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Abstract Repair of damaged myocardium with pluripotent
stem cell derived cardiomyocytes is becoming increasingly
more feasible. Developments in stem cell research empha-
size the need to address the foreseeable problem of immune
rejection following transplantation. Pluripotent stem cell
(PSC) derived cardiomyocytes have unique immune char-
acteristics, some of which are not advantageous for
transplantation. Here we review the possible mechanisms
of PSC-derived cardiomyocytes rejection, summarize the
current knowledge pertaining to immunogenicity of such
cells and describe the existing controversies. Myocardial
graft rejection can be reduced by modifying PSCs prior to
their differentiation into cardiomyocytes. Overall, this
approach facilitates the development of universal donor
stem cells suitable for the regeneration of many different
tissue types.
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Introduction: Stem Cells in Cardiac Repair

Myocardial infarction remains a major cause of morbidity
and mortality worldwide. This is an unmet clinical demand
to repair irreversibly damaged myocardial tissue. The
mitotic capacity of heart muscle cells is limited and
insufficient to support cardiac regeneration [1-3]. There-
fore, injured cardiac myocytes are replaced by fibroblasts
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and connective tissue, resulting in the formation of an
arrhythmogenic scar. The remaining cells enlarge to
compensate for the additional workload, leading to hyper-
trophy, and eventually to heart failure. Today, stem cells are
actively studied to engineer functional excitable systems
that can be grafted to injured myocardium following
infarction [4-7]. In addition, stem cells also hold the
promise of repairing injured cardiac pacemaker or conduc-
tive system pathways [8, 9].

Major Hurdles to Successful Stem Cell Based Cardiac
Repair

Many studies have attempted to use stem cell-derived
cardiomyocytes to aid the functional recovery of infarcted
myocardium. While there is plenty of evidence of improved
cardiac function following stem cell transplantation, the
exact mechanisms behind these improvements are actively
debated [10]. Clinical implementation of stem cell therapy
will require a better understanding of these mechanisms. In
addition, a number of technical and physiological problems
have to be solved. Currently recognized hurdles of stem cell
therapy for cardiac repair can be grouped into the following
categories: teratoma formation, graft arrhythmogenicity,
vascularization of the graft, acute and long-term donor cell
viability, integration into the host anatomical structure and
immune rejection of the graft. In this review we will focus
on immune rejection of stem cell-based cardiac grafts
transplanted into the heart of either allogeneic or xenoge-
neic hosts (allogeneic—derived from different individuals
of the same species, xenogeneic—from an organism of a
different species). While the immunogenicity of stem cells
is often mentioned as a potential caveat, few studies have
tried to experimentally address it. As of today, the majority
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of studies on stem cell-based myocardial grafts derive their
conclusions from experiments conducted in severely immu-
nosuppressed or immunodeficient hosts [11, 12]. The goal of
this review is to explain the immunological barriers of stem
cell based cardiac repair and the ways these barriers may be
overcome. It is especially important since an ultimate
destination of transplanted cells is the injured myocardium,
and the inherent inflammatory environment of injured tissue
is expected to further aggravate the immune reaction of the
host.

Basic Immunology of Graft Rejection

Transplantation of a graft between genetically unrelated
organisms typically results in a robust immune response
and consequently, graft rejection. T-lymphocytes recognize
foreign antigens in the form of peptides, which are
presented in association with self-MHC molecules. There
are two primary classes of MHC molecules. MHC class 1
antigens are found on the surface of every nucleated cell;
they display protein fragments synthesized within the cell
to Cytotoxic T Lymphocytes (CTL), or CD8'T cells. Cell
surface expression of MHC I antigens is the predominant
reason for immune detection and rejection of allogeneic
grafts. In comparison, MHC class II antigens are expressed
only on a few specialized cell types, including macro-
phages, dendritic cells and B lymphocytes. These cells are
called professional antigen-presenting cells. The function of
MHC 1I molecules is to display peptides of exogenous
proteins to T-helper cells, or CD4'T cells.

