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Mesenchymal stem cells (MSCs) have made progress in the treatment of

ischemic and inflammatory diseases. Preeclampsia (PE) is characterized by

placenta ischemic and inflammatory injury. Our paper summarized the new

role of MSCs in PE pathology and its potency in PE therapy and analyzed its

current limitations. Intravenously administered MSCs dominantly distributed

in perinatal tissues. There may be additional advantages to using MSCs-

based therapies for reproductive disorders. It will provide new ideas for future

research in this field.
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Introduction

Preeclampsia (PE) is a leading gestational disease that harms both the mother and
the fetus in the short and long term. Mesenchymal stem cells (MSCs) are coordinated
in endometrium decidualization and placental development. MSCs derived from PE
patients show high senescence and apoptosis rate which impair the crosstalk between
MSCs and endothelium, trophoblast, and immune cells in the placenta, thereby
hastening the progression of PE. Preclinical and clinical data indicate that the MSCs-
based therapeutic strategy is promising to be used for ischemic and inflammatory
diseases. PE is characterized by placenta ischemic and inflammatory injury. MSCs
have been recently applied to PE therapy. MSCs and their derivatives can ameliorate
symptoms and maternal-fetal outcomes in PE model mice by boosting cell metabolism,
anti-oxidative stress, stimulating angiogenesis balance, and anti-inflammation. We
have summarized the interactive mechanisms between MSCs and trophoblast under
physiological and hypoxic conditions in this article for the first time. MSCs therapy
may show extra benefits in PE therapy for its dominant distribution in perinatal
tissue. Although intravenous injection of MSCs has shown safety in clinics so far,
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additional research into the safety of their administration during
pregnancy is needed. MSCs-derived exosome (Exo) might be a
viable option for PE therapy.

Mesenchymal stem cells

Synchronized endometrium decidualization, embryo
implantation, and sufficient placentation are necessary for
a successful pregnancy. Although lineage hierarchy and cell
fate in the placenta and decidual are not well defined so far,
it is undeniable that the whole endometrium regeneration,
decidualization, and placentation process are mainly driven
by diverse programmed stem cell activities (trophoblast stem
cells, MSCs, epithelial progenitors, endothelial progenitors,
etc.). Typical MSCs give rise to endothelial and vascular
smooth muscle-like cells (they all participate in forming
the vascular wall) in conditional mediums and form tube-
like structures in Matrigel (Figure 1). MSCs secrete free or
Exo encapsulated small molecules (such as cytokines, RNA
and DNA) participating in various signal transduction to
surrounding cells. It is well-known that MSCs have trophic
effects on surrounding cells by secreting growth factors
like vascular endothelial growth factor (VEGF), hepatocyte
growth factor (HGF), placenta growth factor (PGF), etc.
MSCs also act as atypical immune cells participating in
immune modulation. Until now, it is still difficult for us
to get the in situ dynamic spatio-temporal data about
how the stem cells actually build the endometrium and
placenta. Despite its limitation in representing in situ
conditions, stem cell in vitro differentiation, gene mapping,
transcriptome, and secretome evaluation are still key media for
understanding how MSCs work.

Mesenchymal stem cells in
endometrium regeneration

Mesenchymal stem cells in the endometrium have
similar functions to bone marrow-derived MSCs (bm-
MSCs). Endometrium MSCs (eMSCs) have specific markers
like CD146+, SUSD2+ (sushi domain containing-2), and
PDGFRb+ (platelet-derived growth factor receptor beta), which
characterized their perivascular location and possible pericyte
identity (1). Besides, stromal fibroblast in the endometrium
also has some MSCs properties and multilineage differentiation
potential in vitro (1). Masuda found that eMSCs can
differentiate into endometrial stromal structures following
xenografting under the kidney capsule in the immune-
compromised mice (2). In situ transplantation of MSCs can
rebuild the endometrium of women with thin endometrium
and restore the embryo implantation rate of these patients
(3, 4).

Mesenchymal stem cells in
decidualization

Endometrium experiences a transient decidualization stage
which confers a special micro-environment to accept the
implantation of the conceptus, regulate the invasion of
trophoblast, and induce immune tolerance to fetal antigen
(5–7) (Figure 1). Decidualization disorder is not only related to
embryo implantation failure but also other lagging pregnancy
disorders like miscarriage, PE, intrauterine growth restriction
(IUGR) (8, 9).

Decidual stromal cells (DSCs) are the hallmark cell of
the decidualization process. Recent studies identified that
DSCs precursor cells (preDSCs) and eMSCs similar to each
other phenotypically (CD140b, CD146, and SUSD2) and
functionally (10, 11). Progesterone and cAMP primed the
decidualization process (12). Progesterone (P4) and cAMP
can induce decidualization-like changes in eMSCs in vitro
[eMSCs become bigger and round, lose perivascular cell
markers, and express prolactin (the marker of DSCs)]. Thus,
eMSCs and preDSCs were postulated to be two closely related
cell types or even the identical one type (13). High levels
of endometrium receptivity markers like Integrin (ITG)β1,
ITGβ3, Rac1, Noggin, and Homeobox A11 (HOXA11) (14) and
other genes involved in inflammation, immunomodulation,
hypoxia responses, and cell communication are detected
in decidual MSCs (dMSCs). These changes may furnish
the decidual with a friendly environment for embryo
adhesion, implantation, and placentation (1) (Figure 1).
Upregulated expression of insulin-like growth factor (IGF),
transforming growth factor β (TGFβ), Notch, and Hedgehog
receptor signaling pathway genes suggest high self-renewal
and differentiation of MSCs in decidual (1). Low levels of
receptivity markers were detected in dMSCs from women
with recurrent implantation failure (RIF) (14). Some
functional disorders have also been detected in PE-derived
dMSCs and we have discussed them intensively in the
following paragraphs.

