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Abstract

Due to the fragmentation of protected areas (PA), it is important to build ecological corridors

in order to connect scattered PA and form protection networks for biodiversity conservation.

We take the Chinese ecological conservation redline (ECR) as an example to study the con-

struction of ecological corridors. China has defined ECR to improve the system of PA in key

ecological functional zones, nature reserves, and areas of sensitive and fragile ecological

environment. In this study, 187 core areas of ECR were identified using ArcGIS masking

and dissolving technology to build corridors, covering 95% of the total ECR areas. Using the

Linkage Mapper tool and the Pinchpoint Mapper, we identified 454 ecological corridors

68,794 km long. The results of the line density analysis showed that there are 9 key regional

biological corridors connected to the ECR at the national scale, which must focus on protect-

ing and strengthening ecological construction during the implementation of ecological con-

servation redline policy. Our study will provide references for developing a regional pattern

of ecological security, territorial spatial planning, and will promote the implementation of bio-

diversity conservation policies.

Introduction

In recent decades, China’s fragmented landscape, blocked ecological corridors and reduced

ecological connectivity caused by large-scale regional development have led to spatial isolation

of protected areas and “island” effects, directly affecting climate change adaptability and

national ecological security [1–3]. Climate change affects the migration of species., e.g., an

increase in temperature of 1˚C moves the tolerance limit of terrestrial species to the pole by

125 km, or 150 m in the mountains [4]. Every 10 years, European alpine plants advance to

higher altitudes by an average of 1–4 m [5]. Constructing a large-scale ecological corridor can

bridge species migration, so it was an important solution for biological adaptation to climate

change. Moreover, the proportion of species threatened with extinction due to habitat loss and

fragmentation is about 48%, 49% and 64% for mammals, birds and amphibians, respectively

[6]. Ecological corridors can provide migration routes for animals, increase genetic exchange
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of species, improve population viability and protect biodiversity by connecting scattered and

fragmented animal habitats [7].

Remote sensing and Geographic Information System (GIS) technology have been used to

study the influence of anthropogenic activities on ecological corridors [8–11], and to plan

regional ecological conservation networks [12, 13]. Methods and models for constructing an

ecological corridor include the least-cost path model [14], the gravity model [15], the mini-

mum cumulative resistance (MCR) model [16], etc. Most studies are based on the shortest-

path algorithm and GIS spatial analysis to complete multi-scale animal migration corridors

[17, 18]. The least-cost path model is widely used in large-scale land management planning,

ecosystem restoration and ecological security, as it can identify different types of ecological

corridors and extract their spatial information [19–23].

Work on planning and building large-scale international corridors has been rapid, such as

the European Green Belt Initiative, the North American Greenway Network, the Mesoameri-

can Ecological Corridor, the Southwest Australian Ecological Linkage, the Sino-Russian

Northeast Tiger Corridor, and the Eastern Himalayas. Therefore, we aim to study the con-

struction of ecological corridors between protected areas in China. Our main aims are: (1) to

identify core areas of China’s ecological conservation redline; (2) explore the connectivity of

ecological corridors and find the pinch point; and (3) identify key ecological corridors based

on GIS line density analysis. Our results can enhance the ecological functions of protected

areas and guide the development of conservation networks.

Materials and methods

Study area

China is one of the countries with the richest biodiversity in the world. It has established

11,800 protected areas, covering 18% of the land and 4.6% of the sea area [24]. With economic

development, many ecological lands are occupied, which carries potential ecological risks [25].

In 2017, China implemented the “Ecological Conservation Redline” (ECR) program to further

improve the system of protected areas (PA), increase their coverage and ensure the welfare of

local communities [26–28]. The preliminary designated national ECR area (without marine

area) does not make up less than 25% of the land area, covering areas of key ecological func-

tions, ecologically and environmentally sensitive or fragile areas, and key areas for biodiversity

protection (Fig 1).

Methods

The research method consists of four parts (Fig 2): selection of the core connection area,

construction of a comprehensive ecological resistance surface, identification of ecological

corridors and identification of pinch point and key areas in the network of ecological

corridors.