Direct allorecognition arises when both types of host
T-lymphocytes (CD8" and CD4") are stimulated by donor
antigen presenting cells. This stimulation occurs through a
direct interaction between host T-lymphocyte receptors and
MHC I & 1II antigens expressed on the surface of donor
cells (Fig. 1).

Indirect allorecognition occurs when donor MHC
peptides are processed and then presented by host MHC
I molecules. Host antigen presenting cells internalize and
degrade donor MHC peptides, display those peptides onto
their MHC II molecules and present them to host CD4'T
cells (Fig. 1). This process triggers an immune response
against grafts expressing both donor MHC I and II. All-in-
all, the presence of MHC molecules is the defining factor
that largely determines the degree of graft rejection.

There are three phases of acquired immune rejection.
Hyperacute rejection occurs within minutes of transplanta-
tion. In this case, rejection is induced by pre-existing host
antibodies that bind to the graft’s antigens. This binding
activates the complement system and a sequence of events
ensues, including: an influx of peripheral blood mononuclear
cells, formation of platelet thrombi, small vessel thrombosis,
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Fig. 1 Schematic representation of direct and indirect recognition of
donor antigens to the recipient T cells

and finally, damage and/or destruction of the graft. Acute
rejection occurs within 1-2 weeks after transplantation and
is characterized by capillary rupture and severe graft in-
filtration by monocytes/macrophages, lymphocytes and
dendritic cells. This hypersensitive reaction is mediated by
Cytotoxic T lymphocytes. Chronic rejection occurs months
or years after transplantation. This reaction is associated with
deposits of immunoglobulin and C3 complement molecules
on the basement membrane of graft cells.

When using stem cell derived grafts, all three phases of
rejection should be considered.

Potential Cell Sources

a) Allogeneic vs syngeneic cells. Syngeneic grafts made
from cells genetically identical to the host remain an
attractive therapeutical goal due to their minimal
immunological implications. This is an active area of
research that includes the use of somatic cell nuclear
transfer protocols [13] and the derivation of pluripotent
adult stem cells and multipotent progenitor cells from
target tissues [14, 15]. It also includes the attempt to
derive a patient’s own embryonic-like stem cells via
genetic reprogramming of differentiated somatic cells
[16, 17]. These cells are called induced pluripotent stem
cells or iPS cells. iPS cells of both mouse and human
origin have been successfully differentiated into cardio-
myocytes [16—18]. Albeit a very promising future source
to generate patient-specific grafts, iPS-based therapies
have their own set of problems. These include the low
reliability of the dedifferentiation protocol, the large
quantity of cells necessary for clinical use and high costs
associated with customized therapy. In the case of
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chronic degenerative diseases, treating patients with cells
derived from their own somatic cells will do little more
than perpetuate the existing pathology. Long time delays
associated with iPS cells derivation and proliferation can
be problematic for clinical applications in which a large
amount of cells is needed within a short period of time
following the injury. Therefore, allogeneic stem cell-
derived cells remain an important transplantation source.

b) Adult vs embryonic stem cells. Adult stem cells from
different tissues can reportedly produce cells with a
cardiomyocyte-like phenotype [15]. In addition, several
studies indicate the presence of so-called cardiac
resident stem cells that can give rise to functional
cardiomyocytes [2, 19-21]. However, cardiac resident
stem cells are rare. They are difficult to identify, extract
and proliferate to the amounts necessary for cardiac
tissue regeneration. Thus far, the most reliable in vitro
sources used to generate cardiomyocytes are embryonic
stem cells (ESC) or cells returned to an ESC-like state,
the iPS cells mentioned above. ESC are derived from
the inner cell mass of the blastocyst of a developing
embryo [22-25]. They retain the ability to differentiate
into a multitude of specialized cell types, given the
appropriate conditions [26, 27]. In the case of iPS cells,
the expression of key transcription factors, such as
Oct-4, Sox2, NANOG, c-Myc, KLF4 and LIN28, has
been shown to revert somatic cells to a pluripotent,
ESC-like state [16, 28]. These ground-breaking studies
used retroviral-driven expression, which is considered
to be one of the most efficient methods for reverting
somatic cells, yet it can result in neoplastic transfor-
mation. Incorporating transgenes into the genome
could also increase the number of immunogenic
antigens of future graft cells. To circumvent these
problems, alternative methods are being developed to
reprogram somatic cells. These include using the
piggyBac transposon system [29] and non-viral trans-
fection via single multiprotein expression vector [30] to
deliver reprogrammable elements. The latest technique
of re-differentiation of adult somatic cells relies on
synthetic modified mRNA molecules to deliver reprog-
ramming signals [31]. These approaches minimize the
risk of neoplastic conversion and the immunological
implications of trangene expression.

