-
ever, like CAR T cells, CAR NK cells face challenges such as
migration to the tumor site, persistence in the immuno-
suppressive TME, and transduction.[54] Regarding CAR-M,

several limitations are associated with their bioengi-
neering, storage, expansion, persistence in the TME,
and toxicity.[54]

Regulatory T cells
In the TME, regulatory T cells (Tregs) play multiple

roles, particularly in suppressing T-cell activation.[56]

Currently, there is no dedicated Treg-targeted therapy
in oncology. However, research indicates that Tregs can
also express the membrane receptors CTLA-4, PD-1,
LAG3, and TIGIT,[56] which could be targetable with
ICIs.[57]

Several strategies have been proposed to boost
antitumor immunity, including depleting Tregs in
the TME using kinase inhibitors, low-dose cyclo-
phosphamide, and anti-CD25 antibodies. For exam-
ple, sunitinib has shown effectiveness in renal cell
carcinoma,[58] and metronomic cyclophosphamide
has shown promise in patients with breast cancer.[59]

In addition, targeting co-stimulatory signals like
OX40, GITR, ICOS, and TNFR2, as well as blocking
inhibitory cytokines derived from Tregs, such as IL-
10, IL-35, and transforming growth factor (TGF)-b,
can further diminish Treg suppressive functions
within the TME.[60–64]

T-cell bispecific antibodies
A significant obstacle to the effectiveness of T-cell-

based immunotherapy is the inadequate infiltration of
T cells into the TME. To tackle this issue, T-cell engaging
bispecific antibodies (bsAbs) have been developed.
These bsAbs are engineered to bind simultaneously to
an antigen on tumor cells and a surface molecule on T
cells, thereby combining the specificity of two antibod-
ies into a single molecule to efficiently redirect T cells to
the tumor cells.[65]

One example involves targeting the CD3 chain of the
TCR, due to its invariant nature, while the other arm
targets tumor cell antigens like CD19, which is specif-
ically expressed in hematologic malignancies. This
approach led to the development and FDA approval of
blinatumomab, a CD19/CD3 bsAb, for treating B-cell
precursor acute lymphoblastic leukemia.[66] Currently,
a more complex design of trispecific antibodies target-
ing CD3 and CD137 using a dual-specific Fab is also
being tested among solid tumors expressing CLDN-6
(NCT05735366).
The bispecific T-cell engager (BiTE), a bsAb lacking an

Fc domain, comprises variable regions from an antitu-
mor cell antigen and an anti-CD3 antibody, connected
by a short linker. The epidermal growth factor receptor
variant III (EGFRvIII), often overexpressed in glioblas-
toma, is another target for BiTEs. An early clinical study
involving EG-FRvIII-specific BiTEs, including AMG 596,
has been conducted in patients with recurrent
glioblastoma.[67]

Also, Tebentafusp is a distinctive BiTE. It connects an
affinity-enhanced TCR that targets the glycoprotein-
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100 (gp100)–HLA–A02 complex found on melanoma
cells with an anti-CD3 chain. Tebentafusp showed a sig-
nificant improvement in OS for patients with meta-
static uveal melanoma, resulting in its approval in
2022.[68]

BCells
Recent evidence indicates that tumor-infiltrating B

lymphocytes (TIL-Bs), including B cells and plasma
cells, are important and versatile players in antitumor
immune responses.[69,70] In numerous cancers, TIL-Bs
have demonstrated significant prognostic value and are
emerging as crucial predictors of responses to ICIs.[69,70]

In addition, TIL-Bs are involved in various other lym-
pho-myeloid aggregates and engage in complex interac-
tions with the tumor stroma, underscoring their
multifaceted role in the TME.[69]

In a mice study, the development of immunosuppres-
sive and effector B-cell responses within pancreatic duc-
tal adenocarcinoma (PDAC) was examined using a
multifaceted approach that included genetically engi-
neered models, B-cell profiling, and functional assays.[70]