Mesenchymal stem cells in
placentation

Mesenchymal stem cells in perinatal tissue were classified
into dMSCs, amniotic membrane-derived MSCs (AM-MSCs),
umbilical cord MSCs (UC-MSCs), amniotic fluid MSC
(AF-MSC), and chorionic villus-derived MSCs (CV-MSCs)
according to their tissue site in the placenta (Figure 2). In the
early stage of pregnancy, the embryo doubles in size per week
thus both trophoblasts and mesenchyme in the placenta expand
at a rapid rate (15). MSCs from the early trimester placenta
possess the ability to differentiate into tissue from three germ
layers (16). PD-MSCs show high clone formation capacity
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FIGURE 1

In situ and bone marrow recruited MSCs to participate in endometrium/decidual and placenta development by direct differentiating into
endothelial, vascular smooth muscle cells, and stromal cells to form vascular and stromal tissue de novo and promote the proliferation of
preexisting vascular cells and the stromal cells to build the vascular network and stromal in tissue. Progesterone/cAMP induces decidual stromal
cell (DSCs) like changes in MSCs and expresses high levels of receptive markers which may promote blastocyte adhesion, implantation, and fetal
antigen tolerance. MSCs secret multiple cytokines to promote proliferation and invasion of trophoblast (TB) which may foster villous expansion
and maternal spinal arterial remodeling. En, Endometrium; De, Decidual; Ecs, Endothelial cells; VSMCs, Vascular smooth muscle cells; S/FCs,
Stromal/fibroblast cells; V, Vascular; VN, Vascular network; SM, Stromal matrix; STB, Syncytiotrophoblast; EVTB, Extravillous trophoblast.

FIGURE 2

MSCs distribution in the reproductive tract and placenta. eMSCs, Endometrium MSCs; dMSCs, decidual MSCs; AM-MSCs, Amniotic
membrane-derived MSCs; UC-MSCs, Umbilical cord MSCs; AF-MSC, Amniotic fluid MSC; CV-MSCs, Chorionic villus-derived MSCs.

and pro-angiogenesis potency (17). In in vitro co-cultivation
system, PD-MSCs foster the functions of the trophoblast
and educate immune cells in the placenta (mentioned later).
Reshef Ta had discerned a small population of bm-MSCs in
mice placenta, they express progesterone receptor (PR), a
hallmark of decidualized stromal cells (7). Hoxa11 deficiency
leads to pregnancy loss in mice (18). In the bone marrow,

Hoxa11 does not express in hematopoietic cells but bm-MSCs
(19). Transplantation of bone marrow from Hoxa11+/+mice
can favor embryo implantation and rescue pregnancy loss in
Hoxa11 ± mice (7). Maria Diniz-da-Costa characterized a
transient group of highly proliferative bone marrow-derived
MSCs (hPMC) in the implantation window in women’s
endometrium, loss of hPMC was detected in women with
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recurrent pregnancy loss (20). It posits that bm-MSCs recruited
to the decidual and placenta may participate in maintaining a
normal pregnancy.

Preeclampsia

Preeclampsia is a disease that affects approximately
5–7% of pregnancies (21, 22). PE is a multifactorial and
multiorgan syndrome leading to maternal and neonatal
morbidity. PE is characterized by proteinuria and hypertension
and often occurs after 20 weeks of gestation (23). By
now, the etiology and pathogenesis of PE are gradually
elucidated (24). After embryo implantation, ectodermal
cells differentiate into trophoblast cells and invade maternal
uterine tissue, transform maternal uterine blood vessels,
and form a stable maternal-fetal blood supply network,
the placenta. The placenta is a highly vascularized
temporary organ responsible for nutrients and metabolic
waste exchange between mother and fetal through the
placenta blood supply. Superficial trophoblast invasion,
insufficient placenta formation, or other factors affecting
local blood vessels of the placenta will lead to impaired
placental blood perfusion, resulting in placental and fetal
hypoxia/ischemia injury.

Hypoxia/ischemia related mitochondrial dysfunction (25),
endoplasmic reticulum stress (26), autophagy/mitophagy
disorder induce tissue oxidative injury, and finally cell
apoptosis or pyroptosis in the placenta (27). High level
of damage-associated molecular patterns (DAMPs) (28),
pro-inflammatory cytokines, combined with increased
level of anti-angiogenic factors [soluble endoglin, soluble
FMS-like tyrosine kinase-1 (sFlt-1)] (29, 30) release from
the injured placenta into circulation to provoke local and
systematic inflammation and endothelial dysfunction (24,
31, 32). Multiple systems are implicated in PE thus it
manifests as hypertension, proteinuria, retinal edema, liver
and kidney dysfunction, or even life-threatening HELLP
syndrome (33).

Mesenchymal stem cells
dysfunction in preeclampsia

Recent studies have found that MSCs dysfunction is
associated with the pathogenesis of PE. Human UC-
MSCs (hUC-MSCs) obtained from PE women showed
elevated ROS levels, decreased telomerase activity, and
elevated expression of senescence-related genes (DEGs)
(24, 34). JunB and Cyclin-D1 are key cell cycle-related
modulators. JunB/Cyclin D1 imbalance in PE placenta-derived
MSCs (PD-MSCs) can block the G1/S cell cycle transition
resulting in cell senescence and reduced proliferation (35,

36). MSCs dysfunction may impair the self-proliferation
and differentiation of MSCs in the PE placenta and also
its crosstalk with trophoblast cells, immune cells, and
endothelial cells (37–39), which may further speed up
the progression of PE. Although it is not clear whether
decidual/placenta MSCs dysfunction is the cause or the
sequence of PE, MSCs dysfunction may promote the
vicious cycle of PE.