All-in-all, it is apparent that other cell types suitable for
regenerative purposes are likely to be discovered or created.
Yet, as of today, cells that exhibit significant potential for
tissue regeneration are cells with the pluripotent stem cell
(PSC) phenotype. These can originate from an embryo—
embryonic stem cells (ESC), or an adult organism—adult
stem cells, adult progenitor cells, and induced pluripotent
stem cells (iPS). For the purposes of this review we will be

using the collective term Pluripotent Stem Cells (PSC)
whenever the origin of pluripotent cells is not important.

Immunological Implications of Methods Used
to Produce Stem Cell-Derived Cardiac Myocytes

Currently there are four main methods by which cardio-
myocytes are derived from PSCs:

a) the hanging drop method, b) exposure to biologically
active molecules or cocktail-based protocol, c) genetic
selection and d) non-genetic enrichment. Since the immuno-
genicity of stem cell-derived grafts is influenced by the
method used to direct cell differentiation, these four methods
will be discussed below in more detail.

a) The hanging-drop method is used to create a pseudo-
embryo, termed an embryoid body (EB) [32, 33]. These
round masses of cells spontaneously form contracting
cardiomyocytes as a part of their heterogeneous cell
population [34, 35]. The cardiomyocytes found within
EBs follow a differentiation pattern that mimics that of
early myocardium development, with GATA-4 and Nkx
2.5 transcription factors expressed prior to cardiac
specific cytoplasmic proteins, such as [3-myosin heavy
chain, o-actinin and «-actin [36, 37]. Many labs,
including our own [38], use EB-differentiation to
produce clusters of beating cells followed by cell
enrichment protocols, which are based on density
differences or cardiac lineage fluorescent markers.
The main disadvantages of utilizing the hanging-drop
method is low yield in cells of interest (less than 10%)
and the need for subsequent purification. The main
immunological concern is that some of the cells within
a growing EB will unavoidably differentiate into
professional antigen presenting cells. These cells can
significantly increase the rejection of EB derived grafts.

b) Exposure to biologically active molecules allows one
to increase the quantity of derived cardiomyocytes with
or without the EB step [39]. A variety of compounds
have been shown to effectively induce cardiomyocyte
differentiation, including: ascorbic [40] and retinoic
acids [41], BMP4 and activin A [39], and a cocktail of
recombinant molecules [42]. The success of these
protocols is dependent upon strict timing at a defined
concentration to increase the quantity of derived
cardiomyocytes. These techniques reportedly lead to
significant enrichment, typically within the range of
30-50% cardiomyocytes in the total cell population.
These numbers are often hard to reproduce because
enrichment depends on the initial stage of undifferen-
tiated ESC. The immunogenicity of myocytes derived
by cocktail-based protocols is expected to be similar to
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those obtained though EB formation, although the
number of professional antigen presenting cells is
likely to be smaller.

The EB-based and the cocktail-type method result in a
heterogeneous cell population, which may include a
subpopulation of professional antigen presenting cells
[43]. The additional purification step that is required also
leads to reduced viability and low cardiomyocyte quantity.
The problem of low yield remains a major hurdle in the
field. A large number of myocytes is needed for cardiac
repair as almost one billion cells is lost within an average-
sized human infarct [44].

