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Abstract
Many papers have proposed forecasting models and some are accurate and others are not. Due to the debatable quality of 
collected data about COVID-19, this study aims to compare univariate time series models with cross-validation and dif-
ferent forecast periods to propose the best one. We used the data titled “Coronavirus Pandemic (COVID-19)” from “‘Our 
World in Data” about cases for the period of 31 December 2019 to 21 November 2020. The Mean Absolute Percentage 
Error (MAPE) is computed per model to make the choice of the best fit. Among the univariate models, Error Trend Season 
(ETS), Exponential smoothing with multiplicative error-trend, and ARIMA; we got that the best one is ETS with additive 
error-trend and no season. The findings revealed that with the ETS model, we need at least 100 days to have good forecasts 
with a MAPE threshold of 5%.
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Introduction

Originally from China in Wuhan city, COVID-19 has been 
declared as a world pandemic by WHO Emergency Commit-
tee on January 30th, 2020 [1]. Since that day, we are observ-
ing rapid increases [2–4] of cases that made authorities give 
daily government communication to update the information 
of the day before. In this context, one of the main issues is 
to know the future number of cases [5] with the least pos-
sible bias [6], to create adaptative tools [7], to determine the 
reproduction number [8–12], to check Recovery Time Period 

[13], or other parameters to define appropriate policies to 
control COVID-19 spread. Thus, it is easy to notice that 
numerous papers [14–18] have proposed different forecast 
models of COVID-19 using univariate or multivariate time 
series modeling.

The multivariate time series models have advantages, 
because they can reveal the influence of many parameters 
such as face mask wearing, social distancing, hand wash-
ing, airport screening, quarantine, and treatment protocols 
on COVID-19 spread. However, as they require numer-
ous parameters, the goodness of fit is affected when any 
parameter gets to be not correct. Besides, the quality of data 
related to COVID-19 is debatable, because many countries 
were obliged to subtract some cases that they reported to 
the World Health Organization (WHO) [19, 20]. Actually, 
those issues happened, because it has been noticed that 
some cases were reported without any respect of the official 
WHO technical guidance for laboratory testing [21]. Con-
sequently, in data sets, we can get negative numbers and it 
is an indicator of not high-quality data sets. Recently, due to 
data quality doubts, the authors were obliged to increase 20 
times the cases, 40 times the recovered patients to approach 
real figures [15]. Multivariate time series models also face 
data availability issues, because during confinement, the 
data collected were not exhaustive. Moreover, most of the 
compartmental models in epidemiology depend on estimated 
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inputs such as case fatality and case recovery that are very 
sensitive to data quality. In the paper [15], it is easy to notice 
that the change in data due to uncertainty quite influenced 
the estimates of the Susceptible-Infectious-Recovered-Dead 
models. This paper [22] proposed state-of-the-art predic-
tion models and how to design complex models using also 
unexploited data. A recent review [23] also compared many 
models and came to a conclusion about the fact that artifi-
cial intelligence (AI) and deep learning [24] technics are 
advised. Additionally, in these studies [25, 26], the authors 
used Supervised Machine Learning Models including logis-
tic regression, naive Bayes learning algorithms, and deci-
sion tree. Finally, the latter is found to be the best when we 
consider the accuracy. However, considering the fact that 
the more complex model, the more the need of data, and 
the lesser the quality of COVID-19 data sets in the world; 
we think that a good univariate model that can give better 
results will help to handle the bias in forecasts.