Oxidative stress injury and inflammatory condition
of the placenta may be partly responsible for impaired
MSCs function in PE patients. Though moderate hypoxia
can stimulate MSCs to resist oxidative stress injury,
and promote angiogenesis and its self-renewal (40, 41),
intensive hypoxia can lead to MSCs senescence and
apoptosis (42). In addition, as inflammatory factors excite
the immunomodulatory traits of MSCs, they also trigger the
apoptosis of MSCs (43, 44). A variety of miRNAs and long
non-coding RNAs (LncRNAs) abnormally expressed in PE
patients mediate MSCs dysfunction (45, 46). These RNAs
regulate genes involved in cell proliferation, senescence,
apoptosis, immune/inflammation modulation, and the
angiogenesis process of MSCs (47) (Table 1). Heme
oxygenase 1 (HMOX1) is a multifunctional stress-response
protein and plays anti-oxidant (48–50), anti-apoptosis,
and anti-inflammation roles in tissues (51). HMOX1
remains at a high level throughout gestation, but Basmaeil
Y. found HMOX1 decreased in one subtype of PD-MSCs in PE
patients. H2O2 preconditioning upregulate HMOX1 expression
and restore the function of PD-MSCs, but is nullified by tin
protoporphyrin, an HMOX1 selective inhibitor (37). HMOX1
deficiency may be partly responsible for PD-MSCs dysfunction
in PE patients. TNF-α is a pro-inflammatory cytokine elevated
in PE. TNF-α induces a senescent phenotype of adipose-
derived MSCs (adMSCs) with strong staining for senescence-
associated components (52). Dasatinib, a senolytic agent,
significantly rescues senescence and restores the proliferation
and angiogenesis potency of adMSCs from PE patients (52,
53). Compared to the normal placenta, PE-derived PD-MSCs
secrete higher levels of pro-inflammatory cytokines like IL-
8, IL-6, migration inhibitory factor (MIF), TNF-α (36). PD-
MSCs extracted from PE patients impede VEGF and β-human
Chorionic Gonadotropin (βhCG) expression and stimulate a
high level of sFlt-1 secretion to form a PE like phenotype in
normal term villous explants (36).

It was newly proved that human CV-MSCs (hCV-
MSCs) are abundant with primary cilium (54). They are
responsible for cell signaling, differentiation, motility, and
homing. Abnormal cilium length was detected in PE-derived
hCV-MSCs. It may cripple the differentiation of hCV-MSCs
and its interaction with other cells such as trophoblast and
endothelial cells in the placenta (HUVECs), followed by the
impaired capacity of hCV-MSCs to foster the growth of
human placental organoids and vascular-like network formation

Frontiers in Medicine 04 frontiersin.org

https://doi.org/10.3389/fmed.2022.923334
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-923334 July 23, 2022 Time: 15:50 # 5

Jin et al. 10.3389/fmed.2022.923334

TABLE 1 miRNA and LncRNA involved in MSCs dysfunction in PE.

MSCs kinds miRNA levels
in PE

miRNA
biotargets

Molecules involved miRNA bioeffects on MSCs References

dMSCs miR-136↑ \ VEGF↓ dMSCs: cell proliferation ↓, apoptosis↑;
angiogenesis↓
dMSCs on trophoblasts: invasion ↓;
dMSCs on HUVECs: capillary formation↓.

(147)

hUC-MSCs miR-495↑ Bim-1 \ hUC-MSCs: inhibit cell proliferation↓,
senescence↑, apoptosis↑, migration↓, invasion↓;
hUC-MSCs on trophoblasts: migration↓,
invasion↓;
hUC-MSCs on HUVECs: capillary formation↓.

(78)

hUC-MSCs miR-181a↑ \ CD450↓, IL-6↑, VEGF↑, IDO↑,
CD8+/IFN-γ positive T-cells↑

hUC-MSCs: proliferation↓;
hUC-MSCs on T-cells: proliferation and
activation↓.

(148)

hUC-MSCs-Exo miR-30a↑ TAB3 TAB3↓, cyclin E 2↓,
p-IkBα/IkBα↓, P-JNK/JNK↓,
IL-6↓, IL-8 ↓, COX2 ↓

hUC-MSCs: cell cycle entry rate↓;
hUC-MSCs on Treg: the induction of
CD4+CD25+Foxp3+ Treg cells↓;
hUC-MSCs on Macrophage: TNF-α↑, IL-6↑.

(112)

dMSCs miR-16↑ \ cyclin E1↓
VEGF-A↓

dMSCs: proliferation↓, migration↓, cell-cycle
arrests↑;
dMSCs on trophoblast: migration↓;
dMSCs on HUVECs: capillary formation↓.

(80)

dMSCs miR-494↑ \ CDK6↓, CCND1↓, cyclin D2
(CCND2)↓, cyclin E1↓, VEGF↓

dMSCs: cell cycle at G1/S stage↑;
dMSCs on trophoblast: migration↓;
dMSCs on HUVECs: capillary formation↓.

(79)

hUC-MSC-Exo miR-133b↓ SGK1 SGK1↑, Cyclin D1↓, Ki-67↓,
Bcl-2↓ Bax↑

hUC-MSCs on trophoblast: cell cycle
progression↑, apoptosis↓, proliferation↑,
migration ↑, invasion↑.

(68)

Bm-MSCs lncRNA H19↓ let-7b let-7b↓, FOXO1↑, p-FOXO1↑,
AKT↑, p-AKT↑, VEGF↑, IDO↑,
CD14+/CD206+ macrophages↑

Bm-MSCs on trophoblasts: migration↑,
invasion↑, apoptosis↓

(149)

hUC-MSCs lncRNA MALAT1↓ \ VEGF↑, IDO↓ hUC-MSCs: proliferation↑, apoptosis↓,
migration↑, invasion↑;
hUC-MSCs on trophoblasts: migration↑,
invasion↑;
hUC-MSCs on HUVECs: capillary formation↑;
hUC-MSCs on Macrophage: MSCs induced
macrophage M2 polarization↑.

(114)

hUC-MSC-Exo MiR-101↓ BRD4 BRD4↓, NF-KB↓, CXCL11↓,
IL-6↓, TNF-α↓, p65↓, p-lkBα↑

hUC-MSC: Trophoblasts: migration↑,
proliferation↑.