¢) Genetic selection of cardiomyocytes was first intro-
duced by Field’s group [45]. The notion of linking
cardiomyocyte gene expression to antibiotic resistance
was further developed by others [46, 47] and adapted
for use with human ESC [48]. Direct differentiation of
mouse ESC into >99% pure population of atrial
cardiomyocytes was initially accomplished in the
laboratory of J. Hescheler and B. Fleischmann [49].
Recently these cells became commercially available
(http://www.axiogenesis.com). The purification of stem
cell-derived cardiomyocytes that are obtained through
genetic selection is significantly simplified. Further-
more, these cells are expected to be significantly less
immunogenic, since the likelihood of developing a
subpopulation of professional antigen presenting cells
is reduced. However, genetically modified cells will
still express endogenous allogeneic antigens. In addi-
tion, these cells will also express transgenes such as
antibiotic resistance and/or fluorescent marker genes
that can add to graft rejection.

d) Non-genetic enrichment of PSC-derived cardiomyo-
cytes is a focus of recent study [50]. This method is
based on non-genetic fluorescent labeling of sub-
sarcomeric and intramyofibril mitochondria with
tetramethylrhodamine methyl ester perchlorate
(TMRM) selectively marking embryonic and neona-
tal rat cardiomyocytes, monkey, mouse, and human
PSC-derived cardiomyocytes. The subsequent
fluorescence-activated cell sorting of labeled cells
resulted in highly enriched (99%) of PSC-derived
cardiomyocytes. The advantage of this approach is
twofold. It offers relatively easy purification and
expansion of PSC-derived cardiomyocytes without
the introduction of additional transgenes and the
associated risks and limitations for clinical use [50].
However, from an immunological point of view, these
cells are expected to be as immunogenic as other PSC-
derived cardiomyocytes. Therefore similar concerns
will need to be addressed prior to transplantation of
those cells into a recipient.
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Antigens Classes for Stem Cell-Derived Cardiomyocytes

Immunological barriers, including both innate and adaptive
immunity, prevent integration of transplanted allogeneic
PSC-derived cardiomyocytes unless the host immune
system is suppressed [51, 52]. Transplant rejection occurs
due to allelic differences in the surface antigens expressed
by donor and recipient. There are three distinct types of
transplantation antigens: ABO blood group antigens, minor
histocompatibility antigens and major histocompatibility
complex molecules. All three are expected to be found in
cell populations used to create cardiac grafts.

a) A or B blood group antigens are expressed on ESC
and ESC-derived cells [53]. These antigens are critical
for safe blood transfusions. They have also been shown
to induce rejection of solid organ transplants [54]. This
immunological barrier can be avoided by isolating the
starting material (i.e., embryonic stem cells) from
blastocysts of an O-type blood group donor.

b) Minor histocompatibility (mH) antigens are poly-
morphic peptides that are presented on the cell surface
by major histocompatibility complex class 1 or II
molecules [55]. These peptides are derived from
cellular proteins encoded by different alleles of
autosomal genes or by genes of the Y chromosome
[56]. The minor histocompatibility antigen of the Y
chromosome is associated with acute rejection, and
male grafts transplanted to female recipients have
reduced graft survival [57]. mH antigens affect the
processes of transplant rejection, graft-versus-host
disease and the curative graft-versus-tumor effect of
stem cell transplantation [58]. Although mH antigens
are less immunogenic than major histocompatibility
complex (MHC) molecules discussed below, they are
still capable of initiating allograft rejection. In fact, mH
antigens have been shown to cause graft rejection,
despite MHC antigen matching between host and donor
[59]. Fully addressing mH mismatch between host and
donor can be difficult, due to the number and the extent
of mH antigens present throughout the genome and the
Y-chromosome. The gender of PSC should at least be
matched with the gender of the recipient in order to
prevent minor histocompatibility antigen Y-chromosome
associated rejection.