Concerning univariate time series, there are many works 
that use different methods. We have the computation of fore-
casts with an exponential smoothing family [16] that has 
appreciable forecast accuracy and can fit short series. How-
ever, the choice of multiplicative trend and error in the con-
text of time series cross-validation is much debatable. Even 
the multiplicative trend model takes into account the asym-
metric risk, we think that a robust model should take into 
account an additive trend, because short-term multiplicative 
trend is to be additive in the long run. In that same paper, 
the author used 90% prediction interval and we think that it 
can be improved. Another recent study [17] has compared 
time series models in predicting COVID-19 cases, but it was 
not exhaustive, because it just focused on Auto Regressive 
models (1–3) using Maximum Likelihood, Conditional Least 
Squares, and Unconditional Least Squares. Additionally, 
there is just a work in Nepal [27] about COVID-19 forecasts 
that uses ETS models, Auto Regressive Integrated Moving 
Average (ARIMA), and Susceptible Infectious-Recovered 
(SIR) model for the period of 23/01/2020-30/04/2020. They 
found finally that ARIMA is the best among the latter mod-
els. Even this work [18] also proposed an ARIMA; however, 
those last two studies did not use time series cross-validation 
to check how robust and stable ARIMA models are in the 
current context of COVID-19 data.

Taking into account the aforementioned issues about data 
quality related to COVID-19 cases, we hypothesized the use 
of univariate time series forecast, because it clearly spares us 
from great biased estimates. In addition, this work focuses 
on the world data and it means the more countries, the more 
bias in data collect. Using time series cross-validation with 
ETS models gives a variety of 30 models times the number 
of cross-validation, and it is an adaptive method of param-
eter estimation which is quite appropriate to the COVID-19 
situation as a fast-changing one. ETS models do not require 

stationarity and it varies the components to check the best 
model. Consequently, we hypothesized that ETS models 
might be the right choice to work with the world data. To test 
that assumption with updated data, this work compared sev-
eral univariate time series models (with a cross-validation 
process) and proposed appropriate statistical models to pre-
dict the number of cases in the world. This paper will help 
international institutions to have a good model to forecast 
COVID-19 cases and to take sustainable decisions about the 
world economy and response to the pandemic. It can also be 
used in AI algorithms as this work [28] has proposed it. The 
following sections are organized in the following structure: 
the second section regroups the data description and meth-
odology, and the third section contains the modeling and 
forecasting results, discussion, and conclusion.

Materials and Methods

Materials

As introduced, we focused on COVID-19 total cases from 
2019-12-31 to 2020-11-21. They are time series, and we 
collected daily cumulated total cases in the dataset titled 
“Coronavirus Pandemic (COVID-19)” from “Our World in 
Data” [29]. The variable of interest is the count of labo-
ratory-confirmed infections and they are indexed by their 
respective date. The data were accessed on 2020-11-21 and 
we will make the dataset available if requested. The accuracy 
and reliability of those numbers are linked to daily verifica-
tion and change. Actually, in the context of this work, we 
divided the period and considered the first 30 days and after, 
iteratively, added 14 days to the last period to compare the 
real and predicted values.

Methods

The classical univariate models in this work are ARIMA, 
exponential smoothing model with multiplicative error and 
multiplicative trend components (ESM), and ETS. Each 
of them will be computed using cross-validation methods, 
and finally, we will select the most appropriate in terms of 
forecast errors using the mean absolute percentage error 
(MAPE).

ARIMA Modeling

ARIMA or autoregressive integrated moving average is a form 
of statistical modeling that uses time series data to either pre-
dict a future trend or to output latent information to understand 
how a variable of interest changes within a period. It has three 
parameters and the first one p is about the order of the Autore-
gressive (AR) model, the second one d concerns the level of 
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differentiating, and the third one q shows the Moving average 
order. The functional is Eq. (1):

With �t ∼ white noise(0, �2
�
) , Byt = yt−1 and Bp = yt−p , 

▽d = (1 − B)d is the differentiation parameter of order d 
( d ≥ 0 ), (�1,… , �p) , (�1,… , �q) are the coefficients and �2

�
 

the residual variance to be estimated.