(149)

hUC-MSC-Exo miRNA-139-5p\ PTEN ↑PTEN↓, c-caspase-3↓,
p-ERK1/2 ↑, MMP-2↑

hUC-MSC on trophoblasts: migration ↑, invasion
↑, apoptosis↓.

(118)

hUC-MSC-Exo miRN- 18b↓ Notch2 Notch2↓, TIM3↓, mTORC1↓ hUC-MSC on trophoblasts: proliferation↑,
migration↑.

(150)

TAB 3, Transforming growth factor-β-activated kinase 1 binding protein 3; SGK1, Serum and glucocorticoid-inducible kinase 1; BRD4, Bromodomain-containing protein 4; PTEN,
Phosphatase and tensin homolog.

of Human Umbilical Vein Endothelial Cells (HUVECs)
in vitro (54).

Mesenchymal stem cells in
preeclampsia therapy

Besides responding to growth signals and participating in
programmed tissue development, MSCs also act as damage
sensors and are recruited to the injury site in response to
stress signals (inflammation, hypoxia, and the like) and
then take part in tissue repair (55). MSCs replenish injured

tissue by both differentiating into tissue cells directly and
secreting trophic cytokines to foster the proliferation of
tissue cells indirectly. Moreover, inflammatory signals can
also stimulate MSCs to an immunosuppressive phenotype
thus curbing inflammation/immune activation in injured
tissue (43). MSCs-mediated angiogenesis help injured
tissue to rebuild the vascular network and recover blood
supply. More interestingly, MSCs express low levels of
HLA Class I and II and high levels of HLA-G (56, 57), as a
consequence, MSCs show relative low immunogenicity after
allotransplantation. Paracrine nutrition, multi-differentiation,
damage sensing, anti-inflammation/immune-modulation,
and low immunogenicity traits have made MSCs
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transplantation a potent therapy in tissue repair and systematic
inflammation/immune disorders (58). Japan and Europe
have approved MSCs products for the clinical treatment
of Crohn’s fistular and graft vs. host diseases (59). Now,
MSCs transplantation becomes a new remedy realized in
PE-like animal models.

Mesenchymal stem cells and
trophoblasts

Superficial trophoblast invasion in
preeclampsia

During placentation, trophoblasts invade the decidual and
form the villous, the base functional unit of the placenta.
Extravillous trophoblast (EVT) migrates out from the villi
to fix to the decidual. Other endovascular EVT invade
the spiral arteries to replace the vascular wall (60) and
enhance the placental blood supply to the fetus (61, 62).
Superficial trophoblast invasion and insufficient placental
vascular remodeling were detected in PE patients (33, 63, 64)
leading to placental hypoxia/ischemia in PE (65, 66).

Mesenchymal stem cells and trophoblast
function

Mesenchymal stem cells derived Exo promote migration,
invasion, and proliferation of trophoblasts cell lines in vitro,
promoting cell cycle entry and inhibiting apoptosis of these
cell lines (67, 68). Both hUC-MSCs and its supernatant
can upregulate PGF and β-hCG levels in the HTR8-S/Vneo
culture medium and promote the proliferation, migration,
and invasion of HTR8-S/Vneo trophoblasts cell line (69).
It was reported that the invasiveness of trophoblast is
partially regulated by paracrine signaling from PD−MSCs
(70). The HGF generated from PD−MSCs promotes
trophoblast invasion by upregulating cAMP and Rap1
(71) (Figure 3).

Hypoxia-inducible factor 1-alpha (HIF1-a) is a
multifunctional transcription factor involved in regulating
energy metabolism, cell survival, invasion, and angiogenesis.
HIF1-α is a regulator of ROS to stimulate cell invasion and
migration by activating (72) the ERK (73), and Rho (74) family
signaling pathways. MMP-2/-9 facilities the invasion process
of trophoblast by breaking down the extracellular matrix. It
has been found that PD-MSCs promote trophoblasts invasion
partially by upregulating HIF1a mRNA and MMP-2/-9 mRNA
(74) (Figure 3).

In addition, miRNAs and LncRNAs in MSCs derived
Exo MSCs are transferred to the trophoblast to regulate
its activities. LncRNA-H19, LncRNA-MALAT, miR-101,
miR-133b, and miR-18b in MSCs-Exo promote trophoblast
proliferation, migration, and invasion in vitro (Table 1). But
these miRNAs and LncRNAs are abnormally expressed in

PD-MSCs derived from PE patients (Table 1). For example,
LncRNA-H19 in MSCs-Evo targets let-7b to up-regulate
FOXO1 to activate the AKT signaling pathway thus increasing
invasion/migration and inhibiting apoptosis of trophoblast
cells (75) (Figure 3). Another LncRNA named metastasis-
associated lung adenocarcinoma transcript 1 (MALAT1) is first
discovered to prophesy lung cancer metastasis (76, 77) now
found to be involved in promoting trophoblast proliferation
and invasion. However, low levels of H19 and MALAT1 were
detected in hUC-MSCs from PE patients (78). miR-16 and
miR-494 inhibit the migration of trophoblast, while they
are both up-regulated in PE-derived MSCs (79, 80). After
treatment with PE-derived PD-MSCs conditioned media (CM),
disturbed JunB/Cyclin D1 balance combined with arrested cell
cycle and elevated production of pro-inflammatory cytokines
were detected in normal term placental villous explants
in vitro (39).

Mesenchymal stem cells regulate autophagy in
the trophoblast

Autophagy is important to maintain homeostasis in
humans. Lysosomes remove degradation molecules, invading
pathogens, and malfunction organelles through autophagy (81).
Under hypoxia, ischemia, starvation, or other stress conditions,
cells get nutrients and energy partially through activating
autophagy (82, 83). Molecules involved in the autophagy
process also participate in cell proliferation, differentiation, and
senescence signaling pathways (84). Autophagy is crucial for
placentation (85). In Syncytio-trophoblasts, autophagy protects
the cell from infection, apoptosis, and inflammation (86, 87).
In hypoxic/ischemic conditions, placental trophoblasts in PE
patients are more reliant on autophagy to survive than cells in
the normal placenta (88).

