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ABSTRACT Shewanella sp. strain Lzh-2 is an algicidal bacterium isolated from surface
water samples collected from Meiliang Bay of Lake Taihu in China. Here, we present the
complete genome sequence of Shewanella sp. Lzh-2. Some functional genes and second-
ary metabolite gene clusters were predicted.

S hewanella sp. strain Lzh-2 was isolated from surface water samples collected from
Meiliang Bay of Lake Taihu in China (1). Strain Lzh-2 exhibited significant algicidal

activity toward several cyanobacterial species (1). Two algicidal substances (hexahydro-
pyrrolo[1,2-a]pyrazine-1,4-dione and 2,3-indolinedione) have been purified from the
culture of strain Lzh-2, and they both possessed strong algicidal activity against
Microcystis aeruginosa, which was reported to be one of the most dominant microor-
ganisms in the cyanobacterial blooms of Lake Taihu (1–3). Overall, the strain Lzh-2 and
its two algicidal secretions have potential applications in controlling cyanobacterial
blooms.

Shewanella sp. Lzh-2 was incubated in beef extract peptone liquid medium (beef
extract, 3 g/liter; peptone, 10 g/liter; agar, 15 g/liter [pH 7.4 to 7.6]) and cultivated with
a shaking speed of 200 rpm at 28°C for 48 h. Genomic DNA was extracted using the
cetyltrimethylammonium bromide (CTAB) method (4). The DNA libraries were prepared
using a SMRTbell template prep kit 1.0 (PacBio, USA), and the DNA fragments gener-
ated were tested with an Agilent Bioanalyzer 2100. The fragments longer than 10 kb
were selected using BluePippin (Sage Science, USA) and sequenced using the PacBio
Sequel platform.

The whole-genome sequencing generated 518,801 reads (N50, 9,414 bp), and the
reads were then filtered and assembled into a single scaffold using the Hierarchical
Genome Assembly Process (HGAP) (5) and Canu (6). The genome was circular and con-
sisted of a 4,634,534-bp chromosome with a GC content of 46.31%. A total of 4,023 open
reading frames (ORF) were predicted in the genome using GeneMarkS (7), accounting for
85.85% of the length of the whole genome. Analysis with SignalP 5.0 (http://www.cbs.dtu
.dk/services/SignalP/) (8) showed that 388 of the 4,023 genes encoded secretory proteins.
Genes encoding carbohydrate-active enzymes (CAZymes) were annotated using the
hmmscan tool (9). There were 106 genes encoding predicted carbohydrate enzymes,
which comprised 34 glycoside hydrolases, 23 glycosyl transferases, 5 polysaccharide lyases,
23 carbohydrate esterases, 11 auxiliary activities, and 10 carbohydrate-binding modules.

Five secondary metabolite gene clusters were predicted using antiSMASH 5.0
(https://antismash.secondarymetabolites.org/) (10). The five gene clusters belonged to
five different types of secondary metabolite clusters, including an aryl polyene type
cluster (chromosomes [chr.] 342896 to 386750) synthesizing aryl polyenes (11), a siderophore
type cluster (chr. 1663845 to 1675737) synthesizing desferrioxamine E (12), a RiPP-like type
cluster (chr. 2627252 to 2638091), a beta-lactone type cluster (chr. 2734421 to 2765790)
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synthesizing eicosapentaenoic acid (13), and a ghlE-KS type cluster (chr. 3025122 to
3081331) synthesizing plipastatin (14). The two algicidal compounds, hexahydropyrrolo[1,2-
a]pyrazine-1,4-dione and 2,3-indolinedione, might be the intermediate metabolites of some
of the predicted secondary metabolite gene clusters. However, the biosynthetic pathways of
the two compounds in Shewanella sp. Lzh-2 have not been characterized.

Data availability. This whole-genome shotgun project has been deposited in
GenBank under the accession no. PRJNA694369. The raw data of genome sequencing
have been deposited in the Sequence Read Archive (SRA) database under the acces-
sion no. SRP309231. The version described in this paper is the first version.
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