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A B S T R A C T

A Bayesian model for sparse, hierarchical, inver-covariance estimation is presented, and applied to multi-subject
functional connectivity estimation in the human brain. It enables simultaneous inference of the strength of
connectivity between brain regions at both subject and population level, and is applicable to fMRI, MEG and EEG
data. Two versions of the model can encourage sparse connectivity, either using continuous priors to suppress
irrelevant connections, or using an explicit description of the network structure to estimate the connection
probability between each pair of regions. A large evaluation of this model, and thirteen methods that represent
the state of the art of inverse covariance modelling, is conducted using both simulated and resting-state functional
imaging datasets. Our novel Bayesian approach has similar performance to the best extant alternative, Ng et al.'s
Sparse Group Gaussian Graphical Model algorithm, which also is based on a hierarchical structure. Using data
from the Human Connectome Project, we show that these hierarchical models are able to reduce the measurement
error in MEG beta-band functional networks by 10%, producing concomitant increases in estimates of the genetic
influence on functional connectivity.
Introduction

The estimation of functional connectivity in the human brain (Friston,
2011; Smith et al., 2013) is becoming a key tool forenhancing our un-
derstanding of disease and cognition as part of functional magnetic
resonance imaging (fMRI) and magnetoencephalography (MEG) studies.
The most important and exciting uses of this type of analysis focus on
individual differences in connectivity patterns. Subjects' functional con-
nectomes are heritable (Colclough et al., 2017; Glahn et al., 2010); are
associated with cognitive ability (Finn et al., 2015), and with wealth,
health and life satisfaction (Smith et al., 2015); provide neuromarkers for
sustained attention (Rosenberg et al., 2016); are implicated with a range
of diseases and disorders (Greicius, 2008; Stam, 2014); and predict
task-evoked activity (Tavor et al., 2016). For all of these forms of anal-
ysis, accurate estimation of single-subject functional networks is crucial.
ional MRI of the Brain (FMRIB),

M.W. Woolrich).

m 28 March 2018; Accepted 30 A

vier Inc. This is an open access a
Despite the recent explosion of research and high-quality findings,
whole-brain functional connectivity estimation is relatively immature.
Most of the key developments highlighted above use very simple
Gaussian graphical models (GGMs) for the covariance of the data, in
which the partial correlations between regions indicate the strengths of
connections. We focus on this approach. However, accurate estimation of
individual subjects' functional networks using GGMs can be difficult,
particularly without long acquisition times. In an effort to improve the
accuracy of network estimation, sparsity in the networks tends to be
encouraged by suppressing weak connections (Dempster, 1972; Duff
et al., 2013; Smith et al., 2013; Varoquaux and Craddock, 2013). Impo-
sition of sparsity can also aid interpretation, by explicitly suggesting that
certain individual functional connections are absent. There is even an
entire field that attempts to characterise the function and dysfunction of
cognitive networks using certain properties of this underlying graph
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1 OSL, the OHBA (Oxford Centre for Human Brain Activity) Software Library,
and a Matlab implementation of our HIPPO algorithm are both available from
www.github.com/ohba-analysis/.
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structure (Bullmore and Sporns, 2009; de Pasquale et al., 2012, 2015;
Stam and van Straaten, 2012; van Straaten and Stam, 2013).

While considerable work has been expended upon sparse network
estimation for individual datasets (Friedman et al., 2008; Hinne et al.,
2014, 2015; Lenkoski, 2013; Mazumder and Hastie, 2012a,b; Moham-
madi and Wit, 2015; Ryali et al., 2012; Wang, 2012a,b, 2015), relatively
little effort has been made towards the joint inverse covariance estima-
tion relevant for multi-subject, whole-brain network inference (Our most
complete list is Danaher et al., 2015; Guo et al., 2011; Harrison et al.,
2015; Lee and Liu, 2015; Liang et al., 2016; Marrelec et al., 2006; Mejia
et al., 2018; Ng et al., 2013; Peterson et al., 2015; Qiu et al., 2015;
Varoquaux et al., 2010; and Yang et al., 2015. Also of note is the work of
Nadkarni et al., 2017, who fit multiple Gaussian networks under
auto-regressive processes to model MEG data, and Hinne et al., who in
2013 developed a hierarchical connectivity model for structural brain
networks inferred from diffusion MRI data.). Models with a ‘hierarchical’
structure, which simultaneously estimate the population connectivity
and each individual's network strengths, should improve the quality of
inference (Gelman et al., 2014; Woolrich, 2008). Some of the existing
methods attempt a hierarchical model for the structure of the network, so
that the probability of a connection existing in each subject is influenced
by the group's connection map. When it comes to the connection
strengths, only Ng et al. model the relationship between subject and
group-level connectivities within their penalised maximum-likelihood
approach. None combine sparse network priors, a hierarchical design
that shares information on the strengths of connections over the whole
dataset, and a computationally-efficient Bayesian inference framework
that can be applied to large multi-subject neuroimaging datasets.

We present a new hierarchical model and scalable inference framework
for sparse Bayesian modelling of multiple inverse covariance matrices. It is
applied to the estimation of functional brain networks, with joint charac-
terisation of subject-level and population-average connectivities. We
model functional connectivity simply as undirected partial correlations
between the network nodes—this model can be applied to MEG data
(Colclough et al., 2015) in addition to fMRI, and is among the most suc-
cessful and repeatable of measures in either modality (Colclough et al.,
2016; Ramsey et al., 2014; Smith et al., 2011). We show that the posterior
can be reformulated as a series of linked linear regressions, allowing a
broad class of sparse priors to be applied to covariance modelling. Two
particular priors are compared. The first imposes an explicit shared sparsity
structure on the network graph, producing a posterior distribution over the
edges present in the network. The second uses continuous priors to regu-
larise the group connection strengths, more weakly encouraging network
sparsity. A custom Markov chain Monte Carlo (MCMC) approach is used
for inference, and we characterise how the computation time scales with
model dimension and the number of subjects.

We run a large evaluation of the performance of our model and the
current state of the art in GGM estimation. This evaluation uses simulated
data to test models' ability to reconstruct connection strengths and sparse
network patterns.We also use truncated segments of resting-state fMRI and
MEG recordings from the Human Connectome Project (HCP) to assess
inference quality with very short or noisy datasets. Finally, we use trait
prediction analyses from the fMRI networks and genetic influence analyses
on the MEG networks to demonstrate noise reductions when subject and
population connectivities are estimated with a hierarchical framework.

We start with an overview of our new Bayesian model and inference
approach.

A hierarchical model for inverse covariance matrices

In order to jointly estimate connectivity over many subjects, we need
a scalable covariance inference framework that can be formulated as a
hierarchical model. Most existing Bayesian models for GGMs use G-
Wishart priors (Letac and Massam, 2007). These are challenging to
incorporate into a hierarchy because of the difficulty in computing the
normalising constant of the distribution, itself a function of the
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underlying graph structure. Trans-dimensional MCMC approaches that
avoid this computation have been developed for models of single
covariance matrices (Hinne et al., 2014, 2015; Lenkoski, 2013; Moham-
madi and Wit, 2015; Wang, 2012b), and an analytic expression for the
troublesome normalising constant has been recently proposed (Uhler
et al., 2018), but building a sampler for multiple G-Wishart distributions
with an inferred group prior and shared graph structure is not trivial.

Instead, we take a different approach, inspired by an alternative prior
structure. Wang describes, in 2012a and 2015, two different priors that
allow simple block-Gibbs sampling along the columns of matrices to draw
from the posterior of two specific models for covariance. We build on this
idea, by demonstrating that the conditional distribution of one column of
a precision matrix takes the form of a linear regression, and that this
reformulation gives access to most of the existing priors and inference
engines from the Bayesian linear regression literature, enabling a range
of hierarchical GGM models to be implemented.

Like most other Bayesian GGM or covariance models, we build sparse
priors for the precision (or inverse covariance) matrix. Dempster argued
in 1972 that introducing sparsity to the precision, rather than the
covariance matrix, was the more desirable option, because this choice
maximises the entropy of the resulting distribution. It also makes for a
more interpretable approach, as promotion of sparsity in the precision or
partial correlation matrix can be directly understood as promoting
sparsity in the underlying GGM. The zeros in the partial correlation
matrix directly indicate the lack of an edge in the network. Additionally,
in our application of functional connectivity estimation, previous studies
suggest that partial correlations derived from the precisionmatrix may be
more robust network estimators than full correlations, particularly if
there are sufficient data to make good estimates (Duff et al., 2013;
Marrelec et al., 2006; Smith et al., 2011). In his 2015 paper, Wang
designed an additional prior that imposes sparsity in the covariance, not
the precision matrix. Our extension of his prior for precisions could be
easily adapted for sparse covariance matrices if desired.

The models we propose have three principal features. First, the
connection strengths of each subject, for a particular network edge, are
distributed with some variance about the population connectivity
strength. This regularises subjects towards the group mean, in a similar
fashion to the L2 penalty used in Ng et al. (2013). Second, the population
connectivity is constrained using a Cauchy prior (Polson and Scott,
2012), which has a large mass near zero. This prior has many similarities
to the double-exponential prior distribution, which has the same form as
the widely-used L1 penalty for sparsity promotion (Danaher et al., 2015;
Friedman et al., 2008; Ng et al., 2013; Varoquaux et al., 2010; Wang,
2012a). These two features alone create a sparse, hierarchical inverse
covariance model. We form a second model by adding a final feature that
regularises using an explicit sparse network structure. The probability of
each network connection being present or absent is directly inferred
using a spike and slab prior (Mitchell and Beauchamp, 1988). This strong
sparsity modelling is a feature of the Bayesian approach, and is not
possible to frame as a convex optimisation problem.