The findings reveal that IL-35þ B cells inversely correlate
with plasma cell frequency in PDAC. Through transcrip-
tional profiling of naive B cells, it was discovered that
IL-35 production by B cells induces a unique transcrip-
tional state in naive B cells, inhibiting plasma cell differ-
entiation by maintaining high levels of the B cell
lineage-defining transcription factors Pax5 and Bcl6.
Furthermore, targeting Bcl6 in naive B cells significantly
increased the presence of intratumoral plasma cells and
overcame resistance to immunotherapy, resulting in
tumor growth control.[70] This study suggests that the
transcriptional reprogramming of naive B cells can be a
strategic target to modulate the balance between effec-
tor and regulatory B cell functions, enhancing tumor
immunity in PDAC.[70]

In another study with PDAC, resistance to systemic
treatment with stimulator of interferon gene (STING)
agonists was partly due to the expansion of immuno-
suppressive B cells that hinder NK cell function.[71]

Although previous research has shown that the STING-
triggered IFN response is crucial for antitumor NK cell
activity, this study presents a novel scenario in which
systemic delivery of STING agonists suppresses NK cell-
mediated antitumor responses via B cell-derived IL-35.
This suppression mechanism explains why systemic
delivery of STING agonists is less effective than intratu-
moral delivery.[71] By blocking B cell-specific IL-35 dur-
ing 2’3’-cyclic GMP-AMP treatment, this negative
regulatory circuit can be disrupted, offering a potential
strategy to enhance tumor control. However, numerous
challenges must be addressed when translating the
immune capabilities of B cells into effective tumor
immunotherapies.

Cancer-Associated Fibroblasts
Cancer-associated fibroblasts (CAFs) are a pivotal ele-

ment within the TME, exerting control and influence
on tumor behavior through comprehensive interactions
with both tumor and stromal compartments.[72]

Transcriptomic analysis based on single-cell RNA-
sequencing has revealed that a combination of biomark-
ers is capable of discriminating CAF subsets across
different cancer types. CAFs were categorized using a
presumed functional naming system such as myofibro-
blastic (myCAF), inflammatory (iCAF), antigen-present-
ing (apCAF), matrix, cycling (cCAF), or developmental
(dCAF).[73,74] Importantly, CAF subsets are not invariable
categories but can transition between each other through
specific signaling pathways. This characteristic provides a
rationale for inducing CAF phenotypic switching as a
strategy in the development of anticancer therapy.
MyCAFs are found adjacent to tumor foci, where they

are activated by direct contact with neoplastic cells.[75]

They are distinguished by high expression of a-smooth
muscle actin (aSMA) and low expression of IL-6. Con-
versely, iCAFs are found at a greater distance from
tumor cells and are activated by cancer cell-derived fac-
tors such as IL-1 and TNF-a.[76] They are characterized
by low expression of aSMA and high expression of IL-6.
These two subtypes, myCAFs and iCAFs, are considered
mutually exclusive.[77] There is evidence of conversion
between iCAFs and myCAFs via TGF-b or IL-6 signaling
pathways.[78]

Recently, apCAFs, a new subset of CAFs expressing
major histocompatibility complex-II molecules was dis-
covered proposing an immunomodulatory role of CAFs.
In recent integrative analyses involving multiple single-
cell RNA-sequencing studies and comprehensive lineage
tracing assays, it has been identified that antigen-
presenting CAFs (apCAFs) originate from mesothelial
cells.[79] Throughout the progression of pancreatic can-
cer, mesothelial cells undergo a phenotypic transfor-
mation into apCAFs. This transformation involves a
downregulation of mesothelial characteristics and an
acquisition of fibroblastic features, a process driven by
the cytokines IL-1 and TGF-b. Significantly, apCAFs
have the capability to engage and reprogram naive
CD4þ T cells into regulatory Tregs in a response that is
specific to antigens.[79] Moreover, the application of a
monoclonal antibody targeting the cell marker mesothe-
lin has been shown to effectively inhibit the mesothelial-
to-apCAF transition and the subsequent induction of
Tregs by apCAFs.[80] Collectively, these findings high-
light the potential role of mesothelial cells in promoting
immune evasion during pancreatic cancer and offer valu-
able perspectives on potential strategies to enhance treat-
ment efficacy.
Further insights into CAF dynamics were provided by