ETS Modeling

ETS model is set to capture different components (Error, 
Trend, Season) of a time series. Indeed, it makes short-term 
forecasts, which is appropriate in the case of strong dynamics. 
This model focuses on trend, seasonal components of different 
traits [30]. The possible combinations of the trend and season 
give the 15 following models in Table 1. Consequently, 30 
different models are possible (15 with additive errors and 15 
with multiplicative ones). In other words, in combination with 
the error that can be Additive or Multiplicative, the models 
in the Table 1 can be extended to 30 models in total. We can 
recall that the paper [16] used ETS (M, M, N) that is already 
included in Table 1. For instance, ETS (A, A, N) is defined by:

Besides, with h, a step ahead forecast parameter, the particu-
lar case related to damped trend has as a recurrence form 
[31] the following equations:

where lt and bt are, respectively, the level and trend com-
ponents at time t, �t the error term with the smoothing 
parameter 0 < 𝛼 < 1 for level, and 0 < 𝛽 < 1 for trend, and 

(1)
(1 − �1B −⋯ − �pB

p)▽dyt =(1 − �1B −⋯ − �qB
q) �t.

(2)

yt = lt−1 + bt−1 + �t

lt = lt−1 + bt−1 + � �t

bt = bt−1 + � �t.

(3)

ŷt+h|t = lt + (𝜙 + 𝜙2 +⋯ + 𝜙h)bt

lt = 𝛼yt + (1 − 𝛼)(lt−1 + 𝜙 bt−1)

bt = 𝛽(lt − lt−1) + (1 − 𝛽)𝜙 bt−1,

� the damping parameter. The initial coefficients l0 and b0 
and the latter smoothing parameters are obtained with the 
maximum-likelihood estimate (MLE) method [32]. 

Mean Absolute Percentage Error

The mean absolute percentage error (MAPE) is also called 
mean absolute percentage deviation (MAPD), and it is a sta-
tistic that quantifies whether a forecast is accurate or not. To 
make that estimate easier of interpretation, MAPE is set as a 
percentage of the errors and it is the formula (4):

such that n is the number of predicted values, yt is the actual 
value at time t, and ŷt is the forecast. Actually, in the context 
of this work, the retained threshold of MAPE is 5%. MAPE 
will be used to check the best model in terms of forecast in 
our study.

Analysis Process

We used R software [33] (version: 4.0.0) for the whole work 
and the library “forecast” with the function ets() for ETS 
model, auto.arima for ARIMA model, and ets() with the 
parameters (model =“MMN”, damped = False) for the expo-
nential smoothing model with multiplicative trend and error. 
The models use the algorithm of Hyndman and Khandakar 
[32] that combines unit root tests, minimisation of the Cor-
rected Akaike Information Criterion (AICc), and Maximum 
Likelihood Estimate (MLE) to propose the best model. 
Besides, we have two main points in the analysis process 
before stepping in the final forecast. The first one is that we 
will select the appropriate model among the ETS, ARIMA, 
and Exponential smoothing (Multiplicative trend and error). 
Actually, for each training data set, we computed three training 
data sets (TDS) (1 week, 2 weeks, and 3 weeks) of forecasts to 
check after what level of short-term prediction is good enough 
to forecast COVID-19 cumulative cases. Every testing data 
set was increased of 2 weeks until the end of the data. It helps 
to check how many days we can trust the forecast values. To 
select the most appropriate model, we checked each model 
assumption and used the MAPE. The second point is, once the 
final model is selected, we used also the MAPE to propose the 
smallest data training and the period of forecasts to consider 
for good prediction. Generally, the analysis process in the work 
is in Fig. 1.

(4)MAPE =
1

n

n∑

t=1

||||
yt − ŷt

yt

||||
× 100;

Table 1  Different models in ETS modeling

N none, A additive, M multiplicative, D damped, AD additive 
damped, MD multiplicative damped

Season

Trend N A M
N N, N N,A N, M
A A, N A, A A, M
AD AD, N AD, A AD, M
M M, N M, A M, M
MD MD, N MD, A MD, M
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Results, discussion, and conclusion

Results

In the world, the number of new cases of COVID-19 is 
counted and put at the disposal of everyone by the WHO. 
Actually, the cumulative number of daily confirmed cases 
of COVID-19 on a given day is the sum of the new cases 
on that day and the total number of cases on the eve. It is 
illustrated in Fig. 2.