Below, we set out the likelihood of the region of interest (ROI) data in
each subject. Then we reformulate the inference of inverse covariance
matrices as a linear regression problem under a broad range of priors, and
position our two forms of the hierarchical model within this framework.
Full details of our inference program and MCMC algorithm for this
model, denoted HIPPO (Hierarchical Inference of Posterior Precisions in
OSL1), are given in the supplementary material.

Likelihood for the connectivity model

We describe the (temporally demeaned) activations

http://www.github.com/ohba-analysis/
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Y s ¼ ½ys
1; y

s
2;…ys

ns � 2 ℝp�ns , within p ROIs, sampled at ns time points, for
each subject s, as being drawn independently from a multivariate
Gaussian distribution with zero mean and precision matrix Ωs

Y s � N
�
0; Ω�1

s

�
; Ωs 2 ℙG ; (1)

where ℙG is the cone of positive definite p� p matrices restricted to the
graph G ¼ ðV ;EÞ such that an absence of an edge from set E implies
conditional independence of the two relevant variables in all subjects,

ði; jÞ 62 E ⇒ ωs
ij ¼ 0 8 s:

We use the general term activation to encompass changes in blood-
oxygenation-level dependent (BOLD) response over time in fMRI, or
fluctuations in the power envelope of oscillatory activity measured with
MEG or electroencephalography (EEG).

Precision modelling as linked linear regression

Building on the work in Wang (2012a, 2015), we show that a very
broad range of priors from the linear regression literature can be applied
to the elements of a precision matrix, with a simple restriction on the
prior for the diagonal elements. Inference can be performed as a series of
draws from the conditional distributions of linked columns of variables
over all subjects. As long as the prior factorises over the elements of the
precision matrix, it is possible to introduce layers of hyper-parameters
without breaking this sampling approach. This will enable us to build a
large hierarchical model within a tractable sampling framework.

Some notation is useful. We partition subjects' precision matrices as
follows,

Ωs ¼
�
Ωs

11 ωsT
12

ωs
12 ωs

22

�
: (2)

Without loss of generality, we can discuss just the final column of
precision matrix Ωs, ½ωs

12;ω
s
22�T . Let Ωs

11 represent the first principal minor
(the block matrix without the final row or column), y the conjugate
transpose operator, and let S ¼ Yy

sY s ¼ nsΣs be the sample inner product
matrix of subject s. Similar subscripts indicate identical partitions of other
matrices, so for an inner product matrix, S22 is the diagonal element of the
selected column and S12 the off-diagonal elements of the column. This is
the same convention employed in Friedman et al.'s exposition of the
graphical least absolute shrinkage and selection operator (LASSO) in 2008.

We define independent exponential prior distributions on the diago-
nal elements of the precision matrices, and require the priors on the off-
diagonal elements to factorise over the elements (although in addition to
any hyper-parameter matrices, Ψ, such as group-level connectivity
strengths, they may share some common scalar hyper-parameters, θ),

πðΩsÞ ¼
Yp
i¼1

Exp
�
ωs

ii;
λs

2

�Y
i<j

π
�
ωs

ij; ψ ij; θ
�
π
�
ψ ij; θ

�
; (3)

using πð�Þ to denote a prior probability density. Combining (1) and (3),
we can extract the conditional posterior for a column of the precision
matrix,

p
�
ωs

12;ω
s
22;ψ12

��� � ∝
1

ð2πÞns2
�
ωs

22 � ωsy
12Ω

s�1
11 ωs

12

�ns
2
��Ωs�1

11

���ns
2

�exp
�
� 1
2

	
S22ωs

22 þ 2Sy
12ω

s
12


�
Exp
�
ωs

22;
λs

2

�
π
�
ωs

12; ψ12; θ
�
πðψ12; θÞ :

(4)
Performing the variable substitution (Wang, 2012a)

ðus; νsÞ ¼ �ωs
12; ω

s
22 � ωsy

12Ω
s�1
11 ωs

12

�
; (5)
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for which the Jacobian is the identity matrix, we obtain

log pðus; νs;ψ12j � Þ ¼ ns
2
logνs � 1

2
ðS22 þ λsÞνs

�1
2
usy	ðS22 þ λsÞΩs�1

11



us � Sy

12u
s

þlog πðus; ψ12; θÞ þ log πðψ12; θÞ þ const:

(6)

We can tidy up with the substitution ϒs ¼ ðs22 þ λsÞΩs�1
11 to give a

normal form for us and a Gamma distribution on νs,

log pðus;ψ12j � Þ ¼ �1
2
usyϒsus � Sy

12u
s þ log πðus; ψ12; θÞ þ log πðψ12; θÞ

� ns
2
log π þ const:

(7)

log pðνsj�Þ ¼ ns
2
logνs � 1

2
ðS22 þ λsÞνs þ const: (8)

Equations (7) and (8) provide a basic block-Gibbs sampling scheme in
which all variables associated with a column, across all subjects, are
drawn together. It is important that the sampled matrices are positive
definite, to qualify as valid precisionmatrices. The design of this aspect of
the sampling algorithm (as described for a single precision matrix by
Wang) ensures this condition. If, on each draw of the variables within a
column, the principal minors Ωs

11 are positive definite, then the updated
matrices will by definition be positive definite if the Schur complement
ωs

22 � ωsy
12Ω

s�1
11 ωs

12 is greater than zero (Boyd and Vandenberghe, 2004).
This inequality is enforced by the strictly positive Gamma distribution on
νs. Assuming the sampler is well initialised, the algorithm guarantees
positive definite precision matrices on each and every update.

We draw the comparison to conventional linear regression,
y ¼ Xβþ ε, ε � N ð0; σ2Þ, conditional on σ2,

pðβjy;X; σ2Þ∝ 1�
2πσ2

�nsp
2
e�

1
2β

yϒβþryβ πðβ; θÞ

ϒ ¼ XyX
σ2

r ¼ yyX
σ2 ;

to see that this factorisation into column-conditionals leads to inference
as a set of p linked regressions on one variable and its interactions, given
all the other variables. The link between partial correlation estimation
and regression problems has been identified previously (Peng et al.,
2009), but within this Bayesian inference context, the key point is that we
can now borrow sparse priors from the extensive linear regression liter-
ature. We are free to choose any prior that can factorise over the
off-diagonal elements of the precision matrix and retain the simple
block-Gibbs sampling scheme (7) and (8). Moreover, we are free to build
a hierarchy of prior distributions over the elements of the precision
matrices, so long as priors factorise over ωij when conditioned on the
hyper-parameters. Sampling is possible in this framework by alternating
block-Gibbs draws of pðus;ψ12 j �Þ, the conditional distribution of the
columns of precision matrices within each subject ωs

12 and of
hyper-parameter matrices ψ12 (which might represent group-level
connection strengths or a sparsity structure, for example), with Gibbs
draws from the conditional distributions of any common
hyper-parameters, pðθ j � Þ.
Hierarchical sparse priors for precision matrices

Using the framework developed above, we describe two Bayesian
sparse hierarchical models for inverse covariance matrices. The first
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explicitly models the presence or absence of edges within the functional
network, strongly promoting sparsity in the system. The second removes
this feature, and relies on continuous priors on the group connection
strengths to suppress weak edges towards zero.

Model 1: a strongly sparse prior
For each subject, we place an exponential prior on the diagonal ele-

ments of the precision matrix, as in (3). This choice allows us to imple-
ment the column-wise sampling scheme described in equations (4)–(8).
The free parameter in this distribution, λs, is given (for each subject) the
‘neutral’ Gamma conjugate hyperprior (Kerman, 2011). There is nor-
mally plenty of informationwith which to estimate the diagonal elements
(inverse variances), and so an uninformative prior is appropriate. The
neutral Gamma prior is relatively uninformative on logλs and is claimed
to perform better than traditional Gaðε; εÞ priors (ibid.),

λs � Ga
�
1
3
; 0
�
: (9)

The full prior on the off-diagonal elements is given in equation (10),
discussed in detail below, and is illustrated in Fig. 1. In essence, it is a
spike-and-slab prior with shared sparsity over subjects, normally-
distributed connection strengths about the population mean, and regu-
larisation on the mean effect.�
ωs

ijjσij; μij; zij ¼ 1
�

� N
�
μij; σ

2
ij

�
�
ωs

ijjzij ¼ 0
�

� δ0

log σij � N
�
log mσ ; s2σ

�
μij � N ð0; χ2Þ
χ � C þð0;AÞ
zij � BernoulliðaÞ
a � Betaðaπ ; bπÞ

(10)

Each off-diagonal element of the precision matrices is given a spike
and non-central slab prior. The spike, a delta-function at zero, imposes a
Fig. 1. Hierarchical prior on precision matrices. A spike and non-central slab prior
strongly sparse version of the prior, selection of the slab or spike (presence or absence
sparsity level (4). In the weakly sparse model, this feature is not used and only the sl
distribution describing the mean (5) and variance over connection strengths. The me
informative log-normal prior (7). We call this model and its inference scheme Hiera
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common sparsity structure over all subjects, using edge inclusion vari-
ables Z. For those edges that are included, the non-central slab is a
normal distribution, whose variance σij characterises the between-subject
variability of that particular connection strength, and whose mean μij
captures the group-level behaviour.