tracking CAF subpopulations throughout breast tumor
progression in mice.[81] A transcriptional shift from
immunoregulatory activities toward functions related
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to wound healing and antigen presentation as the
tumor progresses was observed.[81] Comparable findings
from melanoma models in mice showed that three spe-
cific CAF subclusters—S1, S2, and S3—vary in abun-
dance through different stages of tumor growth, with
the S3 subpopulation, characterized by high levels of
Acta2, becoming dominant in later stages.[82] These
findings, primarily derived from correlative analyses
using single-cell RNA-sequencing and immunostaining,
suggest that CAF subsets not only have distinct origins
but also specialized functions. However, these observa-
tions are based on transcriptional profiles and in vitro
studies, which may not fully capture their in vivo roles.[82]

Targeting CAFs has encountered significant chal-
lenges. One major issue is the absence of specific sur-
face markers for CAFs, making their direct depletion
difficult without harming normal tissue.[83] To
address this, strategies involve targeting critical sig-
nals and effectors in CAFs, such as chemokine and
growth factor pathways, to inhibit their activation
and function. Molecules like all-trans retinoic acid
(ATRA) or calcipotriol can normalize CAFs and induce
an inactive phenotype. Additionally, CAF-based or
mesenchymal stem cell (MSC)-based therapies can be
used to deliver anticancer agents, including oncolytic
adenoviruses, TNF-related apoptosis-inducing ligand
(TRAIL), or type I IFN. Targeting CAF-derived extracel-
lular matrix (ECM) proteins and associated signaling
can induce stromal depletion. Direct depletion of
CAFs can also be achieved using transgenic technolo-
gies or immunotherapies. Key targets and technolo-
gies include CAR, FAP (fibroblast activation protein),
FGF2 (fibroblast growth factor 2), GPR77 (G protein-
coupled receptor 77), IL-6, IL-6R (IL-6 receptor), mAb
(monoclonal antibody), MMP (matrix metalloprotei-
nase), MDSC (myeloid-derived suppressor cell), NK,
PD-1, PDGFR, SDF1 (stromal-derived factor 1), SMO
(smoothened), TAM, and Treg.[83]

Agents targeting FAP-a, CXCR4/CXCL12, HGF,
PDGF, TGF-b, and hyaluronan signaling in CAFs are
being studied in preclinical and clinical trials for
breast cancer, chronic myelogenous leukemia, gastro-
intestinal stromal tumor, and melanoma.[84,85] Espe-
cially, TGF-R b is a promising target for pancreatic
and colorectal tumors and is being evaluated in a
myriad of phase I clinical trials (NCT06199466,
NCT03436563, NCT05836324). Also, activating the
Notch1 signaling pathway in CAFs inhibits mela-
noma cell growth in culture and in a xenograft mouse
model.[86] In addition, vaccination against FAP-a, pri-
marily expressed on CAFs, effectively suppressed
B16/F10 melanoma development in mice.[87,88]

The multi-receptor somatostatin analogue pasireo-
tide (SOM230; Novartis) has been used to inhibit the
mTOR–4E-BP1 pathway responsible for protein syn-
thesis in a-SMAþ CAFs, which highly express the
somatostatin receptor SST1. In a murine xenograft

model of PDAC, treatment with SOM230 reduced CAF-
secreted molecules, including IL-6, thereby overcoming
CAF-induced cancer cell resistance to chemotherapy
(gemcitabine). Further research on the CAF-targeting
effects of SOM230 could elucidate its anti-metastatic
potential in pancreatic cancers.[89–91]