When we look at Fig. 2, we can understand that there 
was a flat part of the graph until around the mid of March 
and after, we noticed a rapid increase in the number of 
cases. To forecast this time series, we need a model with 
the least bias in terms of MAPE. Thus, we used different 
training and test data sets to check the stochastic assump-
tions and accuracy of the three models to forecast COVID-
19 cumulative cases. The results are set in the Tables 2, 3, 
4, and 5. Actually, in Tables 2, 3, and 4, values in bold are 
for MAPE ≤ 0.05 and values in italic  mean a problem of 
residuals autocorrelation (p-value < 0.05). Additionally, 
in Table 5, values in bold  mean  smallest MAPEs level for 
1, 2 and, 3 weeks forecasts respectively. We also have in 
the Tables 2, 3, and 4 different MAPEs and the verification 
of each model assumptions. To choose the best model, we 
proceeded as follows:

• Point 1: The best fitting model can be selected with the 
MAPE in Tables 2, 3, and 4. We have three different 
periods of forecast, and for each one, we output descrip-
tive statistics in the Table 5 to select the models with the 
smallest MAPE. In terms of range, whatever the period, 
we can notice that ETS models have the smallest maxima 
and mean of MAPEs. To sum up, the best model, consid-
ering the fitting, is ETS.

• Point 2 : About the assumptions for time series, residual 
autocorrelation p value > 0.05 is essential. In Tables 2, 3, 
and 4, we can count 6 autocorrelated issues for ARIMA 
model, 2 for ETS, and 17 for MMN. The residuals do not 
follow a normal distribution (p value ≃ 0.00), and this 
was predictable, because the dependent variable is the 
cumulated variable. Besides, we got stationary residuals 
with higher TDS and this result is also understandable, 
because with great sample size, the variability becomes 
stationary for the models. MMN and ARIMA models 
have most of their residuals that are homoscedastic (p 
value > 0.05), but ETS does not. Actually, the presence 
of heteroscedasticity in ETS is a point that shows the sig-
nificant change among the daily numbers of cases about 
the pandemic. In the context of the current work, it is not 
important as the autocorrelation of residuals.

Table 2  MAPE of ARIMA with 
different training data sets

TDS training dataset, AC autocorrelation, Norm normality, Hetero heteroscedasticity, Stat stationarity, val-
ues in bold mean MAPE ≤ 0.05and values in italic mean a problem of residuals autocorrelation (p-value < 
0.05)

TDS 1 week MAPE 2 week MAPE 3 week MAPE ARIMA AC Norm Hetero Stat

1–30 17.76 28.82 36.70 020 0.35 0.00 0.09 0.99
1–44 22.24 17.87 13.77 020 0.65 0.00 0.21 0.71
1–58 2.67 8.40 18.36 021 0.93 0.00 0.33 0.02
1–72 13.96 30.13 43.43 021 0.99 0.00 0.67 0.06
1–86 9.74 16.58 21.32 020 0.07 0.00 0.25 0.26
1–100 1.05 0.97 0.96 020 0.29 0.00 0.04 0.01
1–114 1.40 2.00 2.27 020 0.92 0.00 0.03 0.01
1–128 0.78 1.37 2.30 021 0.92 0.00 0.02 0.01
1–142 0.68 1.40 2.46 121 0.97 0.00 0.05 0.01
1–156 0.45 0.61 0.56 422 0.42 0.00 0.05 0.01
1–170 0.84 1.76 3.01 222 0.22 0.00 0.14 0.01
1–184 0.19 0.58 1.23 222 0.34 0.00 0.04 0.01
1–198 0.39 1.06 1.76 520 0.06 0.00 0.03 0.01
1–212 0.61 0.80 1.01 020 0.53 0.00 0.00 0.01
1–226 0.13 0.35 0.50 222 0.00 0.00 0.16 0.01
1–240 0.09 0.21 0.36 222 0.00 0.00 0.11 0.01
1–254 0.37 0.78 1.19 222 0.00 0.00 0.10 0.01
1–268 0.06 0.04 0.20 222 0.00 0.00 0.04 0.01
1–282 0.18 0.50 1.16 222 0.00 0.00 0.01 0.01
1–296 0.39 0.98 1.76 222 0.00 0.00 0.01 0.01
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The rule of thumb is to keep the best model and consider-
ing the Point 1, Point 2, and the results in Table 5, we think 
that using ETS (A,A,N) will help to forecast with the least 
bias (realistic forecasts). Now, as we have chosen the best 
model, we can now visualize how it works and how to use 
it for a good forecast. Let us note that in Fig. 3; we should 
normally have 20 images (the number of TDS), but in 
terms of commodities (numerous images), we decided to 
show the beginning A (from 2020-01-21 to 2020-02-19), 
B (from 2020-01-21 to 2020-05-13), C (from 2020-01-21 

