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ABSTRACT The underlying molecular mechanism
of lipid metabolism in peripheral blood lymphocytes
from chicken infected with reticuloendotheliosis virus
(REV) remains poorly understood. Therefore, this
scientific question was explored in vitro and in vivo.
The results indicated that triglyceride content was
significantly reduced, but the free fatty acid content
and carnitine palmitoyltransferase-1 activity were
significantly increased in blood lymphocytes after
REV infection. By RNA sequencing, 97 known
differentially expressed genes (DEG) related to lipid
metabolism or glycometabolism were screened via
Gene Ontology term analysis. On the basis of these 97
DEG, enriched pathways, including the peroxisome
proliferators-activated receptor (PPAR) signaling
pathway, were identified. Among these 97 DEG, some
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representative genes were related to lipolysis and fatty
acid utilization (PPARG, LPL, PLIN2, ACOX1,
ACSL1, FABP3, and FABP4). However, other genes
related to lipid biosynthesis (ACSL3, ACSL6,
DGAT2, LPIN1, and LPIN2) were downregulated.
The quantitative polymerase chain reaction results
confirmed the accuracy of the RNA sequencing data,
and the in vivo outcome supports theses in vitro re-
sults. Our findings revealed that REV regulates fatty
acid and lipid metabolism in peripheral blood lym-
phocytes from chicken. After the lymphocytes were
infected with REV, the exogenous fatty acids were
preferentially used; genes involved in fatty acid utili-
zation were upregulated via the PPAR pathway,
whereas genes involved in lipid and fatty acid
biosynthesis were downregulated.
Key words: lipid and fatty acid metabolism
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INTRODUCTION

Reticuloendotheliosis is an immunosuppressive dis-
ease in chicken caused by lymphocytes or reticuloendo-
thelial cells infected with the reticuloendotheliosis virus
(REV) (Witter et al., 1979), which seriously affects
chicken production. REV infection inhibits the prolifer-
ation and differentiation of T cells (Hrdlickov�a et al.,
1994; Kim et al., 2003) and causes acute reticular cell
or chronic lymphoid and other tissue tumors.
Immune cells require a large amount of energy to

maintain function, and fatty acid metabolism is very
important for T cells. Tumor cells mainly need glucose
via glycolysis (Warburg, 1956). Large consumption of
glucose induces tumor progression by limiting the meta-
bolism of T cells and inhibiting their mammalian target
of rapamycin activity, glycolytic ability, and production
of interferons. Fatty acids are also a major component of
cell membranes, which are necessary for cell proliferation
(Currie et al., 2013). Fatty acid synthesis provides the
cell membrane and other key lipid cell structures needed
for T cell proliferation. The intermediate products of the
glycolytic pathway and tricarboxylic acid cycle meta-
bolism are raw materials for T cells to synthesize fatty
acids; thus, inhibition of glycolysis can lead to the weak-
ening of T cell antitumor ability (Chang et al., 2015;
Gupta et al., 2017).

Abnormal proliferation and metabolism are common
characteristics of all malignant tumor cells (Hanahan
and Weinberg, 2011). Fatty acid metabolism plays an
important role in tumor development. The glycolytic
pathway provides considerably low energy supply;
thus, tumor cells also increase energy supply via fat
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metabolism. During abnormal cell proliferation, the for-
mation of cell membrane and signaling molecules re-
quires greater involvement of fatty acid metabolism
and lipid droplet metabolism (Santos and Schulze,
2012). Fatty acid synthesis and fatty acid oxidation
may constitute the metabolic cycle of fatty acid. Fatty
acid oxidation provides raw material acetyl CoA for
the synthesis of fatty acid in the cytoplasm, suggesting
that fatty acid synthesis in tumor cells and fatty acid
oxidation are interdependent and mutually causal
(Caro et al., 2012).