Land use data were collected from the National Earth System Science Data Centre, while

data on vegetation cover, river and road networks were collected from the National Geomatics

Center of China. Data on Gross Domestic Productivity (GDP) and population density were

obtained from the Chinese county statistical yearbook. Finally, the DMSP/OLS (The Defense

Meteorological Program / Operational Line-Scan System) nighttime lights data from 2000 to

2020 were collected from the National Oceanic and Atmospheric Administration, USA.

Identification of core areas of the Chinese ecological conservation redline. The ECR

have been extracted from key ecological functional zones and nature reserves through spatial

masking and dissolving, as well as using data management tool for dissolving and merging. To

improve computing efficiency, we reduced the resolution of the ECR to 1 km using the
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aggregate function in GIS. This has led to a 10-fold reduction in the calculation time of the cor-

ridor extraction. The missing data were assigned 9999 and eliminated using the “Eliminate

Polygon Part” function of GIS to ensure the feasibility of the ecological corridor calculation.

Meanwhile, areas of�2000 km2 were merged into the core area of the ECR.

Fig 1. Study area—Ecological conservation redline spatial distribution in China.

https://doi.org/10.1371/journal.pone.0271076.g001
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Construction of the resistance surface. The resistance surface was determined according

to the MCR model [16] (Eq. (1)), and the core area, distance and landscape characteristics

were comprehensively considered:

MCR ¼ f min
Xi¼m

i¼n

ðDij � RiÞ ð1Þ

where f is an unknown positive function reflecting a positive correlation between the mini-

mum resistance distance between any two core areas in space and the landscape characteris-

tics; Dij is the spatial distance from the core area j to the core area i; and Ri is the resistance. We

have built a three-level system of indicators that includes 11 indicators from three aspects: land

use, interference intensity and linear surface resistance. For land use, we considered only Con-

struction land and Agricultural land, while we did not take into account habitat types such as

grassland and forest land because they do not have or have less resistance. Indicators are used

to construct the resistance surface. Since this study constructs a resistance surface at the

national scale, the impact of different species ability to move through the landscape has not

been considered. Each indicator was standardized so that its resistance value was between 1

and 100. The resistance surface covering the China’s land was obtained using GIS spatial raster

overlay analysis with weights. The weights (w1, w2, and w3) of the resistance factors are

weighted using the method of expert scoring based on experience (Table 1).

Fig 2. Technical flowchart of the study.

https://doi.org/10.1371/journal.pone.0271076.g002
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Identification of ecological corridors. The ecological corridor is a direct channel for the

transfer of materials and energy between the core areas. Ecological corridors were identified

using the Linkage Mapper (LM) tool based on the core area and the resistance surface data [29].

The sum of the cost-weighted distance (CWD) raster from each pair of connected core areas

was calculated to identify the least-cost distance (LCD) of species migration and diffusion:

NLCCAB ¼ CWDA þ CWDD � LCDAB ð2Þ

where NLCCAB is the normalized least cost corridor connecting core areas A and B, CWDA is

the cost-weighted distance from core area A, CWDB is the cost-weighted distance from core

area B, and LCDAB is the cost-weighted distance accumulated by moving along the ideal (least-

cost) path connecting a pair of core areas.

Identification of Ecological pinchpoint and key areas. Pinchpoint is an area with a high

current density in the ecological corridor, which indicates that species are more likely to move

through the area between habitats or that there is no alternative path to choose. The pinch-

point is very important and if it is removed or changed, the connectivity can be significantly

decreased. The pinchpoint and the key areas in the least cost ecological corridor were identi-

fied separately using the Pinchpoint Mapper [30] and line density analysis. The importance of

ecological corridors for connecting core areas was evaluated [31, 32] using the Current flow in

order to predict the net migration probability of species passing through corresponding nodes

or paths, and then to predict areas with high passing level. The current will then flow through

these areas between all connected core areas. The results for each core area (all-to-one mode)

would be summed in the output current map [32, 33]. Both outputs showed areas that have a

high current flow centrality, which indicates their importance for keeping the entire network

connected [34]. Therefore, ecological pinchpoint and areas with high line density were consid-

ered key areas for the protection of the ecological system and biodiversity.