to 2020-08-19), and the last (from 2020-01-21 to 2020-
11-11). It helps to visualize the good fitting of our best 
model. When we look at the Fig. 3, first, we cannot trust 

Table 3  MAPE of the best ETS 
with different training data sets

TDS training dataset, AC autocorrelation, Norm normality, Hetero heteroscedasticity, Stat stationarity, val-
ues in bold mean MAPE ≤ 0.05and values in italic mean a problem of residuals autocorrelation (p-value < 

0.05)

TDS 1 week MAPE 2 week MAPE 3 week MAPE ETS AC Norm Hetero Stat

1–30 13.99 24.68 32.62 M,A,N 0.17 0.00 0.62 0.10
1–44 21.90 17.36 13.13 M,A,N 0.16 0.00 0.77 0.10
1–58 3.23 9.30 19.41 M,A,N 0.15 0.00 0.50 0.03
1–72 12.30 28.07 41.41 M,A,N 0.14 0.00 0.36 0.04
1–86 9.12 15.75 20.37 M,A,N 0.09 0.00 0.28 0.01
1–100 1.24 1.24 1.29 M,A,N 0.10 0.00 0.23 0.01
1–114 1.40 2.00 2.27 A,A,N 0.92 0.00 0.03 0.01
1–128 0.78 1.37 2.30 A,A,N 0.90 0.00 0.02 0.01
1–142 0.63 1.29 2.30 A,A,N 0.82 0.00 0.03 0.01
1–156 0.75 1.44 2.51 A,A,N 0.95 0.00 0.02 0.01
1–170 0.71 1.48 2.60 A,A,N 0.93 0.00 0.01 0.01
1–184 0.43 0.96 1.72 A,A,N 0.51 0.00 0.00 0.01
1–198 0.39 0.94 1.56 A,A,N 0.97 0.00 0.00 0.01
1–212 0.61 0.80 1.01 A,A,N 0.53 0.00 0.00 0.01
1–226 0.21 0.17 0.17 A,A,N 0.07 0.00 0.00 0.01
1–240 0.23 0.36 0.52 A,A,N 0.06 0.00 0.00 0.01
1–254 0.61 1.10 1.58 A,A,N 0.03 0.00 0.00 0.01
1–268 0.24 0.38 0.68 A,A,N 0.05 0.00 0.00 0.01
1–282 0.18 0.45 1.05 A,A,N 0.05 0.00 0.00 0.01
1–296 0.62 1.29 2.16 A,A,N 0.01 0.00 0.00 0.01

Fig. 1  Study analysis process

Fig. 2  Cumulative number of daily confirmed cases of COVID-19
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Table 4  MAPE of ESM with 
different training data sets

 TDS training dataset, AC autocorrelation, Norm normality, Hetero heteroscedasticity, Stat 
stationarity,values in bold mean MAPE ≤ 0.05and values in italic mean a problem of residuals autocorrela-
tion (p-value < 0.05)