Fatty acids required for tumor growth and prolifera-
tion are mainly derived from de novo synthesis, while
normal cells tend to absorb exogenous fatty acids owing
to inhibition of DE novo synthesis (Medes et al., 1953;
Santos and Schulze, 2012; Veigel et al., 2015). The fatty
acid synthesis pathway is the intracellular lipid synthesis
necessary for cell growth and proliferation. Fatty acids
can also be condensed with glycolytic glycerol to produce
various combinations of triacylglycerol and phospho-
lipids, which are key components of many cellular struc-
tures (Tannahill et al., 2013). Selective inhibition of
fatty acid synthase, acetyl-CoA carboxylase, and acyl-
CoA synthetase long-chain family member 5 (ACSL5)
genes, which are responsible for the synthesis of endoge-
nous fatty acids, may induce tumor cell apoptosis and
significantly inhibit tumor recurrence and metastasis
(Mashima et al., 2009; Murata et al., 2010; Guseva
et al., 2011; Jump et al., 2011; Lee et al., 2013;
Agostini et al., 2014; Sounni et al., 2014) to effectively
control the occurrence and development of cancer. Inhi-
bition of either key enzymes in fatty acid synthesis or
fatty acid oxidation metabolism can inhibit tumor cell
growth in vitro and in vivo (Menendez and Lupu,
2007; Liang and Mulholland, 2014).

In the present study, we explored the effect of REV
infection on peripheral blood lymphocytes of chicken.
However, the underlying molecular mechanism of lipid
metabolism in peripheral blood lymphocytes from
chicken infected with REV is poorly understood. Based
on the previous data obtained via RNA sequencing
(RNA-seq), the differential expression profile of genes
related to fatty acid and lipid metabolism was analyzed
in chicken lymphocytes infected with REV in vitro and
in controls. The aim was to explore the change of regula-
tion on lipid metabolism in peripheral blood lympho-
cytes with REV infection and provide an insight into
the pathogenesis of REV on chicken blood lymphocytes.
MATERIALS AND METHODS

Animals

Experimental SPF Rugao pure line chickens aged 1 d
were purchased from the Poultry Institute, Chinese
Academy of Agricultural Sciences (Yangzhou, Jiangsu,
China). Birds were raised in an environmentally
controlled room. Feed and water were provided ad libi-
tum during the experiment. Diets were formulated in
accordance with existing recommendations (Nutrient
Requirements of Yellow-feathered Broilers, NY/T 33-
2004, China). All experimental procedures were per-
formed in accordance with the Administration Act on
the Use and Care of Experimental Animals in Jiangsu
Province (#115th Jiangsu Province Government Notice
in 2008). All animal experimental operations were
approved and guided by the Animal Care and Use Com-
mittee of Yangzhou University.
REV Infection Model of Chicken Blood
Lymphocytes In Vitro

First, lymphocytes were derived from chicken blood
according to the protocol of the chicken blood lympho-
cyte separation medium kit. Cells (5 ! 105/ml) were
incubated with RPMI-1640 medium containing 10%
fetal bovine serum in 10-cm dishes for 24 h and then
infected with reticuloendotheliosis virus strain HA1101
(REV, GenBank accession number: KF305089.1) with
105 TCID50/0.1 ml. Cells were harvested after infection
for 36 h for use in subsequent experiments.
REV Infection Model of Chicken and Sample
Collection

For preparing the REV infection model in vivo of
chicken, the aforementioned REV strain was used to
infect chickens (5 ! 105 TCID50/0.1 mL) by intramus-
cular injection. Uninfected control birds received the
same volume of RPMI-1640 medium. Birds were raised
in an environmentally controlled room. Feed and water
were provided ad libitum during the experiment. Two
weeks after REV infection, each group of 10 REV-
infected chickens and control chickens with similar
weights were selected. Blood was collected from the
wing vein to derive blood lymphocytes for the subse-
quent detection by the quantitative polymerase chain re-
action (qPCR).
Analysis of Differentially Expressed Genes
Related to Lipid Metabolism Between Blood
Lymphocytes InfectedWith REV In Vitro and
Controls

RNA-seq data coming from our previous research (Bi
et al., 2018) were used in this study. Blood lymphocytes
with or without REV infection were prepared for RNA-
seq, and genes were considered as differentially expressed
genes (DEG) only when the fold-change in abundance
for all comparisons exceeded 2.0, with a P
value , 0.05. According to the results of gene ontology
(GO), enrichment analysis was performed based on the
DEG using the GOEAST software toolkit, and the
related DEG on lipid metabolism were screened. Based
on the DEG related to lipid metabolism, the enriched
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways were identified by hypergeometric testing us-
ing the R package (P , 0.01, FDR-adjusted) to explore
the regulation of REV on lipid metabolism in blood



Table 1. The specific primers for qPCR in this study.