Following advice in Gelman (2006) and Polson and Scott (2012) on
the inference of higher-level group parameters in regression, we apply
regularisation to the mean edge strengths (μ) towards zero using a
normal distribution, learning the rough scale of these connectivities, χ2,
from the data and pooling this information over all the edges. This learnt
variance parameter χ2 is constrained with a proper, sparsity-promoting,
weakly informative prior. Gelman and Polson & Scott recommend the
half-Cauchy distribution for this application, denoted C þ, because it has
a finite mass at zero, is undefined for negative values, drops off near a
scaling point A, and has a heavy tail which can allow the likelihood to
dominate. An additional advantage is that the half-Cauchy and can be
expressed in a conditionally-conjugate fashion through a scale mixture of
normals (Gelman, 2006; Gelman et al., 2008; Polson and Scott, 2012).
This parameter expansion technique ensures that sampling for the
group-level parameters requires only simple draws from multivariate
normal distributions, and these parameters can be integrated over when
sampling the top-level edge inclusion variables Z. An alternative choice
to the Cauchy, from the same family but imposing stronger sparsity on
the group connection strengths, would be the Laplace or LASSO prior
(Carvalho et al., 2010). The scale of the Cauchy distribution can be set
sensibly based on the data: we use A ¼ 0:7 as an appropriate value for
variance-scaled data where correlations and partial correlations do not
frequently exceed this number.

A broad normal prior is placed on the logarithm of σij, centred on
mσ ¼ 0:5 and with a standard deviation sσ ¼ 1 to allow order-of-
magnitude deviations from this value. Finally, a Beta-Bernoulli conju-
gate prior is placed on the edge inclusion variables, with a shared sparsity
parameter a inferred from the data. The hyper-parameters in the top-
level Beta distribution can be set to weakly encourage levels of sparsity
(2) is placed on each off-diagonal element of the precision matrices (1). In the
of a network connection) is controlled by an adjacency matrix (3), with a learnt
ab imposed as a prior on connection strengths. The slab is modelled as a normal
an is regularised by a sparsity-inducing prior (6), and the variance by a weakly
rchical Inference of Posterior Precisions in OSL (HIPPO).



Table 1
Values of hyper-parameters employed for
functional network modelling.

Parameter Value

mσ 0.5
sσ 1
A 0.7
aπ 6
bπ 6

2 The code used to perform this adjustment, nearestSPD.m was written by
John D'Errico and is available from uk.mathworks.com/matlabcentral/
fileexchange/42885-nearestspd.
3 Both of these matrices are available from the Brain Connectivity Toolbox, at

sites.google.com/site/bctnet/datasets.

G.L. Colclough et al. NeuroImage 178 (2018) 370–384
encountered in functional networks. Using values of ðaπ ; bπÞ ¼ 6 places
most of the prior mass between 0.3 and 0.7.

The values of the hyper-parameters we use are set out in Table 1.

Model 2: a weakly sparse prior
The explicit sparsity can be removed from the model by setting a ¼ 1

and zij ¼ 1 8 i; j to create a weakly sparse prior. It is weakly sparse in the
sense that the group mean connectivities are still shrunk towards zero,
using the Cauchy prior, and the subjects' precisions are distributed about
these connection strengths. However, the model for the underlying GGM
assumes a full graph, and the connectivity estimates should therefore be
less sparse than from the first model. Inference is performed in exactly
the same fashion as for the strongly sparse model, but without the need
for updates on Z.

Model inference

The procedure taken for inference on the HIPPOmodel is described in
full in supplementary information A. The sampler moves through a series
of Gibbs steps, based on (7) and (8) above, in which all of the variables
associated with a single column of the matrices are drawn together,
pðfωs

12g; μ12; z12
�� fΩs

11g; σ; χ; aÞ. Within each of these column-
conditionals, we exploit ideas from Peltola et al. (2012) to collapse the
conditional distribution over edge-strength parameters ω and μ. This
leaves a simple Metropolis-Hastings (MH) sampler on z12 at the top level,
checking for network edges to add or remove by testing the model evi-
dence of each proposal. The parameters describing group-average and
subject-level connectivities can then be sampled directly.

Draws from the posterior distribution of each subject's precision
matrix can be used to construct a posterior over correlation or partial
correlation matrices, and on the group average of these quantities. We
use the posterior mean of the partial correlation distribution as a sum-
mary estimate of each subject's functional connectivity.

Methods

Evaluating sparse connectivity estimation using simulated data

Data generation
Ten simulated datasets were created to test the hierarchical models

over a range of sparse network structures, model sizes, quantities of data,
and amount of subject variability in connectivity. Except for some minor
differences detailed below, each dataset consists of a number of subjects,
with an individual precision matrix to represent each subject's functional
connectivity; the data for each subject is a draw of samples from a zero-
mean multivariate normal distribution, using the appropriate precision
matrix. The general properties of each simulation are summarised in
Table 2.

Circle models Simulations 1–4, 7 and 8 use a simple circular network
structure. This structure has been used extensively in the sparse GGM
literature: it was set out in Wang (2012b), and used in Hinne et al.
(2015); Mohammadi and Wit (2015); and Wang (2012a). A precision
matrix of any dimension p is constructed as ωii ¼ 1, ωi;iþ1 ¼ 0:5, and
ω1;p ¼ 0:4, with the lower diagonal elements matched to ensure
symmetry.
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Simulations 1–4 use the same precision matrix for each subject.
Simulations 7 and 8 treat the circle model as the group mean matrix,
assign random signs to the connection strengths, and draw single-subject
connection strengths from a normal distribution about the group mean
with a standard deviation of 0.05 and 0.15 respectively. Subjects' con-
nectivity matrices were then adjusted to be positive semi-definite
(Higham, 1988)2 and rescaled to unit variance.

Netsim Dataset 5 is the 4th network simulation from Smith et al.
(2011), chosen because the 4th simulation was the largest model in that
work. Smith et al. generated autocorrelated fMRI-like data from an
asymmetric network model. As we are estimating symmetric precision
matrices, we make the simple assumption that all subjects share the same
precision matrix, and we estimate this ground truth as the unregularised
partial correlation computed from the entire concatenated dataset,
masked by the symmetrised adjacency matrix of the original simulation.

Random Dataset 6 is designed to mimic the prior structure. Each
network edge is randomly assigned a probability of 0, 0.5 or 1 of being
included in the network. Subjects' connection strengths on each edge are
normally distributed about 0.25 with a standard deviation of 0.05. As
each data point is drawn for each subject, edges in the model are turned
on or off in accordance with their probability of edge inclusion. The ‘true’
matrix for each subject is the product of the edge inclusion probability
matrix and the subject's connection strengths.

Cat cortex and macaque visual cortex Simulations 9 and 10 use the
structures of mammalian cortical networks as their basis. Simulation 9
employs the cat cortical network from Scannell et al. (1999) and simu-
lation 10 that of the macaque visual cortex from Felleman and Van Essen
(1991).3 In each case, the network connection matrix is binary and
asymmetrical. We used only the upper triangular part, symmetrising to
the lower half. For each simulation, the group mean connection matrix
was drawn from a conditional G-Wishart distribution (Lenkoski, 2013)
with identity scale matrix and degrees of freedom equal to one less than
the number of network nodes. Individual subjects' network matrices were
drawn from a conditional G-Wishart distribution using the mean
connection matrix as the scale, and degrees of freedom set to 50 for the
simulations from macaque visual cortex and 400 for those from cat cor-
tex. The G-Wishart distributions were constrained using the relevant
network matrices (cat, macaque) as the underlying graph.

Models tested
Sixteen different models were fitted to the test datasets, representing

the range of methods in current use for covariance modelling from the
most naïve to the most advanced. Their basic properties are set out in
Table 3.

Partial correlation The sample covariance matrix for each subject is
inverted, using the Cholesky algorithm, and normalised to produce the
unregularised partial correlation matrix.

Tikhonov A Tikhonov-regularised estimate of the precision matrix is
constructed by slightly augmenting the diagonal of the sample covari-
ance matrix,

bΩ ¼ ðΣþ λIÞ�1
: (11)

The regularisation parameter λ was chosen to minimise the RMS
distance between the subjects' matrices and their unregularised group
average.

This is the procedure used by the HCP and the UK Biobank imaging
project in their estimation of fMRI network matrices.

GLASSO The graphical LASSO algorithm of Friedman et al. (2008),
with modifications for computational efficiency (Mazumder and Hastie,

http://uk.mathworks.com/matlabcentral/fileexchange/42885-nearestspd
http://uk.mathworks.com/matlabcentral/fileexchange/42885-nearestspd
http://sites.google.com/site/bctnet/datasets


Table 3
Characterisation of methods used on simulated data in Fig. 2. We classify the
methods under test by their inference method, the style of sparsity imposition,
and whether they are fitted to individual subjects, the concatenated dataset, or
infer individual connectivity matrices using information from the whole group.
HIPPO is our acronym for the hierarchical sparse Bayesian model.