ExtracellularMatrix
Beyond offering structural support, the ECM acts

as a dynamic entity that influences cellular behav-
iors and undergoes remodeling, a common feature
in tumors marked by increased collagen synthesis
and deposition. This process, often accompanied by
the expression of remodeling enzymes such as
MMPs, lysyl oxidase (LOX), lysyl oxidase-like pro-
teins (LOXLs), and WNT1-inducible signaling path-
way proteins (WISPs), is crucial for the progression
of cancer.[91]

Consequently, the ECM serves as a robust barrier
that promotes tumor survival and progression. How-
ever, this barrier also presents vulnerabilities that can
be exploited by anticancer therapies, thereby serving
as a strategic entry point for therapeutic interven-
tions. For instance, treatments that aim to normalize
ECM stiffness have shown promise in various cancers.
Techniques such as photothermal depletion of CAFs
have been effective in reducing ECM stiffness in des-
moplastic cholangiocarcinoma, thereby impacting
the tumor’s physical environment.[92] Similarly, ther-
apies that target ECM stiffness to inhibit angiogenesis
have been explored in liver metastasis.[93] These
approaches indicate that reducing ECM stiffness is a
promising approach for effective treatment. Con-
versely, strategies that increase ECM stiffness, such as
cholesterol depletion treatments, have been found to
enhance the effectiveness of T-cell immunotherapy
by altering the tumor’s biomechanical properties.[94]

There is also an application involving the ECM to
enhance the effectiveness of CAR T therapy, facilitat-
ing easier penetration into solid tumors. This
approach leverages modifications to the ECM, aiming
to reduce its density or stiffness, thereby allowing
CAR T cells to infiltrate and target cancer cells more
effectively. To address this, reengineered CAR T cells
that overexpress heparinase have been developed.[95]

Heparinase can break down ECM components and
enhance T-cell infiltration into the tumor, signifi-
cantly impeding tumor growth. Additionally, a recent
therapeutic approach combines an oncolytic adenovi-
rus that delivers decorin with CAR T cells targeting
carbonic anhydrase IX (CAIX).[96] This strategy has
been shown to remodel the ECM and boost immune
responses in cancer, demonstrating the potential for
innovative combination therapies to overcome chal-
lenges in treating solid tumors.[96]
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STRATEGIES: TRANSFORMING “COLD”
TUMORS INTO “HOT”

“Hot tumors” are characterized by a TME rich in TILs,
PD-L1 overexpression, genomic instability, and preexisting
antitumor immune responses.[97] “Cold tumors” lack
inflammation and exhibit a deficiency in T cells both
within the tumor and along its periphery, resulting in a
low immunoscore.[97] They also show inadequate T-cell
priming, characterized by low tumor mutational burden,
impaired antigen presentation, and inherent resistance
to T-cell–mediated killing[97] (Figure 2). Variable tumors
are tumors in a variable state between cold and hot ones.
It is generally accepted that checkpoint inhibitors

alone are more effective against “hot tumors” whereas
having no benefit in treating “cold tumors” or “vari-
able” tumors, which require a combination of other
therapies to recruit immune cells to the tumor tissue
to warm it up. Using combination therapies with
immunotherapy approach stands as a pivotal method
in addressing cold tumors such as chemotherapy, tar-
geted therapy, radiation therapy, dual immunotherapy,
oncolytic viruses, cancer vaccines, cytokines, cytotoxic

chemotherapy, modulation of microbiome, radiation
therapy, and other clinically viable combination tech-
niques[98] (Figure 3). We discuss some of these thera-
pies in the following sections.