TDS 1 week MAPE 2 week MAPE 3 week MAPE MMN AC Norm Hetero Stat

1–30 61.09 292.57 1241.40 M,M,N 0.05 0.00 0.64 0.07
1–44 20.02 13.31 16.42 M,M,N 0.05 0.00 0.74 0.01
1–58 3.18 9.05 18.95 M,M,N 0.05 0.00 0.48 0.01
1–72 10.66 24.56 36.58 M,M,N 0.01 0.00 0.33 0.01
1–86 2.14 10.29 29.51 M,M,N 0.01 0.00 0.26 0.01
1–100 2.12 8.12 17.22 M,M,N 0.00 0.00 0.21 0.01
1–114 2.35 5.47 9.54 M,M,N 0.00 0.00 0.18 0.01
1–128 0.38 0.58 1.15 M,M,N 0.00 0.00 0.16 0.01
1–142 0.31 0.36 0.62 M,M,N 0.00 0.00 0.15 0.01
1–156 0.59 0.69 0.82 M,M,N 0.00 0.00 0.14 0.01
1–170 0.61 0.81 1.04 M,M,N 0.00 0.00 0.13 0.01
1–184 0.24 0.39 0.76 M,M,N 0.00 0.00 0.12 0.01
1–198 0.24 0.27 0.39 M,M,N 0.00 0.00 0.11 0.01
1–212 0.55 0.44 0.61 M,M,N 0.00 0.00 0.11 0.01
1–226 0.27 0.47 0.96 M,M,N 0.00 0.00 0.10 0.01
1–240 0.33 0.34 0.26 M,M,N 0.00 0.00 0.10 0.01
1–254 0.68 1.10 1.40 M,M,N 0.00 0.00 0.10 0.01
1–268 0.21 0.19 0.23 M,M,N 0.00 0.00 0.09 0.01
1–282 0.27 0.45 0.87 M,M,N 0.00 0.00 0.10 0.01
1–296 0.60 1.11 1.69 M,M,N 0.00 0.00 0.09 0.01

Fig. 3  Different forecasts of the kept ETS (A,A,N) model using each training data set
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the forecasts in Fig A, because the real data (black line) 
are in a very large confidence interval. The uncertainty 
bounds are very big due to the small sample size.

 
Considering the MAPE smaller than 5% in Table 3, we 

can focus on TDS having at least 100 days with 1 or 2 or 3 
weeks as periods of forecast (PF). In the case of this paper, 
we have 327 days in total and the aforementioned checking 
makes us compute the final model estimates and the other 
models with 2 week forecasts. We finally kept this, because 
in many works, the latency period is around 14 days [34–36] 
and the cross-validation rate was also 2 weeks. Although 
we recommend to keep 2 weeks for a forecast and repeat it 
if needed, people can still consider 3 weeks, because it also 
gave good results after 100 days of TDS. The model outputs 
are in Fig. 4. First, ESM has very big uncertainty bounds 
and it explains how bad were its MAPEs in the computation 
of the cross-validation. Second, we have ARIMA and ETS 
that got similar graphs and it was also noticeable in Table 5. 
However, ARIMA was not better than ETS, because it had 
higher MAPE. The actual and fitted values are quite simi-
lar, and this is why, it is even difficult to get the difference 
between them in Fig. 4.

Discussion

Daily decisions on COVID-19 have been influencing the 
spread of the pandemic and an adapted forecasting tool is 
required for better policy. Many studies have been proposing 
multi- or univariate models to forecast COVID-19 cases, but 
most of them failed to predict well the upcoming situations 
[37]. This study checked among the propositions, the one 
that is the most appropriate concerning daily realities about 
COVID-19 in the world. The quality of collected data about 

Fig. 4  Best model ETS (A,A,N) actual, fitted, and predicted values

Table 5  Mimima, means, and maxima of the MAPEs

Values in bold mean smallest MAPEs level for 1, 2 and, 3 weeks fore-
casts respectively 

Model Min Mean Max Error

ARIMA 0.06 3.70 22.24 1 week
ETS 0.18 3.48 21.90 1 week
MMN 0.21 5.34 61.09 1 week
ARIMA 0.04 5.76 30.13 2 weeks
ETS 0.17 5.52 28.07 2 weeks
MMN 0.19 18.53 292.57 2 weeks
ARIMA 0.20 7.72 43.43 3 weeks
ETS 0.17 7.53 41.41 3 weeks
MMN 0.23 69.02 1241.40 3 weeks
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the pandemic is still debatable for some countries [15, 19, 
20]; and they are not also exhaustive due to confinement 
during outbreak periods. To reduce at most as possible the 
bias in our model, we proposed to avoid complex models 
due to the issues with current data and focused on univariate 
time series modeling. Considering the principle of “garbage-
in, garbage-out”, using one time series analysis and having 
good forecasts is advisable.

