
ORIGINAL RESEARCH
published: 16 July 2021

doi: 10.3389/fnhum.2021.655576

Frontiers in Human Neuroscience | www.frontiersin.org 1 July 2021 | Volume 15 | Article 655576

Edited by:

Zhen Yuan,

University of Macau, China

Reviewed by:

Prejaas Tewarie,

University of Nottingham,

United Kingdom

Miao Cao,

Fudan University, China

*Correspondence:

Peter A. Robinson

peter.robinson@sydney.edu.au

Specialty section:

This article was submitted to

Brain Imaging and Stimulation,

a section of the journal

Frontiers in Human Neuroscience

Received: 19 January 2021

Accepted: 03 June 2021

Published: 16 July 2021

Citation:

Robinson PA, Henderson JA,

Gabay NC, Aquino KM,

Babaie-Janvier T and Gao X (2021)

Determination of Dynamic Brain

Connectivity via Spectral Analysis.

Front. Hum. Neurosci. 15:655576.

doi: 10.3389/fnhum.2021.655576

Determination of Dynamic Brain
Connectivity via Spectral Analysis
Peter A. Robinson 1,2*, James A. Henderson 1,2, Natasha C. Gabay 1,2, Kevin M. Aquino 1,2,

Tara Babaie-Janvier 1,2 and Xiao Gao 1,2,3

1 School of Physics, University of Sydney, Sydney, NSW, Australia, 2Center of Excellence for Integrative Brain Function,

University of Sydney, Sydney, NSW, Australia, 3Department of Biomedical Engineering, University of Melbourne, Parkville,

VIC, Australia

Spectral analysis based on neural field theory is used to analyze dynamic connectivity

via methods based on the physical eigenmodes that are the building blocks of brain

dynamics. These approaches integrate over space instead of averaging over time and

thereby greatly reduce or remove the temporal averaging effects, windowing artifacts,

and noise at fine spatial scales that have bedeviled the analysis of dynamical functional

connectivity (FC). The dependences of FC on dynamics at various timescales, and

on windowing, are clarified and the results are demonstrated on simple test cases,

demonstrating how modes provide directly interpretable insights that can be related to

brain structure and function. It is shown that FC is dynamic even when the brain structure

and effective connectivity are fixed, and that the observed patterns of FC are dominated

by relatively few eigenmodes. Common artifacts introduced by statistical analyses that do

not incorporate the physical nature of the brain are discussed and it is shown that these

are avoided by spectral analysis using eigenmodes. Unlike most published artificially

discretized “resting state networks” and other statistically-derived patterns, eigenmodes

overlap, with every mode extending across the whole brain and every region participating

in every mode—just like the vibrations that give rise to notes of a musical instrument.

Despite this, modes are independent and do not interact in the linear limit. It is argued

that for many purposes the intrinsic limitations of covariance-based FC instead favor

the alternative of tracking eigenmode coefficients vs. time, which provide a compact

representation that is directly related to biophysical brain dynamics.

Keywords: brain connectivity, neural field theory, effective connectivity, functional connectivity, modeling

1. INTRODUCTION

Brain activity spans many decades of spatial and temporal scale and constantly changes due to
stimuli and internally generated signals (Raichle, 2011). Some of these changes are due to changed
activity (e.g., evoked by stimuli) in the pre-existing brain structure, while others are due to changes
in this structure that alter the activity—i.e., changes in neural connections and their strengths
(Bassett et al., 2011, 2017; Deco et al., 2011; Raichle, 2011; Hutchison et al., 2013a,b; Calhoun et
al., 2014; Kopell et al., 2014; Preti et al., 2017; Babaie-Janvier and Robinson, 2019, 2020). It is thus
of central interest to determine how the latter dynamic readjustments of connectivity are caused
by, and support, signal processing demands placed on the brain during tasks.
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On learning and developmental timescales of 100 s or more,
synaptic connections can be formed and broken and long-
term plasticity plays a key role in optimizing brain responses
(Koch, 1999; Ghosh et al., 2008; Bassett et al., 2011; Kopell
et al., 2014), as do neuromodulatory effects during cognitive
processes and the sleep-wake cycle (Koch, 1999; Tagliazucchi
and Laufs, 2014). Effective connectivity (EC) is defined to be
the strength of connections, direct or indirect, between two
points. On timescales below a few seconds, changes in EC due
to modification of synaptic strengths, firing thresholds, and other
aspects of neural responsiveness can result from a range of
biophysical processes such as adaptation and facilitation (Koch,
1999; Rennie et al., 1999, 2002; Robinson and Roy, 2015),
and these affect EEG activity and evoked responses (Rennie et
al., 1999; Babaie-Janvier and Robinson, 2019, 2020). There the
change in connectivity can be interpreted as part of the response
that implements attention (Babaie-Janvier and Robinson, 2019,
2020). In the intermediate range of roughly 5–100 s, processes
such as plasticity certainly exist that can change functional brain
connectivity, but their role is less understood.