¢) Major histocompatibility complex (MHC) antigens.
Allelic differences in major histocompatibility complex
molecules are, by far, the most significant immunological
barrier in organ transplantation, including ESC-derived
cell transplantations. The presence of MHC class 1
molecules on the surface of the cells define their
susceptibility to Cytotoxic T Lymphocytes and Natural
Killer cells, and thus, determine the overall survival of the
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graft. The expression levels of MHC I and MHC II
antigens on the surface of ESC and PSC-derived
cardiomyocytes remains an active area of research [60,
61]. During cell differentiation, the expression levels of
classical MHC I and II molecules are regulated by
epigenetic mechanisms [62]. The low levels of MHC
class-I molecules are associated with reduced expres-
sion of the transporter associated antigen processing 1
(TAP-1) and tapasin (TPN) components. These pro-
teins are involved in the transport and load of
immunogenic peptides in both hESCs and iPS cells
[62]. In addition, the expression of MHC class I
molecule on the cell surface is limited by the lack of
beta2-microglobulin light chain. During the differen-
tiation process, MHC class I molecules increase as
compared to undifferentiated PSCs. Similarly, the
levels of beta2-microglobulin, TAP-1 and TPN in-
crease upon differentiation [62].

While the levels of MHC-I increase upon PSC differen-
tiation to cardiomyocytes, they are less abundant compared
to other cell types. Specifically, adult cardiomyocytes from
healthy hearts have been shown to have low levels of MHC
I antigens, and undetectable levels of MHC II antigens and
adhesion molecules, such as ICAM-1, VCAM-1 and
ELAM-1 [53, 63]. It is a population of vascular endothelial
cells that serves as professional antigen presenting cells
within the myocardium. As such they express high levels of
MHC I, MHC II and the ICAM-1 adhesion molecule.
Steinman’s group also identified antigen-presenting den-
dritic cells in mouse aorta and cardiac valves [64]. It is
possible that the rejection of PSC-derived cardiac grafts can
be significantly alleviated by eliminating antigen presenting
cells from these grafts. However, several studies have
shown that cardiac grafts benefit from being prevascular-
ized to ensure long-term graft survival [11, 65, 66]. The fact
that endothelial cells, which are used to create these
vascularized grafts [66], can act as professional antigen
presenting cells should be considered more closely. One
conceivable strategy would be to produce mixed grafts, in
which syngeneic endothelial cells are combined with a
population of allogeneic PSC-derived cardiac myocytes.

As mentioned above, the levels of MHC-I in cardio-
myocytes from healthy hearts are much lower compared
to other cell types. Yet, MHC 1 expression is greatly
upregulated by inflammation. Cardiac regeneration becomes
necessary after significant tissue damage. This is associated
with inflammation, as shown in the cases of autoimmune
myocarditis, ischemia and infarction [67, 68]. Therefore, one
should expect significant unregulation of MHC I expression
on the surface of PSC-derived cardiomyocytes grafted into
the site of injury.

Immunogenicity of Undifferentiated and Differentiated
Stem Cells

a) Cytotoxic T lymphocyte (CTL) susceptibility. Undif-
ferentiated stem cells express low levels of MHC 1
molecules and lack MHC 1II expression [69—71]. This is
consistent with findings in both human and mouse
ESC. These cells, while in an undifferentiated state, fail
to stimulate an allogeneic T-lymphocyte response and
may even suppress T cell proliferation [72-74]. Yet,
infiltration of T-lymphocytes is sometimes observed at
the ESC injection site [75-77]. One plausible explana-
tion for this effect is that in vivo transplantation results
in ESC death, followed by the release of ESC antigens
that are then taken up by professional antigen present-
ing cells of the host and displayed to T-lymphocytes
[75].

Undifferentiated ESC have been found to have
limited susceptibility to host T-cell lysis. Therefore,
injection of undifferentiated ESC was initially sought
as a way to regenerate local tissue. However, it was
shown that the injection of undifferentiated ESC into a
specific niche does not ensure direct differentiation into
a specific cell type, but instead promotes heterogeneous
differentiation into multiple phenotypes [52]. There-
fore, most labs pre-differentiate ESC before transplan-
tation. The main drawback of using differentiated ESC
is their increasing immunogenicity (Fig. 2). This effect
is explained by higher MHC class I expression at the
surface of differentiated ESC-derived cells as com-
pared to undifferentiated cells [60, 71]. In addition, an
inflammatory environment (that can be mimicked by
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Fig. 2 Cartoon illustrating trends of MHC-I expression and NK
susceptibility observed upon differentiation of pluripotent stem cells
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b)

IFN-gamma treatment) results in a more robust and
fast upregulation in MHC I expression in differentiat-
ed ESC progeny as compared to undifferentiated ESC
[60]. Even so, the expression level of MHC I in ESC-
derived cells is still less than that of adult somatic
cells, consistent with their decreased susceptibility to
cytotoxic T lymphocyte lysis [69, 71].