Gene Sequence Product size (bp) Accession no.

b-actin F:50-GAGAAATTGTGCGTGACATCA-30 152 NM_205518
R:50-CCTGAACCTCTCATTGCCA-30

ACSL1 F:50-CAACAGGGAGACCAAAGGGT-30 245 NM_001012578
R:50-TGCCTGACATCCACAAGTTCA-30

ACSL3 F:50-GGGTTAGCAGTGTTGGGTCA-30 141 XM_015277032
R:50-TGCACCTCCTAGGGTAGCAT-30

ACSL6 F:50-TGAGAAGGAGCTGACGGAGA-30 162 XM_015294077
R:50-TTGGGGTTTCCTGTAGTGCC-30

ACOX1 F:50-GGAGATCGAGGCCTTAGTGA-30 187 NM_001006205
R:50-CCGTCCACGATGAACAAAGC-30

DGAT2 F:50-GGCTACGTTGGCTGGTAACT-30 196 NM_026384
R:50-CTTCAGGGTGACTGCGTTCT-30

FABP3 F:50- CTCCTCCTGGCTGTTCCGATG -30 148 AY648562
R:50- GGGTAATTGGTTGGCTGGCTC -30

FABP4 F:50-GGGGTTTGCTACCAGGAAGATG-30 276 NM_204290
R:50-CATTCCACCAGCAGGTTCCC-30

LPIN1 F:50-CTTGGTGCTGATGGCGTCTA-30 138 XM_015276089
R:50-AGAATGAGTGGCAGACCGTG-30

LPIN2 F:50-TCAGCCCCTTAGCCCTTACT-30 121 NM_001006386
R:50-GAATCCTCCCCACGTCCATT-30

LPL F:50-AGGAGAAGAGGCAGCAATA-30 222 AB016987
R:50-AAAGCCAGCAGCAGATAAG-30

PLIN2 F:50-GCTGGAGCCAAGGATTCTGT-30 142 NM_007408
R:50-TCATGAACTGCACCATCCCC-30

PPARG F:50-TAAAGTCCTTCCCGCTGACCAAA-30 230 NM_001001460
R:50-AAATTCTGTAATCTCCTGCACTGCCTC-30

FOXO1 F:50-GATCCGGGTACCATGGGC-30 162 NM_204328
R:50-GCCCCATGCAGGCTCC-30

INSR F:50-AACGAGCTGTGCTACCTGTC-30 178 XM_001233398
R:50-AGCGCTCGATGAAGATACCG-30

IRS2 F:50-TCCTGGAGGCTATGAAGGCT-30 167 XM_015277882
R:50-CAGGTTGACCAGGTGGTGG-30

IRS4 F:50-AAGCTTAACTCGGAGGTGCC-30 153 XM_003641084
R:50-GGCCACCACAGAATCATCCA-30

PYGB F:50-GAAGGTGGACTGGGACAAGG-30 260 NM_001031034
R:50-GGTGTGCCATGTTGATACGC-30

PYGL F:50-TTCCTCGACTCGATGGCAAC-30 195 NM_204392
R:50-CTCCACACGGCCATAGAAGT-30
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lymphocytes of chicken. Pathways with fewer than 3
known genes were discarded.
Quantitative Polymerase Chain Reaction