What is perhaps more puzzling than the occurrence of
temporal changes per se is that these often appear to be quite
rapid and widespread (Britz et al., 2010; Cabral et al., 2014;
Hansen et al., 2015; Preti et al., 2017; Michel and Koenig,
2018). Much of the evidence for such changes is from studies of
functional connectivity (FC), which is most commonly defined
to be the covariance of activity at pairs of points and is often
described in terms of patterns termed resting state “networks”
(Friston, 1994, 2011; Raichle et al., 2001; Bullmore and Sporns,
2009; Sporns, 2011; Zalesky et al., 2012; Hutchison et al., 2013a;
Zalesky and Breakspear, 2015; Fornito et al., 2016). The basis for
this definition is the assertion that positively correlated points
are likely to be involved in supporting the same function, an
issue to which we return later where we show that negative
correlations are equally important to the dynamics (Robinson,
2019). Because FC is defined in terms of activity, it is quite
possible for it to change quickly and large-scale activity patterns
are observed to change on timescales as short as 50–100 ms
using EEG and MEG (Britz et al., 2010; Musso et al., 2010;
Van De Ville et al., 2010; Michel and Koenig, 2018), or over
tens of seconds using functional MRI (fMRI) (v et al., 1995;
Damoiseaux et al., 2006; Fox and Raichle, 2007; Britz et al.,
2010; Chang and Glover, 2010; Deco and Jirsa, 2012; Hipp et
al., 2012; Hutchison et al., 2013a,b; Calhoun et al., 2014; Mitra
et al., 2014; Hansen et al., 2015; Chang et al., 2016; Cabral et
al., 2017; Babaie-Janvier and Robinson, 2019; Hunyadi et al.,
2019). Notably, the patterns of activity and inferred connectivity
are similar, but not identical, across different states of arousal,
under both spontaneous and task-based conditions, and when
observed using differing measurement modalities (Peltier et al.,
2005; Smith et al., 2009; Tagliazucchi and Laufs, 2014; Chang et
al., 2016; Robinson, 2019).

Rapid large-scale reorganizations of FC have been reported
by numerous authors working with fMRI, particularly when
matching to libraries of patterns is used in its quantification
(Deco et al., 2011, 2017; Calhoun et al., 2014; Hansen et al., 2015;
Cabral et al., 2017). This is at least in part because matching is

done moment by moment to the most similar of a finite number
of patterns, which necessarily induces apparent rapid interstate
jumps or “switching” even if the actual underlying dynamics
are smooth. Similar sudden jumps between EEG microstates
(which are characteristic large-scale patterns of scalp potential)
have been asserted when a small number of microstates are used
for matching (Britz et al., 2010; Gabay et al., 2018). However,
the latter effect has been shown to be consistent with smooth
evolution (no jumps) being projected onto the nearest discrete
microstate at each point in time (Gabay et al., 2018). It would thus
be advantageous to develop methods that allow for continuous
evolution, with sufficient time resolution to follow rapid changes
when and if they occur. The ability to discriminate, if possible,
between effects of changing structure and changing activity on
FC would also be valuable.

One limitation on tracking dynamic FC is that it is most
often measured using fMRI, which is slow and usually involves
calculating the covariance within a sliding window of tens of
seconds in duration (Fox and Raichle, 2007; Bullmore and
Sporns, 2009; Chang and Glover, 2010; Deco et al., 2011;
Hutchison et al., 2013a,b; Allen et al., 2014; Leonardi et al., 2015;
Chang et al., 2016; Hindriks et al., 2016). This limits temporal
resolution and introduces artifacts due to contributions from
fluctuations with periods longer than the window length (Yule,
1926; Leonardi et al., 2015; Zalesky and Breakspear, 2015; Ernst
et al., 2017). This has resulted in a host of attempts to quantify
FC changes and to separate true changes from windowing
artifacts. These have overwhelmingly been statistically based and
have involved many disjoint methods, including correlations
of FC with EC or structural connectivity (SC; i.e., anatomical
connectivity), abstract graph theory, clustering, PCA, ICA,
matching to dictionaries of predetermined patterns and many
others (Arfanakis et al., 2000; Beckmann et al., 2005; Bullmore
and Sporns, 2009; Greicius et al., 2009; Honey et al., 2009, 2010;
Smith et al., 2009; Pernice et al., 2011; Yeo et al., 2011; Fornito et
al., 2013; Leonardi et al., 2013, 2014; Allen et al., 2014; Anderson
et al., 2014; Calhoun et al., 2014; Mitra et al., 2014; Hansen
et al., 2015; Yaesoubi et al., 2015; Eklund et al., 2016; Cabral
et al., 2017; Preti and Van De Ville, 2019), as reviewed by a
number of authors (Deco et al., 2011; Sporns, 2011; Fornito et
al., 2016; Bassett et al., 2017; Preti et al., 2017). As well as many
methods being ad hoc and/or assuming particular connectivity
architectures such as modularity or hierarchy, the relationships
between different methods and their respective results are often
obscure or unknown.

We stress that phenomenological and statistical methods often
yield robust differences between conditions, and can be used to
narrow the range of possible links between phenomena and for
classification and hypothesis testing, but their nature prevents
them from providing direct links to physical mechanisms. In
contrast, physically basedmodels have increasingly exposed these
links in a straightforward way, showing how EC supports activity,
and how correlations and resulting FC can be calculated directly
from EC (Robinson, 2012, 2019; Friston et al., 2014; Robinson
et al., 2014, 2016). It is found that the total EC is equivalent
to the system transfer function that relates outputs to inputs
(Robinson, 2012, 2019), thereby linking such analyses directly to
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engineering control systems (Babaie-Janvier and Robinson, 2018,
2019, 2020). Notably, such approaches explicitly link changes
in EC and/or activity with resulting FC changes, which can be
especially rapid when caused by changes in activity rather than
structure or gain. Moreover, work in the last decade has shown
that the inverse problem of determining EC from FC can be
solved in a wide variety of situations (Galán, 2008; Friston et
al., 2014; Robinson et al., 2014, 2016; MacLaurin and Robinson,
2019; Robinson, 2019; Henderson et al., 2021), as can the
problem of obtaining EC, and hence FC, from evoked responses
(Robinson et al., 2018; Henderson et al., 2021). Figure 1 shows
approximate scales spanned by EEG, fMRI, and low-order modes
and highlights the fundamental difference between statistical and
physical approaches, with the latter prioritizing the system that
generates the activity, with observations and their correlations
flowing as corollaries.