Natural Killer Cell susceptibility. According to the
“missing-self” theory [78], Natural Killer (NK) cells
destroy cells that lack self-MHC class I molecules.
However, even when MHC class 1 levels are not
diminished, alterations in the expression of ligands for
stimulatory receptors are sufficient to render a target
cell sensitive to NK cell mediated lysis [79]. The
current paradigm is that NK cells express several
families of inhibitory receptors, most of which are
specific for MHC class I molecules, and various
stimulatory receptors with diverse specificities. The
balance of activating and inhibitory signals resulting
from interactions with a given target cell determines
whether the NK cell becomes activated to produce
inflammatory cytokines, including interferon-gamma
and tumor necrosis factor-alpha, and/or kill the target
cells [80].

Since undifferentiated ESC express low levels of
MHC-I, they should be easy targets for NK mediated
lysis. However, the lack of MHC-I molecules is an
essential but not sufficient factor to activate NK cells,
since expression of specific proteins can modulate NK
cell recognition. Today, there is controversy regarding
the susceptibility of undifferentiated ESC to NK cell
lysis (Fig. 2). First, it has been shown that undifferen-
tiated human ESC are not susceptible to NK-mediated
cell lysis due to low expression of ligands required for
activation of NK cells [71]. This was supported by
similar data in undifferentiated mouse ESC [74]. Yet,
Frenzel et al. demonstrated that undifferentiated mouse
ESC are readily targeted by NK cells, presumably due
to the high expression level of intercellular adhesion
molecule 1 (ICAM1) and moderate expression of
retinoic acid early inducible-1 (RAE-1) [81]. These
two molecules interact with the potent NK stimulatory
receptor, NK group 2 member D (NKG2D), which may
account for this recognition. The same research group
has shown that in the course of differentiation, ESC-
derived cardiomyocytes become less susceptible to NK
cell-mediated lysis by downregulating the expression
of ligands required for activation of NK cells [81].
Similar results were obtained in the recent study by
Dressel et al. demonstrating that not only undifferen-
tiated ESC but also iPS cells are highly susceptible to
interleukin-2 activated NK cells [82]. The NK suscep-
tibility was again shown to be determined by NKG2D
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expression, and could be inhibited by the soluble form
of the same molecule. Once more, the differentiation of
ESC-derived and iPS cells resulted in downregulation
of NKG2D expression and, consequently, diminished
NK susceptibility [83]. Additional studies are needed to
conclusively confirm an emerging consensus that while
undifferentiated PSC cells seem to be highly susceptible
to NK lysis, their derivatives, specifically differentiated
cardiomyocytes, lose NK susceptibility. Whether this is
true or not, potential NK susceptibility presents an
obvious obstacle for the development of PSC derivatives
for therapeutic purposes. Yet, the studies cited above
indicate the specific molecule (i.e., NKG2D) that can be
modified to avoid NK-induced rejection of PSC-derived
cardiomyocytes.