Name Fitted to Sparsity Inference Reference

Partial correlation individuals none analytic Fisher (1924)
Tikhonov individuals continuous optimised
Graphical LASSO
(GLASSO)

individuals continuous optimised Mazumder
and Hastie
(2012b)

Group GLASSO
(Varoquaux)

group continuous optimised Varoquaux
et al. (2010)

Group GLASSO
(Danaher)

group continuous optimised Danaher et al.
(2015)

Fused GLASSO group continuous optimised Danaher et al.
(2015)

Sparse Group
Gaussian
Graphical Model
(SGGGM)

group continuous optimised Ng et al.
(2013)

Wishart individuals continuous analytic Gelman et al.
(2014)

Hierarchical
Wishart

group none MCMC Marrelec et al.
(2006)

Bayesian GLASSO individuals continuous MCMC Wang
(2012a)

Stochastic Search
Variable
Selection (SSVS)

individuals normal-
mixture

MCMC Wang (2015)

G-Wishart concatenation spike &
slab

MCMC Hinne et al.
(2015)

Bayesian Multiple
Gaussian
Graphical
Models (MGGM)

group spike &
slab

MCMC Peterson et al.
(2015)

Single-subject
HIPPO

concatenation spike &
slab

MCMC

Weakly-sparse
HIPPO

group &
individuals

continuous MCMC

Strongly-sparse
HIPPO

group &
individuals

spike &
slab

MCMC

Table 2
Description of simulated datasets used in Fig. 2. Datasets are characterised by their size (number of subjects, network nodes and links, and data samples), the amount of
subject variability (expressed as the standard deviation of connection strengths, over subjects, divided by the mean connection strength; we take the mean of this
coefficient of variation over all connections present in the network), the sparsity of the network, and the type of network structure. We use simple circle models of
varying sizes, first set out in Wang (2012b) and used in Wang (2012a) and Hinne et al. (2015); together with the largest simulation (netsim 4) from Smith et al. (2011); a
random graph structure; and connection matrices built on estimates of the networks in cat cortex (Scannell et al., 1999) and macaque visual cortex (Felleman and Van
Essen, 1991).

ID Subjects Nodes Links (full model) Links Samples Variability Sparsity Model Structure

1 5 6 15 6 18 0 0.60 Circle
2 25 6 15 6 18 0 0.60 Circle
3 25 6 15 6 50 0 0.60 Circle
4 25 6 15 6 100 0 0.60 Circle
5 50 50 1225 61 200 0 0.95 Netsim 4
6 25 25 300 216 500 0.2 0.28 Random
7 25 6 15 6 25 0.5 0.60 Circle
8 25 30 435 21 100 1.1 0.93 Circle
9 30 52 1326 438 500 1.8 0.67 Cat cortex
10 25 30 435 161 100 2.7 0.63 Macaque

visual cortex

4 Python routines for solving this problem are available as part of nilearn. See
nilearn.github.io/connectivity for more details.
5 R code for solving Danaher et al.'s group GLASSO and fused GLASSO using

the alternating direction method of multipliers algorithm is available as the

G.L. Colclough et al. NeuroImage 178 (2018) 370–384
2012a; b), solves the optimisation problem

bΩ ¼ arg max
Ω

ðlogdetΩ� traceðΣΩÞ � λ
����Ω����

1
Þ ; (12)

where
���� �����1 indicates the L1 norm (sum of the absolute values of the

elements of the matrix). The regularisation parameter λ was chosen to
minimise the RMS distance between the subjects' matrices and their
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unregularised group average. GLASSO is a very common method for
estimating partial correlation brain networks, and the most successful
tested in Smith et al. (2011), making it a good benchmark for our work.

Group GLASSO The group graphical LASSO of Varoquaux et al. (2010)
is fitted to all subjects at once, and encourages a similar sparsity pattern
across them. It solves the optimisation problem,4

�bΩs� ¼ arg max
fΩg

0@X
s

½ns logdetΩs � traceðΣsΩsÞ� � λ
X
i 6¼j

 X
s

ωs2
ij

!1
2
1A :

The regularisation parameters were chosen to maximise the predic-
tive log-likelihood under the default cross-validation scheme, which
repeatedly narrows down the hyper-parameter search space.

The group graphical LASSO of Danaher et al. (2015) is a generalisa-
tion of Varoquaux et al.'s model. It solves the optimisation problem,

�bΩs� ¼ arg max
fΩg

0@X
s

24ns logdetΩs � traceðΣsΩsÞ� � λ1
X
s

X
i6¼j

jωs
ijj

� λ2
X
i6¼j

 X
s

ωs2
ij

!1
2
!

(13)

The regularisation parameters were chosen to minimise the Bayesian
information criterion associated with this likelihood. Inference was
performed in Matlab.

Fused GLASSO The fused graphical LASSO of Danaher et al. (2015) is
also fitted to all subjects at once, and seeks to impose collective sparsity
on all subjects' network elements, while encouraging networks from
different subjects to be alike. Inference is set up as an optimisation
problem with two penalty terms, solved using alternating directions
method of multipliers (ADMM),5

�bΩs� ¼ arg max
fΩg

 X
s

½ns logdetΩs � traceðΣsΩsÞ� � λ1
X
s

X
i6¼j

jωs
ijj þ λ2

X
s

�
X
s'>s

X
i;j

�����ωs
ij � ωs'

ij

�����
!

(14)

The regularisation parameters were chosen to minimise the difference
package JGL, from cran.r-project.org/web/packages/JGL/index.html.

http://nilearn.github.io/connectivity
http://cran.r-project.org/web/packages/JGL/index.html
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between the group mean connectivity inferred using half of the dataset
and the unregularised mean of the other half of the dataset.

SGGGM The Sparse Group Gaussian Graphical Model (SGGM) pro-
posed by Ng et al. defines group-level connection strengths, and regu-
larises each subject's estimates towards this central representation. A
restricted maximum-likelihood solution, found using ADMM,6 solves the
optimisation problem,

�bΩs� ¼ arg max
fΩg

 X
s

½ns logdetΩs � traceðΣsΩsÞ� � λ1
X
i6¼j

jωG
ij j

þ λ2
X
s

 X
i;j

�����ωs
ij � ωG

ij

��2!2!
(15)

By imposing sparsity on the group network, and using a Frobenius
norm penalty on the difference between elements of subjects' matrices
and the group, it has a hierarchical structure that is very similar in form
to the weakly sparse Bayesian hierarchical model that we propose. The
regularisation parameters were chosen to minimise the distance between
the group mean connectivity inferred using half of the dataset and the
unregularised mean of the other half of the dataset.

Wishart Following Gelman et al. (2014), a simple Wishart prior dis-
tribution is placed independently over each subject's precision matrix,

Ω � W p

�
pþ 1; 1

pþ1 I
�
. This leads analytically to the posterior for each

subject, which we summarise by its expectation.7 The similarity to
Tikhonov regularisation is clear,

pðΩsjSÞ ¼ W p

�
Ωs; pþ 1þ ns; ððpþ 1ÞI þ SÞ�1�

: (16)

Hierarchical Wishart Marrelec et al. (2006) proposed a hierarchical
model for the covariance structure of fMRI recordings. No encourage-
ment of sparsity was introduced in the prior structure, but it makes a
useful comparison point for our hierarchical models. Rather than Mar-
relec et al.'s hierarchy of Inverse-Wishart distributions on covariance
matrices, we use an equivalent hierarchy of Wishart distributions on
precision matrices,

Ωs
��B � W p

�
ν0;B�1

�
: (17)

Marrelec et al. do not mention placing a hyperprior on the group-level
parameters, so we presume they used a flat prior, B � 1. We prefer to use
a very weakly informative prior, and follow Hinne et al. and Gelman et al.
in selecting a very weak Wishart hyperprior for the group connection
strengths,

B � W pð3; IÞ ; (18)

where I is the identity matrix. This model leads to a simple Gibbs
inference scheme,

pðΩsjS;BÞ ¼ W p

�
Ωs; ν0 þ ns; ðBþ SÞ�1� (19)

pðBjΩsÞ ¼ W p

 
B; Nν0 þ 3;

 
I þ

X
s

Ωs

!�1!
: (20)

Marrelec et al. also did not discuss methods for inferring the degrees
of freedom of the group-level prior, ν0, which controls the strength of the
regularisation. There is no simple conjugate hyperprior that can be used,
so we take a simple empirical approach. We set ν0 to be the value that,
under 5 bootstrapped cross-validation splits of the subjects into two
halves, minimises the error between the mean of the partial correlation
6 Matlab code for solving the model was obtained from the authors.
7 If Ω is (G-) Wishart distributed, Ω � W G ðδ;VÞ, then its expectation is

hΩi ¼ δV .
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matrices inferred with the hierarchical Wishart model and the mean of
the remaining partial correlation matrices inferred with the GLASSO,
using mild regularisation (λ¼ 0.01). We run the Gibbs sampler for 1500
iterations, using an additional 1000 as warm-up.

Bayesian GLASSO The Bayesian graphical LASSO of Wang (2012a)
places a Laplace or double-exponential prior on the off-diagonal elements
of the precision matrix,

π
�
ωij

� ¼ λ

2
exp
��λ

��ωij

��� : (21)

For each subject, 3000 samples were drawn using Wang's algorithm,8

after discarding 1000 as warm-up.
SSVS The Bayesian Stochastic Search Variable Selection algorithm

(Wang, 2015) for covariance selection places a mixture of normal priors
on the off-diagonal elements of the precision matrix,

π
�
ωij

� ¼ ð1� aÞN �ωij; 0; v20
�þ a N

�
ωij; 0; v21

�
; (22)

where v0 is chosen to be much smaller than v1 and sampling proceeds
using Gibbs sampling along the columns. We follow Wang's recommen-
dations and set v0 to 0.05, v1 to 2.5 and a to 0.5. For each subject, 3000
samples were drawn after 1000 warm-up samples.9 Neither this model,
nor the Bayesian GLASSO above, has been used for neuroimaging, to our
knowledge.