qPCR Was performed to detect the expression levels of
DEG related to lipid and fatty acid metabolism. The
primers used are listed in Table 1. b-actin was used as a
housekeeping gene.ComplementaryDNA(cDNA)was ob-
tained using aRevertAidFirst Strand cDNASynthesisKit
(TAKARA, Dalian, China). Each 20 mL of the PCR
mixture contained 10mLof the 2! iQSYBRGreenSuper-
mix (Bio-Rad, Hercules, CA), 50 ng of cDNA, and 0.5 mL
(10 mm) of each primer. The mixtures were incubated in
an ABI7500 Real-Time PCR Detection System (Applied
Biosystems, Carlsbad, CA). A melting curve was con-
structedtoverifythatonlyasinglePCRproductwasampli-
fied. Samples were assayed in triplicate with standard
deviations of the threshold cycle values not exceeding 0.5
on a within-run basis (Liu et al., 2015). Moreover, correla-
tion of gene expression between 2 methods was analyzed.
Determination of Biochemical Indicators

Blood lymphocytes infected with REV in vitro and in
the controls were used, respectively. The lipid in cells
was determined by ether extraction with the
physiological saline as the solvent as previous reported
(Hung et al., 2017). Triglyceride (TG) and free fatty
acid (FFA) contents in lymphocytes were measured us-
ing the commercial kit (Nanjing Jian Cheng Bio-
engineering Institute, Nanjing, China). Mitochondria
in the lymphocytes infected with REV in vitro and in
the controls were first isolated from the cells as described
in previous reports, with modifications (Morash et al.,
2008); the cells were immediately placed in mitochon-
drial isolation buffer on ice, washed, homogenized, and
then spun; the supernatant was discarded; and the mito-
chondrial pellet was resuspended in an appropriate vol-
ume. The carnitine palmitoyltransferase-1 (CPT-1)
activity was determined by using the previous method
(Bieber and Fiol, 1986): The samples were homogenized
in 20 volumes of an enzyme extraction buffer (20 mM
HEPES, 1 mM EDTA, and 0.1% Triton at pH 7.4) using
a glass-on-glass homogenizer, and enzyme assays were
performed on this crude homogenate. The process was
based on the measurement of the initial CoA-SH forma-
tion by 5,50-dithio-bis-(2-nitrobenzoic acid) reaction
from palmitoyl-CoA with L-carnitine at 412 nm.
Statistical Analyses

Statistical differences between groups were evaluated
using the Student’s t-test. P , 0.05 (*) or P , 0.01
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(**) was considered significant. Data were presented as
the mean 6 SEM. Data analyses were performed using
the statistical R package and SPSS (ver. 1.70; SPSS,
Inc., Chicago, IL).

RESULTS

Changes in TG, FFA Contents, and CPT-1
Activity

As shown in Figure 1, the TG content is significantly
(P, 0.05) lower, but the FFA content and CPT-1 activ-
ity are significantly (P , 0.05 or P , 0.01) higher in the
REV-infected blood lymphocytes.
Go andKEGGAnalysis Based onDEG in the
Lymphocytes InfectedWith REV In Vitro and
in the Control Cells

The RNA-seq results obtained using peripheral blood
lymphocytes infected with REV and the control indi-
cated that 2,977 known DEG (infected vs. control)
with consistent fold changes �2.0 were detected
(Supplementary Table 1). GO analysis based on 2,977
DEG showed that the enriched GO terms (P , 0.05)
were screened, including the phospholipid biosynthesis,
negative regulation of the insulin receptor signaling
pathway, glycolytic process, gluconeogenesis, response
to fatty acid, and so on. In accordance with the GO
term analysis, KEGG analysis, and known information
on gene function, 55 known DEG related to lipid meta-
bolism (Supplementary Table 2) and 42 known DEG
related to glycometabolism (Supplementary Table 3)
were screened. After KEGG pathway analysis, 50
enriched pathways (Supplementary Table 4) identified
based on 97 DEG related to lipid metabolism or glyco-
metabolism (including insulin, PPAR, fatty acid meta-
bolism, and the fatty acid degradation signaling
pathway) were enriched. This occurrence affected lipid
metabolism, one of the top 10 pathways (Figure 2).
Figure 1. Changes in triglyceride (TG) content, free fatty acid (FFA)
REV-infected blood lymphocytes. Data are presented as means 6 standard
DEG Related to Lipid Metabolism or
Glycometabolism in the Lymphocytes
Infected With REV In Vitro and in the
Controls