Results

Core areas of ecological conservation redline

Spatial analysis methods identified a total of 4446 core areas of the ECR. The number of core

ECR areas was then reduced to 2738 (covering 2,575,428 km2) using dissolve and merge

options in GIS. Based on this, an accumulation curve of the core areas of the ecological conser-

vation redline was created, and 187 core areas of ECR were selected (Fig 3) to ensure that 95%

of the ECR area is used for the construction of national ecological corridors.

Table 1. Indicator system of resistance factors.

Level-1 indicators w1 Level-2 indicators w2 Level-3 indicators w3

Land use 0.4 Construction land 0.6 Urban 0.4

Rural 0.3

Other 0.3

Agricultural land 0.4 Upland field 0.4

Paddy field 0.3

Other 0.3

Disturbance intensity 0.3 GDP 0.3

Population density 0.3

Nighttime light 0.4

Linear object resistance 0.3 Road network density 0.5

River network density 0.5

https://doi.org/10.1371/journal.pone.0271076.t001
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Ecological corridors and pinchpoints

Based on the resistance surface and 187 core areas, we identified ecological corridors using the

Linkage Pathways Tool of the Linkage Mapper. There were 454 ecological corridors with a

total length of 68794 km (Fig 4). Ecological corridors have connected more than 95% of Chi-

na’s nature reserves and formed an ecological conservation network. Meanwhile, ecological

corridors at the national level were unevenly distributed in space, mainly located in western,

southern and northeastern China with good ecological environment and landscape connectiv-

ity. Core areas were widespread in Xinjiang, Inner Mongolia, Guizhou, Yunnan, Sichuan, so

there were many connections with ecological corridors.

There was no overlap of corridors in the network of national ecological corridors, and they

maintained national ecological connectivity and ecological functions. Given the overall differ-

ence in the contribution of each ecological corridor to national ecological connectivity, we

identified a pinchpoint and a key region for maintaining national ecological connectivity. The

results showed that almost all ecological corridors between adjacent habitats had a pinchpoint,

and some of had narrow strips (Fig 5). Due to the development of the Yangtze River economic

belt, the Yangtze River Basin has a large area of pinchpoint distribution, which was considered

a "bottleneck" area affecting landscape connectivity and should be dedicated to ecological con-

struction and protection to maintain the connectivity across the PA network.

Identification of key areas

The line density analysis shows that there are nine key areas in the Chinese ecological corridor

network (Fig 6): (1) the connection area from northern Xilingol to the Hinggan League of Inner

Fig 3. Area accumulation curve selected for the ecological conservation redline.

https://doi.org/10.1371/journal.pone.0271076.g003
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Mongolia; (2) the intersection area of the southeastern Alxa League, Jinchang City, Wuwei City,

and Zhongwei City; (3) the intersection area of the southeastern Linfen City, the western Luo-

yang and Jincheng City; (4) the intersection area of Huaihua City, the western Yongzhou, and

the northern Hezhou; (5) the intersection area of the eastern Changji and the southeast Hami

Fig 4. Diagrammatic map of national ecological corridors network based on ECR.

https://doi.org/10.1371/journal.pone.0271076.g004
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region; (6) the key area of Jiuquan City; (7) the intersection area of the southeastern Bayingol

and the western Qinghai Province; (8) the southwest of the Hotan region; and (9) the longitudi-

nal ridge-valley region in the southwest. During the implementation of the ECR policy, we

should focus on the protection and strengthening of ecological construction in key areas.