Systematic physically based work on EC-FC relationships has
rested on spectral analysis in which activity, EC, and FC are
all expanded in series of eigenfunctions (also termed natural
modes, eigenvectors, eigenmodes, or just modes) of the system,
analogous to the natural modes of a violin string. This allows the
dominant, large-scale activity and connectivity to be compactly
expressed in terms of just a few modes, leading to dramatic
simplifications in their representation. For example, the 998×998
FCmatrix of (Honey et al., 2009) has nearly 500 000 independent
elements, but can be reduced to just 998 entries that represent
eigenmodes; these in turn are dominated by just a few tens of
entries and can often be approximated by ∼ 10 eigenmodes
and their amplitudes in applications to EEG, evoked activity and
fMRI (Nunez, 1995; Nunez et al., 2001; Robinson et al., 2014,
2016, 2018; Mukta et al., 2019, 2020; Gao and Robinson, 2020).
This compact representation is the fundamental reason that fMRI
and EEG experiments only robustly detect around 10 resting-
state patterns or around 5 microstate patterns, respectively,
against a noisy background.

Unlike statistical components extracted by some varieties of
independent component analysis (ICA) or principal component
analysis (PCA) (Beckmann et al., 2005; Leonardi et al., 2013;
Anderson et al., 2014), or clusters of nodes grouped on the
basis of similarity of correlation (Yeo et al., 2011), eigenmodes
are the natural dynamical modes of the physical system, rather
than statistical constructs, and thus reflect connectivity and
dynamics directly (Robinson, 2012, 2019; Friston et al., 2014;
Robinson et al., 2014, 2016; Gabay et al., 2018). Indeed, if the
aim is to probe dynamics of the actual physical brain, rather
than treat it as a black-box signal generator, one must go
beyond statistics, model-free signal analysis, and phenomenology
to dynamics-based methods. In symmetric cases such as those
obtained by covariance-based FC, eigenmodes form a complete
orthonormal basis, which means that any spatially continuous
activity and connectivity whatsoever can be expressed in terms
of them (Galán, 2008; Friston et al., 2014; Robinson et al.,
2014; Robinson, 2019)—this includes microstates, resting state
“networks” (RSNs), and ICA and PCA components (v et al., 1995;
Beckmann et al., 2005; Fox and Raichle, 2007; Deco et al., 2011;
Anderson et al., 2014)—a key advantage of treating the brain as a
physical system.

For readers who are not familiar with eigenmodes, Figure 2A
shows a simple 1D example of the first few eigenmodes of a violin
string that is fixed at both ends, where displacement is the analog
of changes in brain activity relative to baseline. For a uniform
string, each eigenmode is a spatial sinusoid that oscillates in time
between the two extremes shown; an integer number of half
wavelengths must fit into the length of the string. Key points
worth noting are: (i) The eigenmodes are determined by the
geometry of the string and its boundary conditions—i.e., its
length and fixed endpoints. The endpoints do not move (i.e.,
no change in activity) but are critical to the properties of the
modes. (ii) Each mode occupies the whole string, not a localized
region. (iii) Modes overlap in space and every point on the string
is part of every mode, although some points in each mode (so-
called nodes or zeros) have zero amplitude. (iv) Despite (iii),
modes are independent and do not interact, unless nonlinear
effects are introduced. Even in the nonlinear case, linear spatial
modes remain a useful starting point for spatiotemporal analysis.
(v) There is no part of the string that can be excised and said
to produce one mode of oscillation. (vi) Each mode, except the
lowest, involves both simultaneous positive and negative regions.
Hence, anticorrelated regions are just as essential to the dynamics
as correlated ones and nodal lines of zero activity change will
exist. (vii) Because the lowest mode has the same sign at all points
at a given instant, it tends to induce global positive correlations
relative to any given point, whereas the contributions from other
modes average spatially to zero, so these modes always tend to
cause some other points to be anticorrelated with any given
point. When this mode is deleted, negative correlations must
occur, as has been reported as a result of global signal removal
in fMRI (Murphy and Fox, 2017). (viii) Eigenmode expansion is
illustrated in Figure 2B, which shows how a complex waveform
can be expressed in terms of the amplitudes and phases of the
lowest eigenmodes.

The features noted in the previous paragraph are based on
methods that have been developed and applied over two centuries
in physics and engineering, starting with Fourier (Fourier,
1822; Schiff, 1968; Zwillinger, 1989; Courant and Hilbert, 2004),
and whose properties are extremely well understood. These
attributes contrast withmany inherent in widely used FC analyses
(Robinson, 2019): (i) ICA and PCA do not take into account
geometry. (ii) Resting state networks are usually constructed to
be spatially nonoverlapping. (iii) Use of positive correlations to
define “networks” in some analyses neglects dynamically essential
negative correlations—the supposedly problematic production
of negative correlations when global signals are removed from
fMRI (Chen et al., 2011) is actually an automatic consequence of
removing activity in the lowest mode, which is the only one with
global all-positive correlations. (iv) Thresholding of correlations
deletes modal zeros, which have no activity but are critical in
determining dynamical properties, and selects a few local regions
as being responsible for dynamics. This is akin to retaining just
the highest-amplitude regions of the string in Figure 2A, which
would certainly not produce a note. (v) The common practice
of coarsely discretizing the brain then treating thresholded links
between these regions as being an actual brain network with
graph-theoretic properties such as degree, clustering, modularity,
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FIGURE 1 | Schematic of brain observations and analysis. (A) Approximate spatiotemporal scales spanned by EEG, ERP, and fMRI observations, and by

phenomenological resting state networks and microstates. (B) Phenomenological and statistical links between measurements and constructs. (C) Physical activity

generates the links seen in (B).
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FIGURE 2 | Eigenmodes of a violin string clamped at both ends. (A) First five modes, showing waveform at times (solid and dotted) half an oscillation apart. (B)