The 55 known DEG related to lipid metabolism are
mainly involved in transcriptional regulation (CEBPB,
CEBPG, and PPARG), lipidolysis (DGKI, DGKK,
LPL, and PLIN2), fatty acid transport (FABP3 and
FABP4), acyl–coA synthetases (ACSBG2, ACSF2,
ACSF3, ACSL1, ACSL3, and ACSL6), acetyl–coA
transferases (ACAA2), acyl–coA oxidases (ACOX1),
acyl–coA dehydrogenases (ACADL and ACADS), elon-
gation of very-long-chain fatty acids (ELOVL1 and
ELOVL7), and lipid synthesis (DGAT2, LPIN1, and
LPIN2), among others. Moreover, some known DEG
related to cholesterol metabolism were found in 55
known DEG related to lipid metabolism, mainly
involved in cholesterol biosynthesis (VLDLR), choles-
terol homeostasis (ABCA3 and LDLRAP1), and choles-
terol catabolism (CYP7B1 and HMGB2).
Among the 55 known DEG related to lipid meta-

bolism, the expression levels of ACADS, ACSBG2,
ACSF2, ACSF3, ACSL1, ACOX1, DGKI, ELOVL7,
FABP3, FABP4, LPL, PLIN2, and PPARG were upre-
gulated; however, the expression levels of ACAA2,
ACADL, ACSL3, ACSL6, CEBPB, CEBPG, DGAT2,
DGKK, ELOVL1, LPIN1, and LPIN2 were downregu-
lated in the lymphocytes infected with REV in vitro rela-
tive to those in the control cells. Similarly, the expression
levels of ABCA3, CYP7B1, and VLDLR were upregu-
lated, and the expression levels of HMGB2 and
LDLRAP1 were downregulated.
Moreover, 42 known DEG related to glycometabolism

were screened. Some genes (such as INSR, IRS2, IRS4,
PYGL, PYGB, FOXO1, and FLOT2) were enriched in
the insulin signaling pathway. Among them, INSR,
IRS2, IRS4, PYGL, PYGB, and FOXO1 exhibited
reduced expression levels for REV infection
(Supplementary Table 3).
content, and carnitine palmitoyltransterase-1 (CPT-1) activity in the
error of the means (SEM); n 5 6. *P , 0.05, **P , 0.01.



Figure 2. Top 10 pathways from the enriched pathways based on the 97 differentially expressed genes (DEG) related to lipid metabolism or
glycometabolism.

Figure 3. mRNA Expression levels of 18 representative genes by determined by quantitative PCR (qPCR) in the lymphocytes infected with retic-
uloendotheliosis virus (REV) in vitro and in the control cells. (A) Twelve genes related to lipid metabolism; (B) mRNA levels of 6 genes related to
glycometabolism. Data are means 6 SEM; n 5 6. *P , 0.05, **P , 0.01.

GENE EXPRESSION WITH REV INFECTION 5

mailto:Image of Figure 2|eps
mailto:Image of Figure 3|tif


BI ET AL.6
Validating the Expression Level of DEG
Related to Lipid Metabolism

To ensure the effectiveness of the results by RNA-seq,
the accuracy of data on the related genes was analyzed in
this study. Using the lymphocytes infected with REV
in vitro and in the controls, the expression levels of 12
representative genes (ACOX1, ACSL1, ACSL3,
ACSL6, DGAT2, LPIN1, LPIN2, PPARG, LPL,
PLIN2, FABP3, and FABP4) related to lipid meta-
bolism were verified by qPCR. The results showed that
the mRNA levels of ACOX1, ACSL1, PPARG, LPL,
PLIN2, FABP3, and FABP4 were significantly
(P , 0.05 or P , 0.01) upregulated, whereas those of
ACSL3, ACSL6, DGAT2, LPIN1, and LPIN2 were
significantly (P , 0.05 or P , 0.01) downregulated in
the lymphocytes infected with REV (Figure 3A). In
addition, the results obtained by qPCR showed that
the mRNA levels of INSR, IRS2, IRS4, PYGL, PYGB,
and FOXO1,which are associated with glycometabolism
were significantly (P , 0.01) downregulated with REV
infection (Figure 3B).