The possible role of FAS ligand. The hallmark of
immune-privileged sites is the expression of FasL
molecule (CD95L). It delivers an apoptotic signal to
cells expressing the Fas receptor, i.e. CD95 [84, 85]. As
with NK susceptibility, it is unclear whether or not
FasL expression protects PSC and their derivatives
from rejection. Specifically, the expression of FasL on
ESC and ESC-derived cells has been indicated as the
reason for the resistance of these cells to alloreactive T
cell- and NK cell-mediated killing in several species
[74, 86]. Another recent study has shown that bone
marrow stem cells mediate immunosuppressive activity
by FasL-induced killing of activated lymphocytes [87].
However, neither FasL mRNA nor FasL protein were
detected in human ESC or human EB-derived cells,
despite the fact that these cells were less susceptible to
immune rejection than adult cells [61]. Similar results
were obtained by Grinnemo et al. where FasL. was not
detected in a number of different human ESC lines
[70]. The discrepancies between the above cited studies
[61, 70, 74, 86, 87] in the detection/expression of FasL
on the surface of PSC and their derivatives can be
explained by many factors. These include diverse types
of tested PSC, a variety of methods of cell differenti-
ation, and the stage of differentiated cells. The role of
FasL expression should be better defined to learn how
to manipulate the immunogenicity of PSC derived cells
prior their therapeutical use.

Role of co-stimulatory molecules. The initiation of
a comprehensive immune response is not possible
without the contribution of co-stimulatory molecules.
This, so-called, signal two (in contrast to signal one,
which is an engagement of T cell receptors with the
MHC- peptide complex) is antigen nonspecific and is
provided by the interaction between co-stimulatory
molecules expressed on the membrane of antigen
presenting cell and the T cell. One of the best
characterized co-stimulatory molecules expressed
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by T cells is CD28, which interacts with CD80 (B7-1)
and CD86 (B7-2). Studies have demonstrated that
the inhibition of CD28-mediated co-stimulation most
efficiently induces unresponsiveness of cognate T-
lymphocytes [88, 89]. Many groups studied the
expression levels of CD80 and CD86 on the surface
of ESC and ESC-derived cells, but there is no
consensus regarding the expression level. Specifically,
these molecules have not been detected on the surface
of human ESC and ESC-derived cells [61, 72], and rat
embryonic stem cell-like cells [86]. However, low
levels of CD86 but not CD80 were detected in mouse
ESC and their embryoid bodies by Fairchild’s group
[90]. Furthermore, a subpopulation of CD80 positive
cells comprising 33% of total cells was detected in
mouse ESC cultures, while negligible staining was
found for CD86, and CD28 [91]. When these ESC
were differentiated into embryoid bodies for 12 days,
both co-stimulatory proteins CD80, CD86 and their
appropriate receptors, CD28 and CD154, were detected
[91]. In addition, mouse neural stem/progenitor cells
were found to express the co-stimulatory molecules
CD80 and CD86. These molecules were shown to be
differentially regulated by inflammatory and apoptotic
stimuli [92]. Lastly, an analysis of the mRNA profile in
undifferentiated HS237, HS293, HS306, HS346,
HS362, HS363 and HS368 human ES lines detected
CD80 expression, but not CD86 [70]. These numerous
discrepancies regarding the presence of co-stimulatory
molecules on the surface of ESC and ESC-derived cells
can be explained by the species and cell type differ-
ences, as well as by the stage of differentiation and
assay sensitivity. Additional systematic studies are
needed to clarify the status of co-stimulatory molecules
on the surface of ESC-derived cardiomyocytes.

e) Overall concerns. Several studies have found teratoma
formation following transplantation of undifferentiated
ESC and iPSC, which suggests escape of these cells
from immune surveillance. However, in most studies,
teratomas were formed only when a large dose of cells
was injected [73, 77]. These teratomas were eventually
rejected when observed for longer periods of time [77,
83, 93, 94]. The emerging consensus is that ESC and
ESC-derivatives are sensed by the host immune system,
despite the apparent lack, or very low level, of MHC
I&II and co-stimulatory molecules on their surface.