Examples of waveforms obtained by superposition of the modes in (A) at times t1 . . . t5, with frequencies proportional to the mode number as in a real violin string,

equal amplitudes, and random initial phases.

and hierarchy is a category error (Ryle, 1949) because there is
no discrete cortical network with such properties at macroscopic
scales. (vi) Many methods ignore the dimensionality and units
of the quantities involved, leading to neglect of relative areas of
regions of interest, for example.

In this paper we use spectral analysis to quantify dynamic
connectivity and constrain its dependence on actual EC changes,
transient stimuli, and windowing effects. Specifically, we
synthesize multiple results from the literature on eigenmode
analysis of brain structure and function to decompose
brain activity in terms of long-term average eigenmodes of
the covariance of activity. These modes form a complete
orthonormal basis, which we demonstrate to be robust to
perturbations—so there can be no rapid wholesale changes
in these dynamical building blocks. We then use these basis
functions to compactly decompose instantaneous brain activity,
EC, and FC in terms of mode amplitudes. These are then used
to probe short term changes in connectivity, plus the effects of
windowing, averaging, natural activity bandwidth, and other
phenomena. Similarly, we show how to express evoked responses
and the system transfer function in terms of these modes and to
approximate them via sparse measurements of evoked responses.

The structure of the paper is as follows: Section 2 briefly
overviews the background theory for an interdisciplinary

readership. It generalizes key results and demonstrates that
eigenmodes of the corticothalamic system have stable spatial
structure under moderate perturbations. Section 3 then discusses
how to analyze dynamic FC in terms of eigenmodes, examines
intrinsic limitations of covariance-based approaches, and points
out advantages of a more direct approach via eigenmode
coefficients. Examples are provided to illustrate the key results in
simple situations, with a summary and discussion in section 5.

2. MATERIALS AND METHODS

In this section we provide the necessary background to
our analysis, generalizing and adapting it as required. We
first outline neural field theory and its relationship to EC,
then introduce eigenmodes and expansions of activity, EC,
and FC in terms of them. This summarizes and elucidates
prior work, cited below, extends prior results, expresses
them in alternative notations that are useful in different
contexts, and clarifies several misconceptions. To keep the
scope manageable we restrict attention to corticocortical EC
and FC but allow for local dynamics, which can include
corticothalamic feedbacks (Robinson et al., 2016; Robinson,
2019).
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2.1. Neural Field Theory
The spatial connectivity scales of interest here range from ∼ 1
mm up to the whole brain, with large-scale patterns seen in
microstates and resting state networks having sizes of several cm
and up. Connectivity is continuous, not discrete, on the scales of
interest (i.e., neurons are not resolved). Hence, we do not need to
analyze individual neurons and neural field theory (NFT) is well
suited to address activity and connectivity (Nunez, 1995; Deco et
al., 2008; Coombes et al., 2014; Robinson, 2019). NFT averages
over neural populations to obtain equations for local means of
quantities such as afferent activity, soma potential, and firing
rate, which underlie observable signals (Nunez, 1995; Jezzard et
al., 2001). Some reviews of its many successful applications to
predict and analyze experimental results include (Deco et al.,
2008; Coombes et al., 2014).

Large scale connectivity is usually assumed to be
approximately linear, which is a good approximation because
axonal outputs are generally proportional to their inputs even
when the points they connect undergo nonlinear dynamics.
Hence, we employ the linear limit of NFT here and make as
few other assumptions as possible about the specific form of the
theory to keep the results as general as possible. We note that if
the equations of NFT are discretized (e.g., for numerical analysis
or coarse-grained approximation), this yields neural mass theory
(NMT), which is often incorrectly asserted to be distinct from
NFT. By proceeding from NFT to NMT one obtains correctly
weighted connections between discretized spatial neural masses,
which is not the case if NMs are simply added to a network such
as an observed connectome.

2.1.1. Integral Formulation
We assume that experimental signals are linear functions of
perturbations Q(r, t) of brain activity from an average steady
state. In the linear regime, one has (Robinson, 2019).

Q(r, t) =
∫ ∫

3(r, t; r′, t′)Q(r′, t′)d2r′dt′ + N(r, t), (1)

where signals travel to a position r at time t from r′ at time t′ with
a strength3, which is the direct effective propagator or direct EC
tensor, and N represents external input (Robinson, 2012, 2019;
Robinson et al., 2014). Figure 3 shows the physical situation
corresponding to Equation (1). In Equation (1) local dynamics,
including interactions between short-range populations such as
interneurons, are absorbed into the structure of 3 (Robinson,
2019), so only long range propagation via white matter fibers is
explicit, as in macroscopic observations.