G-Wishart The G-Wishart distribution is the conjugate prior on the
multivariate normal, describing a single precision matrix Ω, conditional
on the graph G on which it is supported,

πðΩjG ; δ;VÞ ¼ W G ðδ;VÞ

¼ jΩjδ�p�1
2

ZG ðδ;VÞ exp


� 1
2
trace

�
V�1Ω

��
1Ω2ℙG ;

(23)

where V is the scale matrix, δ indicates the degrees of freedom, ZG is the
intractable normalising constant, andΩ is constrained to live on the cone
ℙG of positive definite p� p matrices with zeros indicated by the graph
G .

Most Bayesian sparse precision modelling efforts have focussed on
this prior. Sampling from the G-Wishart distribution, conditional on a
known graph G , can be performed easily (Lenkoski, 2013). Sampling
from the joint distribution ðΩ;G Þ is much harder. A scalable inference
solution is still elusive, and no attempt has been made at a hierarchical
model that could learn the scale matrix V. The most efficient G-Wishart
approach perhaps is set out in Hinne et al. (2015), which applies the
model for inference of subcortical functional connectivity in fMRI.

We fitted the G-Wishart model to the entire dataset concatenated over
subjects, using software provided by Hinne et al.,10 using 5000 warm-up
samples and 10 000 draws from the distribution. We follow Hinne et al.
in using an uninformative prior specification, δ ¼ 3 and V ¼ Ip. Fitting
the model to the concatenated data provides a useful comparison to the
hierarchical models, using all of the data for inference, but assuming that
each subject shares the same network matrix. It would not be computa-
tionally feasible to run the G-Wishart algorithm separately on individual
subjects for the larger network models.

MGGM The Bayesian Multiple Gaussian Graphical Models (MGGM)
approach, proposed by Peterson et al., is a hierarchical generalisation of
the network structure used by the G-Wishart model. It posits that each
subject (or sub-group) can have a different graphical model structure
(although it shares no information about the connection strengths), and
links these models using a Markov random field (MRF) prior,
8 BayesGlasso is available from msu.edu/~haowang/RESEARCH/Bglasso/
bglasso.html.
9 BayesGGM_SSVS is available from msu.edu/~haowang/.

10 ggm_gwish_cbf_direct.m is available from github.com/ccnlab/BaCon/tree/
master/ggm.

http://msu.edu/~haowang/RESEARCH/Bglasso/bglasso.html
http://msu.edu/~haowang/RESEARCH/Bglasso/bglasso.html
http://msu.edu/~haowang
http://github.com/ccnlab/BaCon/tree/master/ggm
http://github.com/ccnlab/BaCon/tree/master/ggm
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πðΩsjG s; δ;VÞ ¼ W G s ð3; IÞ
i<j

p
�
g ij

��vij;Θ�
(24)
Y
p
�
g ij

��vij;Θ�∝ exp
�
vij1TGij þ gT

ijΘg ij

�
where the 1� S binary vector g ij defines the presence of an edge in each
subject, the edge-specific hyper-parameter vij indicates the likelihood of
an edge and is given a Beta hyper-prior. The S� S symmetric matrix Θ
encodes the pairwise similarity of each graph G s, and is in turn given a
spike-and-slab prior.

Unfortunately, the flexibility of this MRF prior also brings complexity:
the computational burden of Peterson et al.'s algorithm11 scales as 2S.
Allowing each subject to have its own sparse model structure becomes
infeasible for most practical purposes. We tested the performance of the
model only for our first simulated dataset of five subjects, using 5000
warm-up samples and 10 000 draws from the posterior. The model would
be more practical for exploring differences in network structure between
two or three groups of subjects.

Single-subject HIPPO A model based on the sparse hierarchical prior
presented here (equation (10)), but simplified for single-subject infer-
ence, was designed as a comparison to the performance of the G-Wishart
model. The prior can be expressed as

ðωiijλÞ � Exp
�
λ

2

�
�
ωij

��zij ¼ 1
� � N

�
0; 0:72

�
�
ωij

��zij ¼ 0
� � δ0

zij � BernoulliðaÞ
a � Betað6; 6Þ

λ � Ga
�
1
3
; 0
�
:

(25)

Inference follows the format above. We use a single chain for infer-
ence, drawing 5000 warm-up samples and 10 000 samples from the
distribution.

Weakly-sparse HIPPO The HIPPO hierarchical model set up without
the explicit sparsity prior. There is still regularisation of the group
connection strengths towards zero—in this sense, it is weakly sparse.
Inference is the same as under the strongly sparse HIPPO model, but
conditional on a full graph: all edge inclusion variables zij are set to 1 (as
described in section 2.3.2, Cauchy priors are chosen that suppress the
mean connectivities towards zero with the subjects distributed around
this point, without imposing absolute edge sparsity). We draw 30 000
samples, with 10 000 as warm-up.

Strongly-sparse HIPPO The full sparse hierarchical model (Hierarchical
Inference of Posterior Precisions in OSL) set out in equation (10). We
draw 30 000 samples in a single chain, with an additional 10 000 as
warm-up.

Analysis
After fitting each model, we compute the root-mean-square (RMS)

error (over edges) between each subject's simulated connection strengths
and the inferred partial correlation matrices. We compare the mean and
standard deviation of this metric over subjects. We also compute the area
under the receiver-operator characteristic (ROC) curve, which traces the
trade-off between specificity and sensitivity in detection of network
edges in the simulated sparse network as a threshold is applied to the
inferred connection strengths. For all of the Bayesian models, we use the
mean of the posterior over partial correlation matrices as the summary
estimate of connectivity in each subject.
11 Software implementing the method is available from odin.mdacc.tmc.edu/
~cbpeterson/software.html.
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Performance evaluation using resting-state data

To evaluate models' ability to accurately reconstruct functional net-
works using real data, we test how well they can estimate connectivity
from very limited samples of fMRI and MEG data. Using the best-
performing models, we illustrate two additional analyses. We look at
the models' ability to predict subjects' biological and behavioural traits
from their fMRI connectomes, and estimate the proportion of variation in
MEG functional connectivity that could be attributable to genetic factors.

Dataset
We use fMRI data from the first 200 subjects of the Human Con-

nectome Project's HCP900 data release (Van Essen et al., 2013). All
subjects provided four 15-min resting-state fMRI scans. We also use the
61 subjects from the MEG2 data release (Larson-Prior et al., 2013), who
provided three resting-state MEG scans of 6mins' duration. All subjects
are young (22–35 years of age) and healthy.

A heritability analysis on the MEG data exploits the family structures
of the subjects. Of the 61, 28 are monozygotic twins and 16 are dizygotic
twins. Zygosity of twin subjects was determined by genotype where
available, and otherwise by self report.

HCP data were acquired using protocols approved by the Washington
University institutional review board. Informed consent was obtained
from subjects. Anonymised data are publicly available online from
ConnectomeDB.12

fMRI preprocessing and predictive analyses
Resting-state fMRI data were acquired with 2mm isotropic spatial

resolution and a temporal resolution of 0.72 s. The HCP provides
comprehensively pre-processed data (Glasser et al., 2013) that are
registered to a standard cortical surface with the MSMAll algorithm
(Glasser et al., 2016; Robinson et al., 2014; a high-quality registration
approach that combines descriptions of brain structure, function and
connectivity from multiple imaging modalities to precisely align func-
tional regions), and for which structured artefacts have been removed by
a combination of independent component analysis (ICA) and FIX (Sali-
mi-Khorshidi et al., 2014), FSL's automated noise component classifier.

We modelled connectivity between the 25 non-contiguous spatial
components, computed by group ICA, that are released by the HCP. For
simplicity, we fitted our models to the concatenated data over all four
scans. We fitted both the strongly sparse and weakly sparse hierarchical
models, running three sampling chains for 40 000 samples in the sparse
model, with 20 000 needed for convergence in the weakly sparse model,
using an additional 10 000 samples as warm-up. Additionally, we fitted
Ng et al.'s SGGM, choosing the regularisation parameters to minimise the
root mean square distance between individual subjects' partial correla-
tion matrices inferred from half of the available data, and unregularised
estimates from the remaining half. Finally, we estimated Tikhonov-
regularised precision matrices for each subject. We followed the pro-
cedure used for the connectomes released from the HCP, applying only
gentle regularisation with λ set to 0.01.

Having computed precision matrices for each subject with these three
methods, and converted into partial correlations (taking the posterior
mean from the Bayesian models as a summary estimate), we fitted linear
predictive models to two traits recorded as part of the HCP: sex, and the
number of correct scores on a picture vocabulary test. We used the partial
correlations on each network edge, for each subject, as the predictors,
after regressing out the confounding effects of age, the square of age, sex
and an age–sex interaction term,13 the cube root of cortical volume and of
intra-cranial volume, both computed with Freesurfer, the software
version for image reconstruction, and an estimate of each subject's mo-
tion in the scanner (rfmri_motion). Sex was predicted using logistic
12 db.humanconnectome.org.
13 These two confounds are excluded when sex is the predicted variable.

http://odin.mdacc.tmc.edu/~cbpeterson/software.html
http://odin.mdacc.tmc.edu/~cbpeterson/software.html
http://db.humanconnectome.org
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regression with elastic net regularisation (Friedman et al., 2010; Zou and
Hastie, 2005).14 Scores on the picture vocabulary test were demeaned
and standardised, and predicted with linear regression using elastic net
regularisation. Parameters for the elastic net were tuned in both cases by
two nested loops of 5-fold cross-validation. Performance of the models
was assessed by computing accuracy (sex) or correlation between pre-
dicted scores and real performance (picture vocabulary task), using a
5-fold cross-validation loop for training and prediction. The stratification
of subjects into the cross-validation folds was designed such that families
were not split over the fold groupings (Winkler et al., 2015).