Modulating autophagy is one of the mechanisms involved
in the therapeutic effects of MSCs in injury tissue repair (89).
MSCs can modulate autophagy in immune cells and facilitate
the resolution of injury-related inflammation (89). In addition,
MSCs-mediated autophagy promotes the survival, proliferation,
and differentiation of tissue stem/progenitor cells to support the
restoration of the functional tissue after injury (89). BM-MSC
activates the autophagic machinery and promotes the survival of
pulmonary cells in ischemia-reperfusion-injury models in vivo
and in vitro (90). This effect was also detected in trophoblast
(91, 92).

JAK2/STAT3 (92) is the putative upstream regulator
activating autophagy while mTOR/Zeste 2 polycomb repressive
complex 2 (EZH2) subunit axes are putative to down-
regulate autophagy in cells (93–95). Under the hypoxic
condition, AD-MSCs-Exo and CV-MSC conditioned medium
boost autophagy, invasion, and survival of trophoblasts by
inhibiting the EZH2/mTOR and activating the JAK2/STAT3
signaling pathway in the trophoblast respectively (91, 92)
(Figure 3). Blocking the JAK2/STAT3 signaling pathway
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FIGURE 3

PD-MSCs support trophoblast invasion and improve survival of trophoblast in hypoxia. PD-MSCs secret multiple cytokines, miRNA, LncRNA, or
other undefined signals to facilitate the invasion of trophoblast. PD-MSCs primed autophagy and mitophagy may help trophoblast survive under
hypoxic conditions. PD-MSCs promote mitochondrial ATP synthesis through glycolysis and oxidative phosphorylation which increase the
energy supply for trophoblast activities and survival under hypoxic conditions. (I) After preconditioned in a hypoxic environment, PD-MSCs
co-cultivation improves PINK1 accumulation in MT, and then PINK1 interacts with PARKIN to induce mitophagy in trophoblast. (II) PD-MSCs
promote Ca2+ commuting between ER and MT through activating IP3R/MCU in the trophoblast. (III) PD-MSCs upregulate HIF-1α in trophoblast
followed by a moderate surge of ROS flux to activate the invasion ability of trophoblast, however, PD-MSCs also promote the expression of
HMOX1/2 in trophoblast to curb excessive oxidative injury induced by ROS. ER, Endoplasmic reticulum; MT, Mitochondrial; EZH2, Zeste 2
polycomb repressive complex 2; IP3R, Inositol 1,4,5-trisphosphate; MCU, Mitochondrial calcium uniporter; VDAC, Voltage-dependent
anion-selective channel; PINK1, Phosphatase and tensin homolog (PTEN)-induced kinase 1; PARKIN, Parkin RBR E3 ubiquitin-protein ligase.

or stimulating the expression of EZH2 or administration
of autophagy inhibitor 3-MA can reduce MSCs cultivation
mediated autophagy, invasion, and survival of trophoblasts
(91, 92).

Mesenchymal stem cells regulate
mitochondrial metabolism

High-energy cells like trophoblast rely intensely on
mitochondrial ATP synthesis to function normally and then
establish a successful pregnancy. PD-MSC cocultivation
improves glycolysis and mitochondrial respiration (74).
It improves cellular ATP synthesis and consumption via
activating the Ca2+ movement between the endoplasmic
reticulum (ER) and mitochondria in invasive trophoblasts
and significantly increases trophoblasts’ invasion ability
(74). Inositol 1,4,5-trisphosphate (IP3R) in ER interacts
with mitochondrial calcium uniporter (MCU) and

voltage-dependent anion-selective channel (VDAC) (an
ion channel in the outer membrane of mitochondria)
and plays a role in calcium transportation (96–98)
(Figure 3). Cellular levels of MCU, VDAC, and IP3R all
increased in trophoblast after PD-MSCs co-cultivation
(74) (Figure 3).

In PE patients, placenta hypoxia/ischemia-induced
oxidative stress results in mitochondria dysfunction and then
cell apoptosis. Several studies showed smaller mitochondria and
increased ROS levels in trophoblast extracted from the placenta
of women with PE, indicating a mitochondrial malfunction in
trophoblast cells (99).

Hypoxia brings on disarrangement of mitochondrial
ultrastructure in mice trophoblasts in vitro. bm-MSCs
intensify mitochondrial membrane potential and increase
ATP production/consumption in trophoblast and support
cell survival against hypoxia (100). PD−MSCs reduce
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mitochondrial damage by downregulating Heat shock
protein 60 (HSP60) (inducted under mitochondrial
stress) and upregulating prohibitin 1 (PHB1) (involved in
stabilizing mitochondria) expression and promoting ATP
generation/consumption by upregulating VDAC in the
mitochondria of trophoblast cells (101).

ROS is generated dynamically in cell metabolism or
under stress conditions, and it is degraded by antioxidant
enzymes to keep ROS at an appropriate level in mitochondria.
ATP production/consumption and oxidative phosphorylation
(OXPHOS) synchronously increase with the invasiveness
of cells (102). Mitochondrial ROS (mtROS) promotes cell
migration via the NADPH oxidase (NOX) signaling pathway
(102). Moreover, mtROS signal promotes structure stability
of MMP9 mRNA to upregulate cell invasiveness (103).
PD-MSCs co-cultivation activates the HIF1-α/ROS/MMPs
stream to promote the invasion of trophoblast through
the ERK signaling pathway (73). While, excessive ROS
accumulation impairs the invasiveness of trophoblasts through
downregulating integrin b3 and FOXO1 (104, 105). HMOX1/2
are genes targeting ROS to manage oxidative stress. After
cocultured with PD-MSCs, HMOX1/2 mRNA and protein
levels were increased in trophoblasts compared to un-
cocultured ones. These data indicate that MSCs play a role
in balancing ROS to facilitate trophoblast invasion while
avoiding a high level of ROS-mediated cell injury (74,
101) (Figure 3).