Before proceeding, we note that the linear assumption in
Equation (1) is well justified as a starting point: (i) Although
the steady states of the brain may be determined nonlinearly,
perturbations from them can be linearly approximated. Linear
approximations have been successful in describing a wide range
of normal phenomena, as noted in the Introduction. Dynamics of
phenomena such as seizures require a fully nonlinear approach,
but are not considered in the present work. (ii) Correlations
of relatively weak activity changes suffice to establish functional
connections. (iii) Spatial connectivity is often approximately

FIGURE 3 | Schematic of the terms in Equation (1) for propagation of activity

to r = (r,t) from r′ = (r′, t′). The total propagator T is the sum of terms

representing direct input I plus, on the right, direct propagation 3, propagation

via neural interaction at one intermediate location r′′, and so forth. Most

commonly arrows indicate propagation between cortical locations via white

matter fibers, while vertexes denote points where local interactions occur,

including via corticothalamic loops.

linear even when local temporal dynamics are nonlinear—output
spike rates from each axon closely follow the rate at which spikes
are generated at its axonal hillock. (iv) Unless the linear case
is understood, it is likely to be premature to try to understand
nonlinear aspects of the problem.

One can re-express Equation (1) in the form

Q(r, t) =
∫ ∫

T(r, t; r′, t′)N(r′, t′)d2r′dt′, (2)

where T is the system transfer function, or total EC (Robinson,
2012, 2019). Note that if N is a delta function, the response is
just T, whence we note that T is the overall Green function of the
system, and corresponds to the widely studied evoked response
(Luck and Kappenman, 2012; Robinson, 2012, 2019; Robinson et
al., 2018; Henderson et al., 2021).

In a system with static structure (we generalize this in
section 3), the correlation function can be used to define a
generalized FC via

C(r, r′, τ ) =
∫

Q(r, t + τ )Q(r′, t)dt, (3)

which is equivalent to selecting the zero-frequency Fourier
component in the spectral domain. In practice, one would
perform this integral over a window long enough that
correlations between activity at opposite ends can be ignored. If
the system structure does not depend on time, 3 and T depend
on time only via the difference τ , so we can use the notations
3(r, r′, τ ) and T(r, r′, τ ). The temporal integrals in Equations
(1, 2) then become convolutions and we can Fourier transform
vs. time to obtain (Robinson, 2012, 2019).

Q(r,ω) =
∫

3(r, r′,ω)Q(r′,ω)d2r′ + N(r,ω), (4)

=
∫

T(r, r′,ω)N(r′,ω)d2r′, (5)

where ω is the angular frequency. Setting τ = 0 in Equation (3)
yields the covariance, which is widely used to define functional
connectivity in fMRI experiments.
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TABLE 1 | Quantities in Equations (1–14) and their SI units.

Quantity SI Unit

Q(r,t) s−1

Q(r,ω) —

Q(ω) —

3(r,t;r′, t′) m−2 s−1

3(r,r′,ω) m−2

3(ω) m−2

3̂(ω) —

C(r,r′, τ ) s−1

C(r,r′,ω) —

Ĉ(ω) —

N0 m2

uj (r) m−1

uj —

κj (t) s−1

κj (ω) —

Not all quantities are listed because N and Q have the same units for the same arguments,

as do (i) 3 and T, (ii) uj and vj , and (iii) κj , θj , and λj .

In the commonly considered case of “resting state” activity,
in which no task is imposed by an experimenter and the subject
is in relaxed surroundings (although the brain is not resting
but is constantly performing background functions Raichle,
2011), background stimuli span a broad range of spatial and
temporal scales after passing through the peripheral nervous
system, which also tends to whiten them to make best use of
available bandwidth. Consequently, numerous applications to
experimental data have shown that background perturbations
N(r,ω) can be approximated by spatially uncorrelated white
noise (Robinson et al., 1997, 2002; Deco et al., 2008; van Albada
et al., 2010; Abeysuriya et al., 2015), with

∫ ∫

N(r, t + τ )N∗(r′, t)d2rdt = N2
0δ

2(r− r′)δ(τ ), (6)

with normalization N0. We then evaluate the Fourier transform
of (3); i.e., the cross-spectral density:

C(r, r′,ω) = N2
0

∫

T(r, r′′,ω)T∗(r′, r′′,ω)d2r′′, (7)

where the asterisk denotes complex conjugation and the integral
is over all r′′.

A key issue that is largely ignored in the literature is that
most of the quantities in the above equations have physical
dimensions and units. If these are not included, serious errors
can occur (Robinson, 2019), such as equating quantities with
different dimensions (e.g., area = volume) or failing to include
relative areas when comparing different discretized regions.
These dimensions are summarized in Table 1 on the assumption
that Q(r, t) has the dimensions of a firing rate.

2.1.2. Matrix Approximation
It is often useful to discretize the above equations on a fine
enough scale that the discretized quantities faithfully represent

the continuous ones. We follow this approach as being the
most convenient to present a number of key results used below;
but revert to the continuous representation when required.
Most importantly, we do not make the mistake of viewing this
discretization as corresponding to an actual discrete macroscopic
cortical network that can be analyzed via graph theory—no such
network exists. Data are always recorded in discretized form, but
not necessarily resolved finely enough to represent the underlying
dynamics faithfully.

For now we limit attention to Equations (4–8) and define a
discrete set of positions rj which are viewed as elements of a
column vector r (we use superscripts to denote vector and matrix
elements to avoid confusion with subscripts, which are used
below to denote different eigenvectors and their amplitudes). The
corresponding Q(r,ω) and N(r,ω) are also column vectors so we
write Equation (4) as (Robinson, 2019).