Therapeutic Vaccines
The idea of a vaccine is to use tumor-specific antigens

to activate antigen-specific T cells and establish antitu-
mor immune memory.[99] This would induce influx of
cytokine-producing CD8þ T cells and of intratumoral
macrophages. Neoantigen-targeted vaccines show prom-
ise in activating long-lasting T-cell responses. Neoantigen
quality is determined by various factors, including its dis-
similarity to the wild-type amino acid sequence, its distri-
bution among subclonal populations, its ability to be
processed and presented on MHC molecules, and the
affinity of the TCR for the neoantigen, among others.[100]

T-cell Receptor-Based Therapies and
Adoptive T-cell Therapies
TCR-based therapy treatments are another evolving

immunotherapy approach for inducing higher-quality
T cells and directing them to the TME in immune-

Figure 2. Cold and hot tumor environment and strategies to turn cold tumors into hot tumors. The primary cellular components and
molecular interactions influencing the cold tumor phenotype and the hot tumor phenotype are delineated below. Key abbreviations include the
following: NK (natural killer cells), DCs (dendritic cells), pDC (plasmacytoid dendritic cells), M2 (type 2 macrophages), MDSC (myeloid-derived
suppressor cells), T eff (effector T cells), T reg (regulatory T cells), TCR (T-cell receptor), MHC (major histocompatibility complex), CTLA-4
(cytotoxic T-lymphocyte-associated protein 4), LAG3 (lymphocyte activation gene-3), PD-1 (programmed cell death-1), and PD-L1 (programmed
cell death-ligand 1). On the second table of the figures, we can see an overview of potential strategies to transform cold tumors into hot ones,
along with their mechanisms of action, enhancing therapeutic outcomes when combined with immunotherapy.
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Figure 3. Mechanisms of action of therapies in TME. Summary of experimental and clinical interventions targeting tumoral stromal
components. Tumor development is associated with intrinsic extracellular matrix modifications and cellular components that foster neoplastic
progression. Tumor cells can induce pro-tumoral phenotypic changes in macrophages, fibroblasts, and lymphocytes by releasing soluble
mediators (depicted as small colored circles). Tumors also release pro-angiogenic factors to guide the migration of vascular cells that form new
branched vessels. Several strategies have been developed to disrupt tumor-stromal interactions and enhance immune cell-mediated tumoral
attack:

1Activating DCs with CG-CSF, CD40, and FLT3 agonists to enhance antigen presentation. Another strategy involves administering DC vaccines
or a pool of autologous mononuclear cells presenting antigens extracted from tumors and enhanced in vitro (Sipuleucel).

2Augment anti-tumoral cytotoxic lymphocyte activities by introducing CAR T cells or an autologous pool of polyclonal lymphocytes extracted
from tumors and enhanced in vitro (Lifileucel).

3Suppression of Treg cell activities using sunitinib, checkpoint inhibitors, or cyclo-phosphamide treatments.

4Inhibition of CAFs using mesothelin antibodies in experimental models.

5Inhibition of the angiogenic process at various stages by targeting soluble mediators with anti-VEGF agents, blocking their receptors with
multi-tyrosine kinase inhibitors, or perturbing downstream signaling using mTOR inhibitors.

6Manipulate macrophage polarization toward a proinflammatory and anti-tumoral phenotype by administering TLR-8/9 agonists, CD40 ago-
nists, or CSFR1 inhibitors.

CSFR-1: colony-stimulating factor-1 receptor; CAFs: cancer-associated fibroblasts; CAR T cell: chimeric antigen receptor T cells; DCs: dendritic
cells; CG-CSF: granulocyte-macrophage colony-stimulating factor; CSF-1R: colony-stimulating factor-1 receptor; CTLs: CD8 positive cytotoxic T
lymphocytes; EGF: epidermal growth factor; FGF: fibroblast growth factor;FLT3: FMS-like receptor tyrosine kinase-3; M1: macrophages type 1;
M2: macrophages type 2; PDGF: platelet-derived growth factor; Treg: T regulatory cells; TLR-8/9: Toll-like receptors 8 and 9; VEGF: vascular endo-
thelial growth factor.
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resistant solid tumors. Bispecific antibodies and engi-
neered T cells redirect endogenous T cells to recognize
and kill cancer cells.[101] Adoptive cell therapy, includ-
ing CAR T cells, harnesses a patient’s T cells to target
cancer-specific antigens.