MEG preprocessing and genetic analyses
Resting-state MEG data were acquired on a whole-head Magnes 3600

scanner (4D Neuroimaging, San Diego, CA, USA). The data were pre-
processed to compensate for head movement, to remove artefactual
segments of time from the recordings, identify recording channels which
are faulty, and to regress out artefacts with clear artefactual temporal
signatures (such as eye-blinks or cardiac interference) using ICA (Lar-
son-Prior et al., 2013). Sensor-space data were down-sampled from
509 Hz to 300Hz, with the application of an anti-aliasing filter.

MEG data from each session were source-reconstructed using a scalar
beamformer (Robinson and Vrba, 1999; Van Veen et al., 1997; Woolrich
et al., 2011). Pre-computed single-shell source models are provided by
the HCP at multiple resolutions, registered into the standard co-ordinate
space of the Montreal Neuroimaging Institute. Data were filtered into the
1–30 Hz band before being beamformed onto a 6mm grid using nor-
malised lead fields. Covariance estimation was regularised using prin-
cipal component analysis (PCA) rank reduction (Woolrich et al., 2011).
The rank was conservatively reduced by five more than the number of
ICA components removed during preprocessing. Source estimates were
normalised by the power of the projected sensor noise. Source-space data
were filtered into the beta (13–30 Hz) band, which is associated with a
range of resting-state network profiles (Baker et al., 2014; Brookes et al.,
2012, 2011; Colclough et al., 2015; Hipp et al., 2012; Mantini et al.,
2007; de Pasquale et al., 2012, 2015) and exhibits strong heritability in
its functional connectivity profile (Colclough et al., 2017). We employed
the parcellation from Colclough et al. (2016, 2017), which consists of
contiguous regions extracted from components of an ICA decomposition
of the resting-state fMRI recordings of the first 200 HCP subjects. A single
time course was constructed to represent each node, following Colclough
et al. (2015), as the first principal component of the ROI, after weighting
the PCA over voxels by the strength of the ICA spatial map. This analysis
yielded 39 time courses for each resting-state session. Spatial leakage
confounds were reduced using a symmetric orthogonalisation procedure
(Colclough et al., 2015) to reduce shared signal at zero lag between the
network nodes. Lastly, power envelopes of the leakage-reduced ROI time
courses were computed by taking the absolute value of the Hilbert
transform of the signals, low-pass filtering with a cut-off of 1 Hz, and
down-sampling to 2 Hz (Luckhoo et al., 2012). Time courses were
concatenated over sessions for the purpose of functional connectivity
estimation.

We estimated functional connectivity in the same manner as for the
fMRI data, using both the strong and weakly sparse HIPPO models, Ng
et al.'s SGGM and lightly Tikhonov-regularised inversion of the sample
covariance matrices. Identical inference procedures were followed to the
fMRI data.

The mean heritability of functional connectivity was estimated from
an ACE model, computed using APACE (Chen et al., 2014).15 The ACE
model is a linear variance-components decomposition that ascribes a
portion of the variability in each phenotype (functional network
14 Junyang Qian's Matlab implementation of Friedman et al.'s Glmnet algo-
rithms is available from web.stanford.edu/~hastie/glmnet_matlab/.
15 The Advanced Permutation inference for ACE models software is available
from warwick.ac.uk/tenichols/apace.
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connection) to either additive genetics (A, h2), developmental and
common environmental factors shared between twins (C, c2) and other
unmodelled variabilities and noise sources (E, e2). The twin structure of
the HCP dataset is sufficient to infer on all three components of the
model; see Chen et al. (2014) and Chen (2014) for details. This analysis of
heritability replicates previous work (Colclough et al., 2017), although
with a smaller set of subjects. To provide comparable results, we followed
similar analysis steps by fitting the ACE models to correlation matrices,
rather than to partial correlation matrices. (For the Bayesian models, we
summarise the connectivity for each subject as the posterior mean of the
distribution over correlation matrices.) This decision was originally
made as correlation matrices are among the most repeatable forms of
network analysis in MEG, with better reliability than partial correlation
matrices (Colclough et al., 2016). Heritability (h2) was computed for
each network edge, after regressing out the effect of age, the square of
age, sex, an age and sex interaction, the interaction between sex and the
square of age, the cube root of intra-cranial volume and of cortical vol-
ume (both estimated with FreeSurfer), a measure of subject motion from
fMRI recordings (a proxy as no motion measure is available for the MEG
scans), an estimate of the noise passed by the beamformer for each
subject, and finally two measures of node power, one formed from the
standard deviation of the MEG power envelope and the other from the
coefficient of variation of the power envelopes. The mean heritability
was computed over the network connections, with 95% bootstrapped
confidence intervals estimated using 10 000 sub-samples of the data, and
permutation-based p-values computed using 1000 relabellings of the
twin pairs.

Performance evaluations using limited data
Lastly, we estimated functional connectivities with the strongly and

weakly sparse hierarchical models (HIPPO) for each meg and fMRI
subject using only a small portion of the available data: the first resting-
state session (of 6 min) in MEG and the first 5min of recording for fMRI.
This allows us to compare network estimations from limited amounts of
data to the assumedly much more accurate estimates derived from the
entire dataset. Tikhonov estimates from the full datasets (18min and
60min, respectively) were computed using the HCP's standard setting of
the regularisation parameter λ to 0.01. Additionally on the restricted data
samples, we tested network estimation using the same Tikhonov regu-
larisation approach; naïve covariance inversion; the original GLASSO,
Varoquaux et al.'s group GLSSO, Ng et al.'s SGGM, Danaher et al.'s fused
glasso, and Peterson et al.'s MGGM. Where appropriate, regularisation
parameters were chosen to minimise the distance between individual
subjects' network matrices inferred from half of the available data, and
unregularised estimates from the remaining half.

Results

Inference of simulated sparse networks

The performance of the strongly sparse and weakly sparse Bayesian
hierarchical models presented in section 2 is compared with that of 13
additional models, over 10 different simulated datasets, in Fig. 2. The
models are summarised in Table 3 and the datasets in Table 2. It is worth
noting some general trends. Firstly, as the amount of data increases for
inference, covariance estimation becomes less noisy and the error in
reconstruction goes down (Fig. 2, simulations 1–4). Of particular note is
the difference between datasets 1 and 2, where the number of subjects
increases but the amount of data per subject is constant. The hierarchical
Bayesian models are able to use this increase in information to reduce
reconstruction error, whereas models fitted to individual subjects self-
evidently are not. Secondly, attempting to perform inference on preci-
sion matrices without any form of regularisation is in general a bad idea:
all methods tested outperform the simple inversion of the sample
covariance matrix. Thirdly, in these simulations of sparse networks,

http://web.stanford.edu/~hastie/glmnet_matlab/
http://warwick.ac.uk/tenichols/apace


Fig. 2. Comparison of sparse network modelling methods on simulated datasets. The rms error between the simulated precision matrices and estimated precision
matrices is shown for 10 multi-subject artificial datasets, using 15 different models for inference (indexed by colour). The error is expressed as a proportion of the rms
error from a simple partial correlation estimate (naïve matrix inversion). Bars indicate the mean error over subjects, with the standard deviation over subjects given by
the associated dark red line. Datasets 1–5 have no subject-variability in the simulated networks; subject variability increases through datasets 6–10. With limited
subject variability, models fitted to the concatenated data perform the best. As this variation increases, the Bayesian hierarchical models win out. There is no result for
the fused GLASSO on simulation 5, because the model would not run in a feasible time-frame (it would take longer than a week). Inference for the MGGM approach
was only possible in the first, six-subject dataset.

Fig. 3. Comparison of network modelling methods' ability to discover network structure. The area under the ROC curve for discovery of the underlying graph
structure is shown for 16 models (indexed by colour) applied to 10 multi-subject artificial datasets. Bars indicate the mean area under the curve over subjects; the
standard deviation over subjects is given by the dark red line. All subjects in these datasets share the same network structure, so the models fit to the concatenated data
perform well. Apart from these, the sparse hierarchcal models (both Bayesian and not) generally outperform the rest. A score of 1.0 for a particular model indicates
that there exists a threshold that perfectly identifies the network graph when applied to the inferred connections. A score of 0.5 indicates no better performance
than chance.
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models which build in explicit sparsity with spike-and-slab priors (the G-
Wishart models and the single- and multi-subject sparse HIPPO models)
show improved reconstruction compared to models with differentiable
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regularisation terms (e.g. GLASSO) or continuous priors (the Bayesian
GLASSO and the weakly sparse HIPPO). Fourthly, in simulations with
little-to-no between-subject variability, models fitted to the concatenated



Fig. 4. Estimation of network matrices from small samples of data. Single-
subject networks estimated from the first 5 min of resting-state fMRI data (A),
and single-subject networks estimated from the first resting-state session of MEG
recordings in the beta band (B), were compared to the average of each subject's
complete data, for each modality. Networks were estimated using the strongly
and weakly sparse hierarchical model HIPPO, Ng et al.'s SGGM, with the
graphical LASSO, Varoquaux et al.'s group GLASSO, with Tikhonov regularisa-
tion and with unregularised partial correlation. The results were compared in
each subject to a mildly Tikhonov-regularised estimate from all three sessions'
concatenated data; the RMS error from this estimate is displayed as a percentage
of the mean connectivity of each subject's network matrix. Coloured dots
identify individual subjects. Black crosses denote the mean of each distribution.
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group data perform the best (unsurprisingly). However, as the variability
between subjects increases, the hierarchical models that allow individual
subject network estimation win out.