Q(ω) ≈ 3̂(ω)Q(ω)+ N(ω), (8)

where the elements of the square matrix 3̂ are

3̂jk(ω) = 3jk1Sk, (9)

1Sk being the discrete piece of cortical surface area represented
by rk. The approximation (9) becomes more accurate as the
discretization becomes finer; an analogous definition is used for

T̂. Strictly, 3̂ is a tensor because its rows and columns are indexed
by 2D position, but this does not affect the analysis below. In a
similar way, if we divide by the normalization N2

0 of the assumed

white noise to obtain a normalized version Ĉ of C, Equations (5,
7) become

Q(ω) = T̂(ω)N(ω), (10)

Ĉ(ω) = T̂(ω)T̂†(ω), (11)

where the dagger indicates the Hermitian conjugate (Galán, 2008;
Pernice et al., 2011; Robinson, 2012; Pinotsis et al., 2013; Friston
et al., 2014; Robinson et al., 2014). The covariance, which is
the most commonly used form of FC is given by Equation (3)
with τ = 0, which is proportional to C(r, r′,ω = 0). Most
commonly, the time average is subtracted from the signals
before the covariance is computed and sometimes the result
is normalized.

Using the above notation, Equations (8, 10) yield (Galán, 2008;
Robinson et al., 2014, 2016; Robinson, 2019).

T̂(ω) = [I − 3̂(ω)]−1, (12)

= I + 3̂(ω)+ 3̂2(ω)+ . . . , (13)

3̂ = I − T̂−1, (14)

where I is the unit matrix, the superscript−1 indicates the matrix
inverse, and (13) applies within the radius of convergence. The
coordinate equivalent of the formal expansion in Equation (13)
is Equation (14) of Robinson (2019). In Equation (12), T̂ is the
total response, whereas 3̂ is the part of the response that travels
directly from source to destination, 3̂2 has one intermediate
interaction, and so forth (Galán, 2008; Adachi et al., 2012;
Robinson, 2012, 2019; Mehta-Pandejee et al., 2017; Tewarie et al.,

2020); T̂ and 3̂ are thus total and direct ECs.
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FIGURE 4 | Evoked responses and transfer functions for cases with static EC (green) and dynamic EC (red) starting from the same initial state. (A) Model cortical

evoked responses. The dashed black line shows the contribution of the EC dynamics and adds to the green curve to give the red one. (B) Magnitudes of the

corresponding transfer functions.

2.1.3. Perturbation Analysis
As noted above EC can include transient modifications that
are due to gain changes that can be approximated as part of
the linear response to stimuli (Koch, 1999; Rennie et al., 1999,
2002; Robinson and Roy, 2015; Babaie-Janvier and Robinson,
2020). We treat such effects via perturbation analysis and, in this
subsection only, superscript quantities (0) for unperturbed values
and (1) to denote perturbations. In this case, we can generalize
Equation (8) to yield the following relationship:

Q(1)(ω) = 3̂(0)(ω)Q(1)(ω)+ 3̂(1)(ω)Q(0)(ω)+ N(1)(ω). (15)

This can be understood if we note that Equation (1) is written on
the assumption of static 3̂ = 3(0), so perturbations Q(1) arise
from the effect of 3̂(0) on perturbations Q(1) and direct drive by
the inputs N(1). However, if 3̂ is perturbed by an amount 3̂(1),
there will be another contribution to Q(1) from the effect of the
perturbation on the steady state activity Q(0).

We now suppose that 3̂ is affected by spatially local
feedbacks due to habituation, facilitation, and other processes. In
coordinate notation, we assume that changes in 3(1)(r, r′, τ ) are
driven by local activity arriving at r from r′ and obey a temporal
differential equation. Then, writing indexes explicitly, one has

[

3̂(1)(ω)
]ij

= Z(ω)

{

[

3̂(0)(ω)
]ij [

Q(1)(ω)
]j

+
[

3̂(1)(ω)
]ij [

Q(0)(ω)
]j

}

, (16)

whereZ(ω) is the relevant differential operator, which is assumed
to be the same at all points, but this assumption can be relaxed.
The other factor on the right is the activity arriving at r from
r′, labeled i and j, respectively. Equation (16) can be solved for
[3̂(1)]ij, whence (15) can be written as in Equation (8), but with

3̂ = 3̂(0) + L̂, (17)

[

L̂

]ij
=

Z(ω)
[

3̂(0)
]ij [

Q(0)
]j

1− Z(ω)
[

Q(0)
]j

, (18)

and the transfer function is modified to

T̂ = [I − 3̂(0) − L̂]−1. (19)

Figure 4 shows an example of cortical evoked responses and
transfer functions from inputs to cortical activity, with and
without accompanying EC changes due to gain evolution. These
curves are obtained from a full analysis whose details can be
found in Babaie-Janvier and Robinson (2020), showing that
evoked EC changes (and, by implication, evoked FC changes) can
be substantial. This result implies that one cannot separate the
contributions from 3̂(0) and L̂ without a model that allows the
form and dynamics of Z to be estimated.

Equations (11) and (12) explicitly show the connections
between direct EC, total EC, and resting state FC, thereby
obviating much of the huge literature devoted to probing these
connections via statistical methods such as correlations between
connectivity patterns or connection matrix entries (Greicius et
al., 2009; Sporns, 2011; Messe et al., 2014, 2015; Fornito et
al., 2016; Preti et al., 2017). Equations (15–19) show that the
connections between structural connectivity (SC; i.e., anatomy)
and EC are more complex because it is not only the presence
of connections that is relevant, but also their time-dependent
strength (Britz et al., 2010; Bassett et al., 2011; Deco and Jirsa,
2012; Kopell et al., 2014; Hansen et al., 2015; Leonardi et al.,
2015; Deco et al., 2017; Babaie-Janvier and Robinson, 2019,
2020). However, because only the EC is directly relevant to the
dynamics and the FC, the SC-EC relationship can be viewed as a
separate issue.