Mesenchymal stem cells regulate mitophagy in
the trophoblast

Mitochondrial autophagy (mitophagy) is a self-protection
mechanism of cells under stress, which is usually triggered
by damaged mitochondrial. Persistent hypoxia induces
mitophagy to clear the damaged mitochondria and keep
cellular homeostasis (106). Phosphatase and tensin homolog
(PTEN)-induced kinase 1 (PINK1) and Parkin RBR E3
ubiquitin-protein ligase (PARKIN) are two mitophagy
regulators. It was reported that PINK1 modulates mitochondrial
metabolism, and calcium homeostasis (107). PINK1 binds with
PARKIN to recognize the proteins on the outer membrane
of mitochondria and mediate autophagy to remove the
damaged mitochondria. PD-MSCs cocultivation up-regulates
the expression of PINK1 and PARKIN in the trophoblast
and protects trophoblast survival from hypoxia (101,
108) (Figure 3).

In all, MSCs promote the proliferation and function
of trophoblast cells via the paracrine pathway, and these
effects were attenuated in PE-derived MSCs. By facilitating
mitochondrial metabolism, stabilizing the mitochondrial
membrane, and modulating the autophagy and mitophagy
in the trophoblast, MSCs promote the survival of the
trophoblast and maintain its proliferation, migration, and
invasion under hypoxic conditions. MSCs supplementation

may help restore the trophoblast function in the hypoxic
placenta in PE patients.

Mesenchymal stem cells in
inflammation/immune modulation

Local and systematic inflammation along with excessive
immune activation was detected in PE gestation. The
inflammatory process mediates placenta and systematic
vascular endothelial injury and angiogenesis disorder in
PE. Persistent hypoxia-related oxidative stress induces high
amounts of DAMP generated in the placenta, which activate the
innate and adaptive immune systems. Neutrophils, monocytes,
NK cells, DCs are all possible objective cells involved in
inflammation conditions in PE (109).

Mesenchymal stem cells is a stress sensors. Under the
inflammatory condition, MSCs cell-to-cell contact with
macrophages, monocytes, dendritic cells (DCs), natural killer
(NK) cells, T cells, and B cells as well as release paracrine
cytokines like prostanoid E2 (PEG2), indoleamine 2,3-
dioxygenase (IDO), TGF-β1, HGF, and nitric oxide (NO) to
regulate innate and adaptive immunity (43).

Mesenchymal stem cells are involved in regulating the
immune response in decidual. dMSCs upregulate KIR2DL1, and
IL-4, and downregulate the expressions of NKp30 and TNF-
α thus inducing a tolerance phenotype of dNK cells (110).
After co-culture with immune cells isolated from decidual
tissue, UC-MSCs promote the expansion of decidual Treg cells
(dTreg), inhibit effector T cells proliferation, enhance Th2-
type cytokines secretion in T cells, and enhance the potency
of dTreg to suppress Th1 and Th17 mediated inflammation
(111). MSCs secrete TSG-6 or cell-to-cell contact with pro-
inflammatory macrophages through CD200/CD200R axis to
educate macrophages toward an anti-inflammatory phenotype.
The immunomodulatory effects of MSCs are usually activated
in inflammatory conditions (43). MSCs may contribute to the
transition of the early stage Th1 inflammation state in the
maternal-fetal interface to the immune tolerance state in the
second trimester of pregnancy (Figure 4).

miRNA/LncRNA expression disorder in patients with
PE can disturb the immune-modulatory function of MSCs
in the placenta (Table 1). MiR-30a and miR-494 are up-
regulated in hUC-MSCs derived from PE patients. IL-1β-
pretreated hUC-MSCs significantly reduce lipopolysaccharide
(LPS) elicited IL-6 and TNF-a expression in macrophages
and facilitate CD4+CD25+Foxp3+ Treg cells expansion,
but miR-30a transfection impairs these anti-inflammatory
effects of hUC-MSCs through targeting at transforming
growth factor-β-activated kinase 1 binding protein 3 (TAB3)
(112). miR-494 reduces PGE2 secretion in decidual MSCs
(dMSCs) and attenuates PGE2 mediated M2 macrophage
(anti-inflammatory phenotype) polarization in vitro (113).
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FIGURE 4

PD-MSCs interact with decidual-derived immune cells to form immune tolerance phenotype which may participate in maternal-fetal immune
tolerance induction.

MALAT1 induces IDO expression in UC-MSCs and promotes
M2 macrophage polarization in vitro, however, the level of
LncRNA-MALAT1 decreased in UC-MSCs in patients with
severe PE (114).

Mesenchymal stem cells have immune-modulatory and
anti-inflammatory potency thus they have been used in a
variety of inflammation-related diseases, such as graft vs.
host disease and Crohn’s disease (115). MSCs or MSCs-
EVs were also found to have in vivo anti-inflammatory
effects in N-nitro-L-arginine methyl ester (L-NAME) (116),
LPS (117), endotoxin (118), or Th1 cell-induced PE-like
mouse model (119). Intravenous administration of MSCs or
MSCs-Exo reduces inflammatory cytokines such as TNF- α,
IL-1 β, and IL-6 in PE mice on the contrary increasing
IL-10 and PPAR γ levels in it (Table 2). In addition,
experiments also confirmed that MSCs had a direct effect
on LPS-induced trophoblast inflammation in vitro. After LPS
pretreated trophoblast cocultured with AF-MSC, miR-146a-
5p was upregulated in trophoblast cells. miR-146a-5p in AF-
MSCs derived Exo suppress the inflammatory pathway like
NFκB and MAPKs in trophoblast after treatment with LPS
(120). This may be one of the mechanisms by which MSCs
promote the survival of trophoblasts in PE-related placental
inflammatory environments.