Due to the limited expression of immunogenic molecules
on PSC-derived grafts, they may not be detected by
traditional protein based assays, such as immunoblotting
or flow cytometry. More sensitive techniques, such as
quantitative real time PCR, provide evidence of mRNA
expression of both heavy and light chain MHC I & 1II in

many ESC lines [95]. However, additional elements are
needed for proper folding of these molecules on the cell
surface [96]. Physiological assays, such as CTL assay,
preferably done in an inflammatory environment, are
needed to fully assert the immunogenicity of ESC deriva-
tives. The importance of physiological assessment was
emphasized by a recent study from Engel’s group [95].
Even though the expression levels of MHC class I
molecules were not detected by flow cytometry, the ESC
and multipotent adult germ-line stem cells loaded with a
specific peptide were lysed in a peptide-dependent manner
by activated cytotoxic T-lymphocytes. In addition, new
methods for CTL measurement have been devised, some of
which include lactate dehydrogenase, caspase-3, granzyme
B, serine esterases, bromodeoxyuridine uptake and fluores-
cence detection, which are more sensitive to conventional
3ICr-release assays. Moreover, carboxyfluorescein diacetate
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succinimidyl ester (CFSE) dilution has been successfully
used to measure T-cell activation and division using flow
cytometry both in vitro and in vivo [97]. All of these
methods should be considered when assessing the immu-
nogenicity of ESC- and iPSC-derived cardiomyocytes.

Strategies to Alter the Immunogenicity of ESC
and ESC-Derived Cardiomyocytes

There are currently two lines of thought as to how immune
rejection of ESC-derived grafts can be decreased. The first
is tolerization of the host toward newly introduced graft
antigens. This topic has been recently and extensively
reviewed [51, 98]. The second is to create a so-called
“universal donor cell” by minimizing the immunogenic
determinants of the ESC-derived graft cells. Several
strategies can be used to create immunologically “invisible”
ESC and their derivates.

One strategy is to overexpress FasL, a hallmark of
immune-privileged sites [85]. FasL induces apoptosis of
T-cells that express Fas receptor (CD95). Data suggests that
the success of this strategy is organ specific. Transgenic
FasL expression in pancreatic and cardiac transplants
resulted in tissue damage or accelerated rejection, while
FasL expression in the liver, kidney, lung, blood vessels
and thyroid led to a diminished immune response [99].
Additional studies are needed to address the potential
pitfalls of FasL overexpression, including the destructive
effects of transplanting FasL-expressing cells into tissues
that express the Fas receptor.

The second strategy is to overexpress Serpin 6 (Serine
protease inhibitor 6). It is an endogenous inhibitor of the
CTL-derived cytotoxic effector molecule—granzyme B.
Utermohlen’s group demonstrated that ESC resist CTL-
mediated lysis via high-level expression of Serpin 6 [100].
Therefore, maintaining or upregulating levels of Serpin 6 in
ESC-derived cardiomyocytes may diminish their suscepti-
bility to rejection.

Finally, the amount of MHC-I molecules could be
severely reduced. MHC-I negative ESC can be derived
from the embryos of (32-microglobulin knockout mice
[101]. Although downregulation of MHC expression in
traditional tissue and organ transplantation is not novel,
rapid development of new techniques such as RNA
interference provides significant improvements and the
flexibility to target a specific gene. Individual heavy and
light chains of MHC class I molecule were successfully
manipulated in many studies [102—-105]. Combining RNA
inhibition technology with the derivation of differentiated
platelets from progenitor cells was recently shown to be
feasible in the generation of MHC 1 deficient cells [106].
Similarly, RNA inhibition technology could also be used to
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achieve this effect in already differentiated ESC-derived
cardiac myocytes (Fig. 3). In the absence of (32-
microglobulin protein, functional MHC-I molecules will
not be formed. This will result in low levels of MHC-I in
ESC and their derivatives, including cardiomyocytes.
Considering that MHC-II expression is absent from ESC-
derived cardiomyocytes, these cells should have minimal
immunogenicity. There will still be elements, such as minor
histocompatibility (mH) antigens or residual MHC expres-
sion that can cause problems [107, 108]. In addition, low
levels of MHC I expression can also activate NK mediated
cell killing. However, as we discussed above, NK lysis can
be addressed by overexpression of NK inhibitory receptors
on the surface of PSC-derived cardiomyocytes. All-in-all,
more studies are needed to address these concerns. Yet, the
creation of a universal donor ESC line that can be
differentiated to a desired cell type and transplanted to
any individual with minimal risk of graft rejection remains
an exciting therapeutic goal.
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