2.2. Eigenmode Expansion: Spectral
Analysis
The matrix Ĉ in Equation (11) is Hermitian, so its spatial
eigenfunctions uj form an orthonormal basis set (Schiff, 1968;
Courant and Hilbert, 2004), and are written as column vectors
that approximate the continuum eigenmodes and satisfy

Ĉ(ω)uj = κj(ω)uj, (20)

for some eigenvalues κj(ω), which are discussed below. Note that
in a static structure the uj do not depend on time, just as for the
shapes of the sine waves in Figure 2.

Analogous equations to (20) apply for 3̂ and T̂. Given
Equations (12, 13) these quantities commute and thus have the
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same eigenvectors, vj, with

3̂(ω)vj = λj(ω)vj, (21)

T̂(ω)vj = θj(ω)vj. (22)

If the connectivities are symmetric [i.e., 3(r, t, r′, t′) =
3(r′, t, r, t′)] then vj = uj, so the eigenmodes of the white-noise-
driven covariance are the same as those of the transfer function
and the activity. We assume symmetry for the remainder of the
present work.

Because the eigenfunctions uj form a complete orthonormal
set, one can expand arbitrary activity in terms of them (Schiff,
1968; Courant and Hilbert, 2004); i.e.,

Q(ω) =
∑

j

cj(ω)uj, (23)

cj(ω) = QT(ω)uj, (24)

uTj uk = δjk, (25)

where δjk is the Kronecker delta. Alternatively, in coordinate
notation, one has

Q(r, t) =
∑

j

cj(t)uj(r), (26)

cj(t) =
∫

u∗j (r)Q(r, t)d
2r, (27)

δjk =
∫

u∗j (r)uk(r)d
2r. (28)

One can also expand the connectivities in terms of eigenfunctions
via spectral decomposition. In the symmetric case, one has

3̂(ω) = UL(ω)U†, (29)

T̂(ω) = U2(ω)U†, (30)

Ĉ(ω) = UK(ω)U†, (31)

where U is the unitary matrix whose columns are the
orthonormal eigenvectors and L,2, and K are diagonal matrices
whose nonzero entries are the corresponding eigenvalues
Robinson et al. (2014), Robinson (2019), which satisfy

κj(ω) = |θj(ω)|2, (32)

θj(ω) = [1− λj(ω)]−1, (33)

using Equations (11, 12), respectively. From Equations (10, 30)
we have

N = T̂−1Q = U2−1U†Q, (34)

which describes how to infer the input frommeasurements of the
activity using T. Terms in the power series in Equation (13) have
the form

[

3(ω)
]m = U

[

L(ω)
]m

U†.

The coordinate space equivalents of Equations (29–31) are

3(r, r′, τ ) =
∑

j

u∗j (r)uj(r
′)λj(τ ), (35)

T(r, r′, τ ) =
∑

j

u∗j (r)uj(r
′)θj(τ ), (36)

C(r, r′, τ ) =
∑

j

u∗j (r)uj(r
′)κj(τ ), (37)

where τ = t − t′. Each eigenvector uj, or uj(r) in coordinate
notation, extends over the whole system, with every point being
part of every eigenfunction, as in the example in Figure 2.
However, the diagonal representations in Equations (29–31)
mean that these discrete modes are not coupled, are completely
independent in the linear regime, and can only be linearly excited
by input that has a component in the same mode. Eigenmodes
thus form a fundamentally discrete set of dynamical building
blocks, unlike statistically derived and/or phenomenological
resting state patterns, for example.

Yeo et al. (2011) and others have clustered discretized
brain regions based on their overall patterns of functional
connectivity defined by the covariance. Their analyses also
employed thresholding and sparsification of connectionmatrices,
which we do not do here. Rather, we show that their measure
of similarity of connectivity can be expressed in simple form
using the present methods. The similarity S(r1, r2) of FC patterns
emanating from r1 and r2 is the dot product between the relevant
vectors of functional connections:

S(r1, r2) =
∫

C(r1, r
′)C(r′, r2)dr

′, (38)

where we note that the covariance is symmetric and omit the
argument ω = 0. In matrix notation, the integral corresponds
to multiplication, so

Ŝ = Ĉ2, (39)

and the eigenvectors of Ŝ are those of Ĉ, while its jth eigenvalue is
just κ2j .

The arrows in the schematic Figure 5 show how the various
quantities above, and many others used in the field, are related.
Note that phenomenological statistical approaches are located
toward the circumference while more detailed physical ones are
toward the center.

2.3. Spatiotemporal Structure
So far, we have not introduced any particular theory of the
dynamics of brain activity. To predict the spatial structure of
modes, one needs to introduce a specific model and geometry;
although modes can be inferred from FC data without doing
this, via Equations (29–33) (Robinson et al., 2014; Robinson,
2019). We begin with the illustrative case of a violin string
from Figure 2, then proceed to a spherical-cortex case, which
forms the basis for many of the subsequent arguments where we
generalize to a convoluted cortex. Themethods used are standard
approaches in the physics and engineering literature, but have not

Frontiers in Human Neuroscience | www.frontiersin.org 9 July 2021 | Volume 15 | Article 655576

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Robinson et al. Dynamic Brain Connectivity

FIGURE 5 | Schematic of some of the relationships of brain data, analyses, and applications. Clockwise from the top, categories of brain observables are shown,

followed by measurements, direct and indirect data analyses, resulting models, and applications. In general, smaller radii refer to more dynamic and physical aspects,

while larger radii relate to more static and phenomenological aspects. (Of course, some physical aspects are static and some dynamical analyses are

phenomenological.) Arrows show a subset of the relationships used in the field.

yet been widely used in connectomics; more details can be found
in standard references such as Schiff (1968), Courant and Hilbert
(2004), and Ogata and Yang (1970).