Oncolytic Viruses
Oncolytic viruses (OVs) are specially engineered viruses

that selectively replicate within tumor cells and are con-
sidered promising cancer treatments.[89] A key area of
interest with OVs is their ability to cause tumor cells to
burst and die through replication, a process called lytic
cell death. This type of cell death is highly immunogenic
and can transform immunologically inactive, or “cold,”
tumors into active, or “hot,” ones.[102] Tumors treated
with OVs have shown a rise in the infiltration of CD8þ
T cells and an increase in tumor-specific CD8þ T cells
throughout the body. The potential synergy between
OVs and ICIs is as a possible new approach to treating
stubborn, immunologically cold tumors.[102]

Radiation Therapy
Radiation therapy can modify the TME to trigger an

anticancer immune response by inducing an immuno-
logic form of cell death.[103] This type of cell death can
activate the patient’s immune system to attack cancer
cells even outside the radiation field, leading to what is
known as the abscopal effect—where tumors distant
from the irradiated area also regress.[104] Incorporating
radiation into ICI regimens is an area of active investi-
gation, with mixed results across different cancer types.
For instance, the S1806 trial is evaluating the addition
of atezolizumab to chemoradiation in patients with
muscle-invasive bladder cancer, aiming to determine if
this combination can enhance outcomes.[105] Similarly,
the NIVES and RADVAX trials explored the use of radio-
therapy combined with nivolumab alone or combined
with ipilimumab in mRCC, offering insights into the
potential benefits and challenges of this approach.[106,107]

Cytotoxic Chemotherapy
The effectiveness of cytotoxic chemotherapy in com-

bating tumors partially relies on the immune system. It
can reconfigure immune tolerance by eliminating immu-
nosuppressive cells such as Tregs within the TME.[108] In
addition, chemotherapy can induce cellular necrosis, a
type of cell death that is more immunogenic than apo-
ptosis. This process leads to the release of inflammatory
signals like IL-8, TNF-a, and High Mobility Group Box
Protein 1 (HMGB1), which further stimulate the immune
response against the tumor.[109]

Targeted Therapies
VEGF is known to regulate the growth of vascular

endothelial cells and contribute to immunosuppression.
Research indicates that blocking VEGF pathways can
enhance immune responses. Clinical studies have

demonstrated that combining PD-L1 monoclonal anti-
bodies with VEGF inhibitors yields synergistic effects,
showing promise in treating various types of tumors.[110]

Specifically, using PD-L1 inhibitors together with
VEGFR2 inhibitors has been effective in reducing PD-1
and PD-L1 expression levels, increasing TILs, reducing
Tregs and MDSCs, and inhibiting tumor growth.[110,111]

FUTURE PERSPECTIVES—DECODING THE
TME WITH NEW TECHNOLOGIES

Spatial Technologies and Artificial
Intelligence
Some available artificial intelligence (AI) approaches,

such as deep/machine learning algorithms, could be con-
figured to predict genomic and/or transcriptomic profiles
based on digitized hematoxylin and eosin (H&E)-stained
tumor slides after a previous training step with a certain
accuracy. In a similar manner, the stroma components
and their spatial distribution could be characterized from
digitized slides, and this information would be used for
prognostic and predictive purposes.[112] Lim et al.[113]

demonstrated that the Lunit SCOPE IO, a deep learning
machine tool based on convolutional neural network
architecture, effectively distinguished between individuals
experiencing disease recurrence and those without evi-
dence of disease. This discrimination was based on lower
stromal TIL density (mean of 630.2/mm2) for the former
and higher stromal TIL density (mean of 1021.3/mm3)
for the latter, in a retrospective analysis of 289 patients
with stage II-III colon cancer who had undergone surgery
followed by adjuvant therapy.[113]