Fig 5. Diagrammatic map of pinchpoint distribution of ecological corridors at the national scale.

https://doi.org/10.1371/journal.pone.0271076.g005
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Fig 6. Diagrammatic map of key areas distribution of ecological corridors at the national scale.

https://doi.org/10.1371/journal.pone.0271076.g006
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Discussion

Adjusting the core area of ecological conservation redline

The ECR is an original concept and method of environmental protection in China that pro-

vides an innovative solution for global biodiversity protection. The study selected the ECR for

the construction of ecological corridors and the formation of a network of protected areas that

could improve the level of ecological protection and enhance the adaptation of species to cli-

mate change [35]. The spatial distribution of ECR in this study is based on the research results

and according to the guidelines for delineation of the ecological protection redline [36]. By

adjusting the land use structure or the needs of biodiversity protection, the spatial distribution

of ECR will be adjusted and ecological corridors will be changed.

Factors influencing ecological corridor identification

The construction of an ecological corridor generally adopts the least cost path between pro-

tected areas with the application of graph and circuit theory [37–39]. The novelty of this study

is that we constructed a national network of ecological corridors using LM and obtained a

pinchpoint from Pinchpoint Mapper. Consequently, using a line density approach to identify

key areas of ecological corridors and maintain large-scale connectivity could contribute to

conserving biodiversity facing climate change.

The key factor influencing the corridor distribution is the resistance surface. At present,

there is no unified standard for the selection and assignment of resistance factors on resistance

surface. In this study, representative indicators such as land use type, river density, road net-

work density, population density, GDP and nighttime light were used as resistance factors to

construct the resistance surface. The choice of indicators should be scientific and objective

instead of subjective. At present, most landscape resistance assignments are mainly based on

expert knowledge or empirical data and there is a lack of experimental data and field surveys

on individual dispersal behavior of species [40]. How to reasonably set the resistance value is

one of the challenges for the efficient application of the LCP model. Meanwhile, resistance val-

ues can be calculated on a grid level using Kriging spatial interpolation technology. This

approach can reflect regional differences, but data accuracy was lower due to the lower distri-

bution of national meteorological stations [41].

Construction of the future ecological corridor

At present, when building an ecological corridor, two aspects need to be considered: i) Will

the animals choose ecological corridors for migration? and ii) How to include climate change

in the construction of ecological corridors? The MCR model can identify the least cost path

between core areas [42, 43], but it cannot reflect the true width of the ecological corridor

because it ignores the characteristics of biological random walk [44]. Santos et al. [45] chose

ecological corridors with greatest length, width and area and highest forest cover, which were

the most important criteria from the ecological functions of corridors. Most studies have not

considered the impact of spatial landscape changes on simulation results and the different abil-

ities of species to move through landscape resistance surfaces. The results varied depending on

the species and landscape structure characteristics on different spatial scales. The subsequent

study will further study the influence of the landscape spatial scale on the simulation of the

landscape connection. Furthermore, the analysis of the vegetation types and quality should be

considered in the project of ecological corridor construction.

It is more important to incorporate the impacts of future climate change into the construc-

tion of ecological corridors, than to react to changes as they occur [46]. To take climate change
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into account, future standards of functional connectivity need to be studied using simulated

movements in hypothetical landscapes due to different climate change scenarios [46]. Mean-

while, field data should be collected to improve connectivity maps [47].

Conclusion

Eco-environmental problems are gradually showing a trend of regionalization and globaliza-

tion, and the reduction of the landscape connectivity has become a common problem faced by

different regions and countries. There is an urgent need to construct large-scale ecological cor-

ridors in order to strengthen the connectivity and integrity of the regional ecosystem and

improve the overall service function of the regional ecosystem. This study investigated the con-

struction of ecological corridors based on the core ECR areas and identified 454 ecological cor-

ridors at the national level with a total length of 68794 km. The study also identified 9 key

areas of ecological corridors for the formation of an ecological conservation network. The loca-

tion, structure and internal environment of the ecological corridor are key factors in assessing

the suitability of the corridor [48]. Therefore, while implementing ecological corridors, gov-

ernment organizations should further assess the suitability of the corridor as it is crucial for

the maintenance of corridors functionality [49]. At the same time, in the process of planning

and constructing large corridors, it is necessary for the governments of different provinces or

countries to provide support for cross-border cooperation.
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