The best performing non-Bayesian model is Ng et al.'s hierarchically-
structured SGGM. In a similar fashion to our weakly sparse HIPPO prior,
it uses a regularisation term to encourage similarity between subjects'
networks and the group connectivity, as well as suppression of group-
level connectivities towards zero. It performs well on the small datasets
with no subject variability, although the strongly sparse Bayesian hier-
archical model produces better estimates on datasets 1–3 (albeit by a
very small margin). On datasets 5–10, SGGM is beaten by both hierar-
chical Bayesian models.

We also evaluated each model's ability to discover the underlying
structure of the simulated GGMs. Fig. 3 shows the area under the ROC
curve for each model, indicating its ability to identify the GGM of each
dataset. In general, Bayesian models with explicit sparse priors (the G-
Wishart and the sparse HIPPOmodels) outperform Bayesian models with
continuous priors. Ng et al.'s SGGM is the best-performing non-Bayesian
model. It underperforms relative to the HIPPO models on datasets 6, 8
and 10, but outperforms them on datasets 1 and 9, giving no clear overall
best performer.

No results are given for the fused GLASSO on the largest dataset,
number 5, or for the MGGM approach on datasets other than the first,
because inference times exceeded a week, without convergence.

In summary, these simulations demonstrate that more accurate
individual-subject connectivity estimation is possible with our hierar-
chical Bayesian framework than with the existing approaches. Discovery
of graphical model network structure, too, is at least as good as the state
of the art. Close competition comes from the SGGM approach, which,
although not Bayesian, has a very similar hierarchical model structure.

Network estimation from limited datasets

A useful metric for assessing improvements to network estimation
using real data is the ability of a model to estimate connectivity from a
short section of a recording. We compare beta-band network matrices
inferred from resting-state MEG recordings from the HCP, using either all
three sessions of data, or only a single 6-min session of data. Additionally,
we compare fMRI network matrices inferred from resting-state HCP data,
using either all four sessions of 15min, or only the first 5min of
recording. Treating networks inferred from the full datasets using mild
Tikhonov regularisation (λ¼ 0.01) as a good approximation of ‘the
truth,’ Fig. 4 compares the RMS differences to these estimates from seven
inference methods, which only had access to the first portion of the data.

In the fMRI data, the two Bayesian hierarchical models (HIPPO) and
the hierarchically-structured SGGM significantly outperform the stan-
dard regularised solutions, producing a reduction in error that is on the
same order of magnitude as the subject-to-subject variation in this metric.
They also outperform the group GLASSO of Varoquaux et al. (2010),
which performedwell on our simulated data. In theMEG data, the weakly
sparse HIPPO model performs similarly well, while the strongly sparse
Bayesian model and SGGM are not able to beat the group GLASSO.

A paired t-test for a difference in mean performance between the hi-
erarchical models (including SGGM) and the group GLASSO, conducted
non-parametrically using 5000 sign flips of the difference between pairs,
gave p <0.001 for each hierarchical model in the fMRI data, and p <0.01
for the weakly sparse hierarchical model in the MEG data, without
adjusting for the multiple tests. These results equate to a mean improve-
ment in estimation compared to GLASSO, with standard deviation over
subjects, of 18�6% (0.7�7%) for the sparse HIPPO model, 19�5%
(14�6%) for the weakly sparse HIPPO model, 20�4% (6�7%) for sggm
and 8�2% (14�6%) for the group GLASSO on the fMRI (MEG) data.

It is worth noting that the weakly sparse hierarchical model can beat
the original GLASSO, in both modalities, even when the regularisation
parameter for the latter is chosen with knowledge of the correct solution—in
other words, when it is allowed to cheat. If λ is chosen for each subject so
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as to minimise the difference between the estimated network and the
solution used here as truth, the proportional error with standard devia-
tion over subjects for the GLASSO estimate is 82�8% for fMRI and
83�7% for MEG. The hierarchical Bayesian model can therefore reduce
network estimation error to an extent that is better than GLASSO would
ever be able to achieve.

The fused graphical LASSO of Danaher et al. and Peterson et al.'s
MGGM approach, other models that performed well on simulations, did
not approach convergence on these short datasets even after five days of
computation on a MacBook Pro (with a 2.8 GHz processor and 16 GB of
RAM). Cross-validation of the parameters and computation of a solution
was therefore unachievable in a sensible time frame, and results from
these methods are not available for comparison.
Heritability of MEG functional connectivity

To further illustrate the performance of the hierarchical models, we
repeated a previous analysis of the heritability of functional connectivity
with HCP data (Colclough et al., 2017) using the best-performing models
from our evaluations: the two Bayesian hierarchical models and sggm.
The hcp dataset is a twin study, and the variability within the functional
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connectomes of the subjects is determined, in part, by genetic and shared
environmental effects (Colclough et al., 2017). Heritability, h2 (A), is the
proportion of variance in a phenotype that can be explained by additive
genetic factors. It is estimated using linear decompositions of the vari-
ance into heritability, the environmental effect shared between twins, c2

(C), and any other unmodelled variance sources and noise, e2 (E).
Improving the quality of network matrix estimation, therefore, with a
hierarchical model that is blind to the twin structure of the data, should
reduce estimates of e2 and increase estimates of heritability.

We fitted ACE models on each edge, and analysed the average heri-
tability over the edges, computing bootstrapped confidence intervals and
permutation-based tests for significance (results shown in Fig. 5B). To
allow easy comparison to the previous work, we fitted the models to
correlation matrices: those estimated from the sample covariance matrix,
from the SGGM model, and correlation matrices estimated from inver-
sion of precision matrices, regularised using the hierarchical inference
procedure. Using the hierarchical models, the estimates of heritability
(with 95% confidence intervals in square brackets) increased from 16%
[11%, 22%] (original estimate) to 22% [15%, 32%] (weakly sparse
HIPPO), 23% [16%, 35%] (sparse HIPPO) and 24% [15%, 38%] (SGGM).
(Uncorrected permutation-based p-values computed for each respective
model are 0.01, 0.01, 0.003 and 0.02.) This increase in heritability is
related to a reduction in the residual variance (noise and any other fac-
tors unexplained by genetics, shared environmental, maternal effects,
motion, age, sex or brain size) of 7 percentage points for the Bayesian
models and 10 percentage points for SGGM, from an original estimate of
76% for e2. This corresponds to a noise reduction of about 10% by using
these hierarchical models. These differences are not explained by any
random variation in noise or sampling, as exactly the same data were
passed into each of the covariance models. Group mean networks for the
four models are given in the supplementary information.
Fig. 5. Performance of the hierarchical model. (A) Prediction of sex (top) and
picture vocabulary scores (bottom) from fMRI functional connectomes. The corre-
lation between scores on a picture vocabulary test and the predicted scores after
training a regression model using resting-state fMRI functional connection
strengths is shown, together with the accuracy in prediction of subjects' sex
using a similar logistic regression model. Results are presented for standard
Tikhonov-regularised network inference, and for networks inferred using the
weakly sparse and strongly sparse versions of the hierarchical model (HIPPO),
and for the hierarchically-structured SGGM. Black crosses indicate results from
each of five cross-validation folds; the orange circle indicates the mean of these
scores. (B) Estimation of the mean heritability of functional connections in the MEG
beta band. Heritability estimates are compared between the two versions of the
Bayesian hierarchical model, SGGM, and estimation using sample covariance
matrices, as performed for Colclough et al. (2017). Bars give the estimated
proportion of variability attributed to additive genetics, on average over all
connections, and the error lines denote 95% bootstrapped confidence intervals.
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Trait prediction using fMRI functional connectivity

The HCP has released an analysis of the ability of functional con-
nections to predict a wide range of biological and behavioural traits,16

using all 841 subjects with resting-state fMRI recordings, suggesting that
in some cases there is discriminative information embedded within the
functional connectome. To illustrate the application of hierarchical
models to predictive modelling, we target two of the megatrawl's more
successful traits, scores on a picture vocabulary test (a measure of crys-
tallised intelligence17), and sex. Fig. 5A presents a comparison of pre-
dictive performance on these two measures using partial correlation
networks estimated using Tikhonov regularisation (the algorithm
employed in the HCP's disseminated networks), SGGM, and the (poste-
rior mean) partial correlation networks inferred using the strongly sparse
and weakly sparse hierarchical models. In all cases, the differences in
predictive ability between the models is smaller than the error on the
cross-validated estimate (although there is no difference in sampling or
random variation between the methods). The correlation between scores
on the picture vocabulary test and the predicted responses are slightly
worse (by a few percent) for the hierarchical models, whereas there is a
slight improvement in accuracy for the prediction of biological sex
(although the accuracies are so close to 0.5 that it is difficult to have
confidence in the performance of any model). We were principally
interested in the differential prediction ability of the models, so permu-
tation tests to look for significant classification have not been performed.

The group average functional connectivities inferred by the four
models are very similar (too close to see major differences when
connection strengths are displayed on a heat map). The (posterior mean)
group-average partial correlation network for the sparse hierarchical
model HIPPO is shown in Fig. 6.18 The posterior for the edge inclusion
variables gave very high probabilities (over 99%) for all connections,
presumably because the quantity of data in an hour's total recording time
is sufficient to provide evidence for connectivity between all nodes, even
if this connectivity is small in some cases. This point is explored further in
the supplementary information, section C.3.