Correlation analysis of gene expression levels in vitro
by RNA-seq and qPCR was performed based on the
selected 12 representative DEG from 55 known DEG
related to lipid metabolism and 6 representative DEG
related to glycometabolism from 42 known DEG. We
further selected 18 DEG with moderate fold changes to
analyze the correlation between the expression data ob-
tained by RNA-seq and qPCR. Figure 4 shows that the
fold changes of these 18 genes by RNA-seq and qPCR are
highly correlated (r 5 0.8892, P , 0.01).

Furthermore, the blood lymphocytes were directly iso-
lated from chickens with or without REV infection
in vivo for 2 wks, and 12 genes related to lipid meta-
bolism were detected by qPCR. The results revealed
the fold-change consistency of these gene expression
levels in vivo and in vitro. The expression levels of
ACSL1, ACOX1, PPARG, LPL, PLIN2, FABP3, and
FABP4 mRNA levels were significantly (P , 0.05 or
P , 0.01) upregulated, and the expression levels of
ACSL3, ACSL6, DGAT2, LPIN1, and LPIN2 were
Figure 4. Correlation analysis of gene expression levels determined
by RNA-seq and qPCR. Based on 13 DEG related to lipid metabolism
or glycometabolism, the analysis indicated a strong correlation on the
fold changes of DEG’s expression levels quantified by RNA-seq and
qPCR. The correlation coefficient (r) was 0.8892 (P , 0.01).
significantly (P , 0.05 or P , 0.01) upregulated in lym-
phocytes with REV infection (Figure 5).
DISCUSSION

Reticuloendotheliosis for REV infection would cause
huge economic losses of poultry production, accompa-
nied by inhibiting the T cells’ proliferation and inducing
the tumorigenesis (Witter et al., 1979; Hrdlickov�a et al.,
1994; Kim et al., 2003). Lymphocytes or reticuloendo-
thelial cells were the target of REV; the immune
response mechanism on REV in vitro in peripheral blood
lymphocytes of chicken had been explored in our previ-
ous study (Bi et al., 2018). Considering the importance
of fatty acid metabolism and abundant glucose con-
sumption in tumor development and immunosuppres-
sion (Hapala et al., 2011; Currie et al., 2013; Gupta
et al., 2017), the gene expression profile on lipid meta-
bolism in chicken peripheral blood lymphocytes with
REV infection and controls was explored to reveal the
change of molecular regulation on lipid metabolism after
REV infected in vitro, which will help to understand the
immune mechanism of lymphocytes on response REV
infection.
First, we focused on the identification of genes on lipid

metabolism or glycometabolism. After GO term anal-
ysis, some related GO terms (phospholipid biosynthesis,
negative regulation of the insulin receptor signaling
pathway, glycolysis, gluconeogenesis, response to fatty
acid, and so on) were enriched, suggesting that lipid
metabolism or glycometabolism was associated with
the effect of REV on blood lymphocytes. Based on the re-
sults of GO terms, we screened 97 known DEG related to
lipid metabolism (55 genes) or glycometabolism (42
genes), which are mainly involved in the insulin,
PPAR, fatty acid metabolism, and fatty acid degrada-
tion signaling pathways.
Among 55 known DEG related to lipid metabolism,