Although we hypothesized that ETS model might be well 
adapted because of its capacity to vary in 30 different models 
and as much adaptive as possible in terms of COVID-19 
evolution, we compared the classical univariate time series 
models. Among them, the best one is ETS model, because it 
respects the residuals autocorrelation assumption and has the 
smallest MAPE in Table 5. The study in Nepal [27] used 99 
days and found ARIMA (MAPE 4.18%) and ETS (M,A,N) 
(MAPE 4.55%) for 2 week forecast. In our case, the MAPE 
(with 100 days) of ARIMA is 0.97 and ETS (A,A,N) is 1.24, 
and we can notice that the trend estimate for Nepal is also 
additive and the difference is about the error that is multi-
plicative and it can be related to the fact that we are working 
with the world data. This current study and the one in Nepal 
are similar in terms of trend type, while the study [16] with 
at most 50 days of training data set proposed a multiplica-
tive trend. In Table 3, it is easy to notice that we only got an 
additive trend and this was our hypothesis. In addition, we 
used a cross-validation technique, and in their work [27], 
they did not. This point might explain their finding, because 
our process is more robust than theirs.

Actually, short-term forecasts (at most 2 weeks) are 
globally advised to maintain short-term forecasts, because 
their MAPEs are smaller than 5%. Even in the papers about 
COVID-19 forecast [16, 27, 38, 39], the authors proposed 
short-term (10, 14) days. Although we advise to keep 2 
weeks for a forecast and repeat it if needed, people can still 
consider 3 weeks, because it also gave good results after 100 
days of TDS. Many works [40–42] are interested in long 
forecasts such as the end period of the peak of COVID-19. 
The best forecasts in our model are from the training data 
having at least 100 days and it is understandable when you 
look at the Fig. 3. Actually, it has two parts, one that is flat 
and another one that shows a high increase of cases. Espe-
cially for every TDS (1–72), there are high MAPEs due to 
the fact that the train data set is at the transition part of the 
change between the flat part and the high increase part. The 
forecast model should take into account both parts, because 
from 23/03/2020, new cases started duplicating (becom-
ing additive with time) compared to the past number of 
cases (26,069 new cases on 21/03/2020 [43] and 40788 on 
23/03/2020 [43]) and even until 13/05/2020 to have good 
forecasts (small MAPEs).

When we assume that future decisions will follow the past 
structure, we think that the best model to forecast COVID 

cumulative cases in the world is an ETS with additive error 
and trend without any season. The main limitation of this 
work is quite related to the predictions of the world figures 
about COVID-19, because they are aggregated and hetero-
geneous data sets. These remarks have also been mentioned 
in [37], because this kind of work does not take into account 
particular changes in small or big countries. However, the 
final decision with short-term forecasts can help in the 
decrease of bias in this study and allow international insti-
tutions to adjust decisions about the pandemic.

Conclusion

Many researchers have been computing classical univari-
ate time series models to forecast COVID-19 cases. How-
ever, Error Trend Season (ETS) is let, while we can have 
30 models in it to handle better short-term forecast of the 
pandemic cases. The use of cross-validation techniques and 
Mean Absolute Percentage Error (MAPE) to compare those 
models (ARIMA, ETS, and Exponential smoothing with 
multiplicative error-trend) helps to come out with ETS as the 
best model with the smallest MAPE and number of residuals 
correlations for all TDS. Actually, we advise other studies 
to also think of ETS models that are flexible for short-term 
forecasts and it provides realistic results. To get robust out-
puts, we propose to have at least a data set of 100 observa-
tions to expect good estimates.
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