Mesenchymal stem cells and oxidative
stress in preeclampsia

As mentioned earlier, MSCs participate in the antioxidant
stress process by promoting trophoblast autophagy, regulating

mitochondrial metabolism, promoting mitochondrial
autophagy, and balancing ROS levels, to induce trophoblast
survival in hypoxic conditions. Aldehyde dehydrogenases
(ALDH) are enzymes detoxifying aldehydes generated under
oxidative stress. Immunohistochemical localization found
that ALDH was co-localized with the FZD-9 (a specific
MSCs marker) in maternal decidua basalis. MSCs derived
from the placenta show high ALDH activity under oxidative
stress (121). ALDH1A1 mRNA level and ALDH enzyme
activity are decreased in PE dMSCs relative to normal
dMSCs. PE-derived dMSCs have an impaired response to
oxidative stress with increased ROS levels in them (122).
Moreover, PD-MSCs secreted paracrine factors trigger
STAT3 activation and superoxide dismutase 2 (SOD2)
production to support endothelial cell survival under
tert-Butyl hydroperoxide induced oxidative injury (123).
dMSCs significantly enhance the activities of glutathione and
thioredoxin reductases in H2O2 preconditioned HUVECs
and restore their function (124). In addition, dMSC-EVs
significantly reduce the level of lipid peroxidation in PE serum
treated HUVECs (125).

Mesenchymal stem cells in
angiogenesis

Mesenchymal stem cells are involved in both vasculogenesis
and angiogenesis processes in vitro. Pluripotent mesenchymal
cells differentiate into multiple cell lineages like endothelial
cells and smooth muscle cells to constitutively form vascular
de novo (defined as vasculogenesis) (126) (Figure 1). PD-MSCs
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TABLE 2 MSCs and its derivants transplantation in PE-like animal models.

MSCs kinds Animals PE-like
modeling

Route of MSCs
administration

Bioeffects of MSCs
administration

References

hUC-MSCs Rat LPS (i.v.) 2× 106 cells per mouse (i.v.)
once

BP↓, TNF-α↓, IL-6↓, IL-12↓, ICAM-1↓,
IL-10↑.

(100)

hdMSCs Mice activated Th1 cells
(i.v.)

100 µl (106 cells/100 ml, i.v.)
on day 11.5 and day 13.5 of
gestation

BP↓, UP↓, fetal weight↑, fetal loss rate↓,
TNF-α↓, placental and glomerular
injury↓.

(73)

hUC-MSCs Rat endotoxin solution
(i.v.)

100 µl (2× 106 cells/100 µl,
i.v.) once

BP↓, UP↓, TNF-α↓, IL-1β↓, IL-10↑ (151)

HMOX1 modified
hPD-MSCs

Rat L-NAME (i.p.) 25 µl (5× 107) injected into
placenta

BP↓, UP↓, placental and fetal weight↑,
placental perfusion↑, placental
angiogenesis balance ↑ (MVD↑, VEGF↑,
and PlGF↑, sFlt-1↓, and sEng ↓).

(137)

hUC-MSC-Exo Rat L-NAME (i.p.) 0.5 ml/rat/day (120 µg/ml,
i.p.), totally 6 days

BP↓, UP↓. (94)

hUC-MSCs-EVs Rat L-NAME (s.c.) Not detailedly mentioned BP↓, UP↓, apoptotic cell rate in
placenta↓.

(150)

hUC-MSC-Exo Rat L-NAME (i.p.) 0.5 ml/rat/day (i.v., low
(120 µg/ml), middle
(140 µg/ml), high
(160 µg/ml) level), totally
6 days

BP↓, UP↓, fetal numbers↑, placental and
fetal weight↑, apoptotic cell rate in
placenta↓, placental angiogenesis balance
↑(MVD↑, VEGF↑, sFlt1↓).

(138)

hUC-MSC-EVs Mice HMOX1 null mice
model

5× 106 cell equivalents (i.v.)
once

BP↓, UP↓, fetal loss rate↓, fetal length↑,
placental and kidney injury↓, placental
spiral artery lumen:wall ratio↑, placental
uNK and myeloid cell numbers↑, CD44,
CD103, and CD64 level in myeloid
populations↑, IL-10 and IFN-γ ↑.

(152)

hPD-MSCs-CM Mice LPS (i.v.) 300 µL (i.v.) once BP↓, UP↓, placental weight↑, sFlt-1↓,
IL-6↓, and TNF-α↓.

(153)

hUC-MSCs-Exo Rat L-NAME (i.p.) 20 µl /rat/day (80 µg/20 µl,
i.p.) on day 16 to day 19 of
gestation

BP↓, UP↓, fetal and placenta weights↑,
TNF-α↓, IL-1β↓, IL-6↓, apoptotic cell rate
in placenta↓.

(116)

MiR-101 modified
hUC-MSC-EVs

Rat L-NAME (i.p.) 140 µg/ mL since the 14th
day of pregnancy for 6 days
(i.p.)

BP↓, 24 h-UP↓, fetus and placental
weights↑, placenta injury↓, CXCL11↓,
IL-6↓, TNF-α↓, p65↓, p-IkBα↑.

(149)

L-NAME, NG-nitro-L-arginine methyl ester; i.p., intraperitoneal injection; i.v, intravenously injection; BP, blood pressure; UP, urine protein.

secrete various angiogenic agents like VEGF, and HGF
which promote preexisting endothelial progenitor cell
migration, promotion, tube formation, and sprouting to
form a stable vessel network and regulate angiogenesis
under the stimulation signals like hypoxia and growth
(127) (defined as angiogenesis) (Figure 1). PD-MSCs
exhibited superior pro-angiogenesis potential compared
to bm-MSCs and UC-MSCs (128). Endometrial and
gestational tissue-derived MSCs have strong therapeutic
angiogenesis in clinical and experimental use (129). However,
the angiogenesis potency of PD-MSCs from PE patients
was compromised.