DGAT2, LPIN1, and LPIN2 have been identified as
important regulatory factors in lipid deposition (Chen
et al., 2015; Hung et al., 2017). ACSL3 and ACSL6
can catalyze the production of acyl–coA synthetases
(Van Horn et al., 2005; Valente et al., 2019). Thus, the
downregulation of ACSL3, ACSL6, DGAT2, LPIN1,
and LPIN2 expression levels was consistent with the
decrease in TG content in the lymphocytes infected
with REV in vitro relative to that in the control cells.
Thus, it was considered that REV infection would
inhibit the lipid synthesis in blood lymphocytes of
chicken.
The fatty acids within the cell had 2 sources of extra-

cellular fatty acid absorption and intracellular fatty acid
biosynthesis. Fatty acids required for tumor growth and
proliferation are mainly derived from de novo synthesis,
but normal cells tend to absorb exogenous fatty acids
owing to the inhibition of de novo synthesis (Medes
et al., 1953; Santos and Schulze, 2012; Veigel et al.,
2015). As previously reported, LPL and PLIN2 can
release fatty acids from extracellular lipids (Bildirici
et al., 2018; Wu et al., 2020), FABP3 and FABP4 are



Figure 5. mRNA Levels of 12 representative genes related to lipid metabolism in the lymphocytes from chickens with or without REV infection for
2 wks by using qPCR. Data are presented as means 6 SEM; n 5 10. *P , 0.05, **P , 0.01.
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transported to the intracellular fatty acids (Andersen
et al., 2019), and ACOX1 and ACSL1 are positive for
fatty acid b-oxidation (Zhao et al., 2016; Li et al.,
2019). As the known transcription factor (Oh et al.,
2019), PPARG can regulate the expressions of
ACOX1, ACSL1, LPL, PLIN, FABP3, FABP4, and so
on (Jahansouz et al., 2017; Yan et al., 2017; Smith
et al., 2018). Moreover, the acyl-coA synthetases
ACSBG2, ACSF2, and ACSF3 can regulate the biosyn-
thesis of endogenous fatty acid (Yamasaki et al., 2005;
Ellis et al., 2010; Lopes-Marques et al., 2013). Consid-
ering the expression changes of these genes and the in-
creases in the FFA content and CPT-1 activity in the
lymphocytes infected with REV in vitro relative to those
in the control cells, it was suggested that extracellular
lipolysis could be enhanced for exogenous fatty acids in
the lymphocytes infected with REV. This view of fatty
acid metabolism in the blood lymphocytes with REV
infection is the same as that in normal cells and tissues
but different from that in tumor cells and tissues as pre-
viously reported (Medes et al., 1953; Hapala et al., 2011;
Santos and Schulze, 2012; Veigel et al., 2015).
Meanwhile, 42 known DEG related to glycometabo-

lism were also screened. Some of these genes (such as
INSR, IRS2, IRS4, PYGL, PYGB, and FOXO1)
enriched the insulin signaling pathway, and their expres-
sion levels were lower in the lymphocytes with REV
infection than in the control cells. In accordance with
the functional information of these genes or the insulin
pathway (O-Sullivan et al., 2015), glycometabolism
might be inhibited in the lymphocytes infected with
REV in vitro rather than in the control cells, which
was consistent with the view on the aforementioned
enhancement of fatty acid synthesis.
In the present study, the expression levels of 18 repre-

sentative genes related to lipid metabolism or glycome-
tabolism were verified again by qPCR. The consistency
of data between qPCR and RNA-seq was supported by
a high positive correlation, indicating the validity and
authenticity of the data by RNA-seq. By using the lym-
phocytes infected with REV in vivo, further verification
was performed to evaluate the gene expression levels; 12
genes related to lipid metabolism were detected by
qPCR. The results showed the consistency in fold change
of these gene expression levels in vivo and in vitro. How-
ever, the proposed approach only used RNA-seq to eluci-
date the regulation of lipid and fatty acid metabolism in
blood lymphocytes from chickens infected with REV,
and a complete understanding would require further
studies.

In conclusion, we presented the regulation of fatty
acid and lipid metabolism in peripheral blood lympho-
cytes from chicken by using REV. After the lympho-
cytes were infected with REV, the exogenous fatty
acids were preferentially used; genes involved in fatty
acid utilization were upregulated via the PPAR
pathway, whereas the genes involved in lipid and fatty
acid biosynthesis were downregulated. This novel sug-
gestion of REV regulating lipid and fatty acid meta-
bolism in blood lymphocytes was different from the
metabolism in virus-induced tumor tissues and should
guide further investigation into the pathogenesis of
REV infection in chickens.
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