Another retrospective study assessed the prognostic
value of a trained deep-learning convolutional neural net-
work–based algorithm for determining the tumor-stroma
ratio (TRS) in H&E-stained slides (representing the most
invasive element of the tumor) from patients with local-
ized colorectal cancer.[114] This AI approach could predict
differences in OS according to low (TRS , 48.8%) and
high (TRS � 48.8%) cutoffs. In the discovery cohort (499
patients), the median OS was 72 and 67 months (unad-
justed hazard ratio of 1.79; 95% CI, 1.30–2.47; log-rank
test P , 0.0010) for low and high-TRS patients, respec-
tively. Similar findings were described in the validation
cohort, with a median OS of 49 and 46 months (unad-
justed HR of 2.21; 95% CI, 1.35–3.63; P ¼ 0.002) for low
and high-TRS patients, respectively. Additionally, the
high-TRS cutoff was still an independent prognostic for
inferior survival in a multivariate analysis in both the dis-
covery (HR 1.72; 95% CI, 1.24–2.37; P ¼ 0.001) and vali-
dation (2.08; 1.26–3.42; P ¼ 0.004) cohorts.[114]

AI methodologies can also analyze cell-to-cell interac-
tions from H&E-stained tumor slides to infer possible
correlations with clinical features, as evidenced in a ret-
rospective analysis of 2231 luminal human localized
breast cancer slides through a supervised deep learning
model. In this study, the authors evidenced a positive
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statistical association of adverse clinical features (e.g.,
positive lymph node status, Ki-67 �20%, tumor size �2
cm, and higher tumor grade) with a higher presence of
TILs close to other stroma or tumor cells.[115]

Despite the emerging potential of AI tools for oncology
research purposes in characterizing the TME regarding
both component description and spatial distribution,
most of the evidence in recent years has been focused on
prognostic outcomes. Nevertheless, further studies are
needed to assess their role in treatment prediction. Addi-
tionally, these strategies must undergo validation in other
distinct scenarios, necessitating collaboration with multi-
institutional datasets.

Nanotechnology
Nanoparticles (NPs), defined as materials smaller than

100 nm, exhibit unique properties due to their surface
characteristics and small size. The key application of
these nanomaterials is serving as a drug delivery system
(DDS) that enables the precise delivery of therapeutic
agents to specific cells and tissue environments. These
DDSs enhance the effectiveness of the drug, minimize
side effects, and improve both pharmacokinetics and bio-
availability.[116] As a result, nanomaterial-based DDSs are
emerging as innovative therapeutic modalities for a vari-
ety of cancers, owing to their ability to navigate biologi-
cal barriers and optimize drug distribution. For example,
in the treatment of melanoma, various nanomaterials
such as liposomes, nanostructured lipid carriers (NLCs),
solid lipid nanoparticles (SLNs), hydrogels, nanoemul-
sions, polymer micelles, and inorganic nanoparticles
have been used to create nano-DDSs. These platforms
offer several significant benefits, including targeted
delivery to TAMs, modulation of T-cell responses, and
enhancement of other immune responses.[116]

CONCLUSIONS

The complex development of tumors mirrors dynamic
changes in the TME, which are pivotal in promoting
tumor growth and metastasis. Although targeting specific
components of the TME—such as the ECM, vasculature,
and both non-immune and immune cells—presents valu-
able therapeutic opportunities, focusing on these ele-
ments individually may not yield comprehensive and
lasting therapeutic outcomes.
The success of immunotherapy in treating cancer stems

from advancements in understanding the critical mecha-
nisms of T-cell activation and suppression. Emerging
therapies, including CAR T, CAR NK, and CAR-M cells,
show promise in treating solid tumors. However, clinical
trials often struggle to demonstrate effective results due
to both innate and acquired resistance in patients.
Exploring TME targets, such as the modulation of tumor

vasculature in combination with immunotherapies, could
help overcome these therapeutic challenges. A deeper
understanding of the essential elements of the TME may

drive the discovery and development of innovative treat-
ments. Moreover, incorporating nanomedicine and AI
into cancer research could offer novel approaches to tar-
geting the TME.
Given the significant variability within the TME, inte-

grating biomarker-driven patient selection in clinical
trials is crucial. This approach is essential for effectively
transitioning these strategies from the lab to clinical
practice and ensuring their efficacy in cancer treatment.
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