Discussion

We have presented two hierarchical models for the functional con-
nectivity measured with EEG, MEG or fMRI. One uses continuous priors
to regularise the estimation of weak connectivities. The second explicitly
promotes a sparse network structure, and provides posterior probabilities
of a connection on each network edge. Both models characterise con-
nectivity by the partial correlation between activations in ROIs, and
jointly infer connection strengths for individual subjects and the popu-
lation average. This ability to perform joint inference at both levels of the
hierarchy, sharing information between subjects and regularising
connection strengths towards the group mean, is an innovation in
Bayesian covariance modelling, previously only possible for functions of
linear effects (Gelman et al., 2014).

Accurate estimation of precision and covariance matrices is difficult
and noisy. Most techniques designed to address this problem regularise
weak elements of the matrices towards zero with some sparsity-
promoting scheme. The importance of estimating precision matrices
with some form of regularisation is clear in Fig. 2, where over many
different datasets, even a simple approach like Tikhonov regularisation
or GLASSO can reduce the reconstruction error by a third to a half. In
16 Available at db.humanconnectome.org/megatrawl/.
17 Crystallised intelligence is defined by Wikipedia (on the 21st August 2016) as
‘the ability to use skills, knowledge, and experience. It does not equate to
memory, but it does rely on accessing information from long-term memory.’
This is in contrast to fluid intelligence, which characterises an ability to reason,
deduce and to solve novel problems.
18 Figure produced using Paul McCarthy's visualisation tool in FSLNets.

http://db.humanconnectome.org/megatrawl/


Fig. 6. Group average functional network for the HCP fMRI data. Posterior
mean of the group average partial correlation network, computed using the
hierarchical model (HIPPO). The results obtained using the Tikhonov-
regularised, SGGM, or weakly sparse HIPPO models are visually identical.
Numbers and brain slices indicate the ICA components which act as network
nodes. The width and colour of the connections indicate the strength of the
partial correlations (red for positive correlations, blue for negative).
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simulations where we introduced some between-subject variability, the
hierarchical Bayesian models outperform a wide range of methods that
represent the state of the art in inverse covariance modelling. The non-
Bayesian SGGM performs nearly as well. We note that this method has
a very similar hierarchical structure to our ‘weakly sparse,’ continuous-
prior Bayesian model, with terms designed to regularise subject con-
nectivities towards the group and the group connectivities towards zero.

Hierarchical model structures and the partial pooling of information
over subjects can be most useful when limited data are available within
each subject (Gelman et al., 2014). Compare, for example, the
improvement in matrix reconstruction for simulations 2–4, in Fig. 2, for
which the number of subjects and network nodes remains constant, but
the amount of data available within each subject increases. The hierar-
chical models do well in each case, but the differential improvement over
more basic models is largest for the case with the least data. We observe
the same effect in our studies of real data. Network estimation with a
limited subset of both fMRI and MEG recordings can be greatly improved
using the hierarchical models (see Fig. 4). The key point is that the
quality of single-subject connectivity inference is enhanced, using com-
monalities between subjects to reduce the noise within each. Thus, es-
timates of the heritability of functional connectivity using meg beta-band
data are increased (Fig. 5B), because a portion of the noisy variability
within the dataset is reduced.

There are two areas in our results where the hierarchical models are
not the top performers. Despite their success in the MEG heritability
analyses, SGGM and the strongly sparse HIPPO model give mediocre
results when applied to the limited subset of MEG recordings (Fig. 4B).
However, meg networks are very noisy to estimate in comparison to fMRI
(Colclough et al., 2016). The level of scan-to-scan variability may mean
that the combination of three sessions that form our ‘ground truth’ is still
not enough data to build a representative picture of each subject's
functional connectivity, thereby skewing our results. The other area is in
the quality of biological and behavioural trait prediction using functional
networks estimated from fMRI data. It is possible that functional con-
nectivity encodes very little information that can be extracted by a linear
model about subjects' sex or their scores on picture vocabulary tests
(Bijsterbosch et al., 2018). Alternatively, it may simply be that the
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quantity of data may be dominating the prior, such that the hierarchical
model provides little improvement over simple estimates. In the HCP
dataset, there are vastly more data available for inference in fMRI than
for meg: the total recording time for fMRI is 1 h, for MEG 18min, and in
our analyses we estimate networks with 25 nodes in the former case and
39 in the latter. (Sampling rates are comparable across the twomodalities
because we apply our network models to the down-sampled power en-
velopes of MEG recordings.) We discuss this issue, and illustrate it with a
simulated example, in supplementary section C.3.

Sparsity in functional connectivity matrices provides not only a
mechanism to improve noisy estimates, but can also improve the inter-
pretability of the networks. Our strongly sparse hierarchical model offers
an analyst the ability to draw samples from the approximate posterior
distribution of the graph representing the network structure of their
dataset. They would then be able to construct posterior summaries of any
function of that graph, f ðZÞ. This idea was termed Bayesian connectomics
when it was developed for structural connectivity by Janssen et al. in
2014. Using this fully probabilistic description of the network connec-
tions and their properties would be preferable to testing graph theory
metrics (such as degree centrality or measures of ‘small world’ proper-
ties) over many binary network matrices created with a sliding scale of
thresholds, as is currently common practice. However, while using
MCMC chains to average over different models can provide effective
regularisation of the parameter estimates, making inferences about graph
theoretic functions of the network structure requires two conditions to be
met. The first is basic, in that the analyst must be confident that they have
run the sampling chains for long enough to have obtained a fair repre-
sentation of the posterior. (George & McCulloch caution that the
parameter space is so enormous that a sampler can at best ‘search for
promising models, rather than compute the whole posterior.’) The sec-
ond condition is that they must believe that a network model with a
shared sparsity structure across subjects is a good representation of the
data. We turn to this second assumption now.

The sparse hierarchical model we present expressly shares the sparsity
structure over all subjects: the network structure is therefore considered a
property of the entire population, about which no subject is considered to
deviate. Thismay be plausible, particularly if analyses are restricted to sub-
populations in which this assumption holds (fitting themodel separately to
patients and healthy controls, for example). However, it is also not clear
that any sparsity in functional networks is an accurate biophysical
assumption. We might expect some level of measurable connectivity be-
tween all brain regions, even if this level is small. There is support for this
view from a recent tract-tracing study (G�am�anut et al., 2018), and we note
that inference using the large fMRI dataset gave evidence overwhelmingly
in favour of the full model—that is, themodel with all connections present.
(This observation may however just be a consequence of the amount of
data available, as discussed in supplementary section C.3 and Smith and
Nichols, 2018.) We must also be cautious in drawing strong conclusions
from the estimated graph structure, as other failures of our assumptions,
such as of undirected network influences, linearity of the system or of
network stationarity, may lead to over-confident identification of some
connections in the sparse network. As a result, we suggest that the sparse
model structure can be used for effective regularisation of connectivity
estimation, but that further interpretation of the network structure be
performed with care.

Which models can we recommend for connectivity estimation? A
number are ruled out on inference time alone. The fused GLASSO and
MGGMwere not practical to run on our real-world examples; and the best
Bayesian sparse model for individual connectivity estimation, the G-
Wishart distribution, is impractical for use with moderate numbers of
subjects, or even for single functional networks with 50 or more nodes.
Between the strongly and weakly sparse versions of our HIPPO model,
there was not a clear differentiator in terms of performance, or even in
their ability to detect network edges (Fig. 3). However, in the weakly
sparse model, the need for convergence of the posterior over the edge
inclusion variables Z (which exhibit highly autocorrelated behaviour) is
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removed, so the total run time need not be as long. For example, the fMRI
and MEG results were produced using parallel sampling chains that took
about 14 h to run (for each chain) for the weakly sparse model, and 20 h
for the sparse model. In comparison, the best non-Bayesian solution,
SGGM, is very fast to run, although the search for optimal hyper-
parameters using cross-validation can extend inference times to several
hours on our datasets. sggm performs nearly as well in our simulations,
and just as well in our real-data examples, as the Bayesian hierarchical
models. For inference of individual subjects' connectivities, therefore, we
would recommend either SGGM or our own HIPPO approach.

Our models do, however, pave the way for further development of
connectivity modelling, and not just in the flexibility of the sparsity-
promoting priors that can be accommodated. It would be simple to incor-
porate uncertainty over ROI time course estimation into our algorithm,
usingaBayesiandescriptionof theparcellationprocess.Ourapproachcould
be further integratedwithamore complexmodel inorder to simultaneously
infer both the parcellations and sparse functional networks, for example by
extending the work of Harrison et al. (2015). Outside of neuroimaging,
graphical model determination and covariance modelling are important
techniques in financial analyses, protein network determination and gene
expression modelling. Our hierarchical inference structure could also be
applied to improve network estimation in these fields.

In conclusion, we have presented an advance in functional connec-
tivity and inverse covariance modelling, by designing hierarchical
Bayesian models for the distribution of connection strengths in subjects
set within a wider group or population. We have demonstrated that hi-
erarchical models, both our Bayesian approach and Ng et al.'s SGGM, are
the best available choices for partial correlation models of functional
networks. These models improve the quality of single-subject network
estimates, particularly in small or noisy datasets, with concomitant in-
creases in sensitivity to properties of interest (such as heritability) in the
functional connectomes. Our Bayesian inference program, HIPPO, is
sufficiently scalable to allow it to be applied to conventional neuro-
imaging datasets. The models are applicable both to fMRI and to MEG
data, and we hope they will enable improved inference for studies in both
modalities.
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