Angiogenic imbalance is one of the key steps in the
pathogenesis of PE. Antiangiogenic protein sFlt-1 is
elevated in the placenta and serum of PE patients. sFlt-1
binds to VEGF and PGF to inhibit their proangiogenic
process (130). sFlt-1/VEGF imbalance leads to endothelial
dysfunction and angiogenic disorder in patients with PE

(131, 132). The sFlt-1/VEGF ratio has emerged as a key
biochemical indicator for predicting the risk of PE (113).
Treating villous explants from normal placenta with PE-
derived PD-MSCs conditioned media, the villous showed
significantly increased expression of sFlt-1 and decreased
VEGF protein level compared to the normal PD-MSCs
group (36).

PD-MSCs and their derived EVs promote HUVECs tube
formation in vitro. HMOX1 is a stress-response protein with
pro-angiogenic properties (133–135). HMOX1 modified
PD-MSCs show higher efficiency than the unmodified
ones in promoting HUVECs tube formation (136). In the
L-NAME-induced PE-like rat model, HMOX1 modified PD-
MSCs restore VEGF/sFlt-1 balance to form a proangiogenic
state in vivo and increase microvascular density (MVD)
in the placenta (137). Intravenous administration of hUC-
MSCs-Exo could significantly alleviate endothelial nitric
oxide synthase induced placental angiogenesis disorder,
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and increase VEGF level and placental MVD in pregnant
rats (138).

Limitations and prospects

Among the 11 PE animal pieces of research (Table 2),
including 4 MSCs-based studies and 7 MSCs derivates (6 MSCs-
Exo and 1 MSCs-CM) based studies. MiR-101 transfection
and HMOX1 gene-modifying enhance the efficacy of hUC-
MSC-EVs and hPD-MSCs in PE mice therapy, respectively.
MiR-18b-3p, MiRNA-101, and MiR-139-5p are molecules in
MSCs-Exo partially responsible for relieving symptoms and
improving pregnancy outcomes in PE mice. One study found
dose-dependent therapeutic effects of MSC-Exo on PE mice.
How PE modeling, MSCs cell types, and administration routes
influence therapeutic efficacy in PE mice can’t be concluded
from these data, and also, no systematic experimental design
was conducted to evaluate the toxicity of MSCs administration
during pregnancy.

Bone marrow, adipose, and perinatal tissues are important
sources of MSCs. The special phenotype of MSCs from different
tissues affects their safety and efficiency in treatment. In recent
years, more and more attention has been paid to the clinical
application of perinatal tissue-derived MSCs. Many shreds of
evidence support that MSCs from gestational tissue show lower
aging rates and higher proliferation efficiency (56), superior
regenerative and immunosuppressive activities in some clinical
and preclinical studies (56). Meanwhile, placental neonate-
derived MSCs express lower levels of HLA class I and II and
higher levels of HLA-G, which may reduce the risk of immune
rejection in clinical application (56). The unique growth and
immune microenvironment of MSCs in the placenta may
explain these traits in perinatal tissue-derived MSCs. All studies
included in Table 2 have chosen perinatal tissue-derived MSCs
in PE mice therapy.

Efficacy and safety are two major concerns in MSCs
therapy. Scientists are trying to solve the problems of automatic
differentiation, loss of stemness, and senescence of MSCs during
cultivation and administration. MSCs apoptosis and immune
rejection result in a short half-life of MSCs in vivo. Intravenously
administered MSCs going through lung arrest and only a little
of it homing to the injury site. These may explain the limited
therapeutic potency of MSCs in vivo.

Implantation cytokine (IFN-τ) and embryonic
trophectoderm secretomes chemotaxis peripheral blood
MSCs and adult bone marrow progenitors toward the uterus
(7, 139, 140). MSCs are actively recruited to decidual and
contribute to embryo implantation (7, 139, 140) and may
also play role in controlling embryo implantation provoked
inflammation because inflammatory signals activate the anti-
inflammatory and immunomodulatory potencies of MSCs
(141). In vivo, optical data shows that intravenous transferred
Zs-Green+ MSCs were predominantly distributed in the

pregnant uterus than in the virgin uterus in mice and increased
in LPS-induced inflammatory pregnant uterus in a further
step. The advantageous biological distribution of MSCs in
pregnant tissues may encourage MSCs in treating pregnancy
diseases (141). Though MSCs have low immunogenicity,
allogeneic MSCs transplants may also induce immune rejection.
Transplanted MSCs die rapidly then it be cleared by innate
immune cells (142, 143). Whether the immune-privileged
maternal-fetal interface will benefit the survival of allogeneic
MSCs is an interesting perspective to investigate.

Mesenchymal stem cells have shown high safety in clinical
and experimental studies, but there are still several important
issues that need to be treated carefully because safety is the
most basic prerequisite for the application of any kind of
treatment. Although MSCs do not have a direct tumorigenic
effect, MSCs have the risk of promoting tumor growth
in tumor patients (144). Trophoblast cells have biological
characteristics similar to those of tumor cells. Large-scale
experimental observation is needed to determine whether MSCs
will increase the risk of abnormal invasion of trophoblast
or even choriocarcinoma. MSCs treatment is associated with
an increased risk of thrombosis (145). It is open to debate
whether MSCs adoption further raises the risk of thrombosis
under preexisting physiologic hypercoagulation state during
pregnancy, especially in the third trimester of pregnancy.

Exo is naturally generated nanosized vesicles containing
growth factors, cytokines, lipids, regulatory miRNAs, and DNA.
These vesicles comprise natural lipid bilayers embed with an
abundance of adhesive proteins and readily interact and fuse
with cellular membranes (146). Exo is involved in cell-to-cell
signaling communication at short or long distances and can
respond to tissue injury, infection, and disease. MSCs-Exo is
with many traits of MSCs in the treatment of hypoxia-induced
tissue injury (146). MSCs-Exo also has therapeutic effects on PE
as to current mice data, and it shows lower immunogenicity
and higher therapeutic safety, thus MSCs-Exo will be a good
substitute for MSCs. Meanwhile, we may further improve
the therapeutic effect of MSCs and MSCs-Exo through gene
modification strategies.
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