2.3.1. Violin String Analog System
The equation of motion of an undamped, undriven violin string
in response to an impulse stimulus at x = 0 and t = 0 is

∂2Q(x, t)

∂t2
− v2

∂2Q(x, t)

∂x2
= δ(x)δ(t), (40)

where x is the position on the string, v is the velocity of waves, and
Q here represents the displacement perpendicular to the string,
which is the analog of brain activity.

The transfer function is the response to an impulse stimulus
(Zwillinger, 1989; Courant and Hilbert, 2004). Hence T is
obtained by Fourier transforming Equation (40) vs. position and
time to give

T(k,ω) ∝ 1

k2v2 − ω2
, (41)

where k is the wave number, which is the spatial analog of ω.
Because the properties of the violin string do not change in

time, we can solve Equation (40) by the method of separation of
variables, in which we make the ansatz that Q(x, t) is a sum of
solutions of the form

Q(x, t) = u(x)θ(t). (42)
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By substituting the form (42) into Equation (40) and dividing by
Q(x, t), we find

1

v2θ(t)

∂2θ(t)

∂t2
= 1

u(x)

∂2u(x)

∂x2
= −k2, (43)

where k is a separation constant that arises because the other
two members of Equation (43) are independent of x and t,
respectively, so they must both equal a common constant.

Taking the spatial part of Equation (43) yields the Helmholtz
equation and we find

u(x) = a cos(kx)+ b sin(kx), (44)

for some constants a and b. The only orthonormal solutions that
are zero at x = 0, L are

uj(x) = (2/L)1/2 sin(kjx), (45)

where L is the length of the string. The permitted solutions
correspond to the eigenvalues

kj = jπ/L, (46)

where j = 1, 2, 3, . . ..
Once the eigenvalues have been determined, they can be

substituted into the temporal part of Equation (43), the
dispersion equation, to yield

θj(t) = sin(ωjt + ψj), (47)

ωj = kjv, (48)

where ψj is the phase at t = 0. Hence, the displacement
corresponding to a given eigenfunction has a profile that
oscillates sinusoidally in time as well as space. The coefficients
of the modes can be determined from Equation (27) at t = 0.
The standing waves given by Equations (42, 44, 47) can equally
well be interpreted as superpositions of equal-amplitude left- and
right-propagating traveling waves.

This simple example epitomizes the fact that boundary
conditions—where the displacement is zero in this case—break
the symmetry to select a discrete set of eigenfunctions with
specific spatial structure. All modes except the lowest have both
positive and negative regions, so methods that seek patterns on
the basis of clustering around points of high positive correlation
ignore fundamental features of the actual brain dynamics, just as
a children’s seesaw without both its “negatively correlated” ends
cannot function. It is also worth stressing that the 1D Laplacian
operator ∂2/∂x2 appears in Equation (40), which is a wave
equation. A common error in the literature is to presume that the
appearance of this operator means that the dynamics is diffusive
Atasoy et al. (2016, 2018); although the spatial eigenfunctions
are the same in both cases, the dynamics are very different
and must not be confused. Indeed the diffusion equation and
the wave equation are in different families of partial differential
equations—parabolic and hyperbolic, respectively (Zwillinger,
1989; Courant and Hilbert, 2004). Spatial spreading of activity

via wave propagation can also be treated by matrix methods
that include all possible multistep paths with appropriate time
delays (Galán, 2008; Robinson et al., 2016; Mehta-Pandejee et al.,
2017; Robinson, 2019; Tewarie et al., 2020).

2.3.2. Spherical Case
Many common neural field brain models have a transfer function
of the form

T(k,ω) = A(ω)

k2v2 + q2(ω)v2
, (49)

which generalizes Equation (41) to embody an overall frequency
envelope A(ω) plus Laplacian spatial coupling and complicated
local dynamics described by q(ω), which can involve multiple
populations of cortical and thalamic neurons (Nunez, 1995;
Robinson et al., 2002; Deco et al., 2008; Robinson, 2019); the
details of A(ω) and q(ω) do not concern us here but can
be found in the references cited. It is worth noting that the
dynamics described by this type of transfer function have been
widely verified against experiment (see Jirsa and Haken, 1996;
Robinson et al., 1997, 2002, 2014, 2016; Deco et al., 2008 and the
references cited therein) and the spatial coupling implied by the
Laplacian operator closely matches that seen in the brain (Nunez,
1995; Robinson et al., 1997, 2016; Nunez et al., 2001; Mukta et
al., 2019, 2020) and yields eigenfunctions that are very similar
to those obtained from connectivity matrices and anatomical
studies (Robinson et al., 1997, 2016; Braitenberg and Schüz,
1998). Moreover, the topology of a sphere is the same as that of a
brain hemisphere, aside from the 0.5% lacuna where the corpus
callosum passes, so it forms a useful starting point for mapping
and perturbation analysis (Jirsa et al., 2001; Robinson et al., 2016;
Gabay et al., 2018).

To obtain spatial eigenmodes on a sphere of radius Rs we
introduce the usual spherical coordinates ϑ and ϕ and separate
variables in these coordinates and time. This yields discrete
spatial eigenmodes uj on the sphere. In this case, the uj are termed
spherical harmonics and written in the notation Ylm, with

Ylm(ϑ ,ϕ) = clmP
|m|
l

(cosϑ)eimϕ , (50)

clm =
[

(l− |m|)!(2l+ 1)

4π(l+ |m|)!

]1/2

, (51)

where l = 0, 1, 2, . . . and m = −l,−l + 1, . . . , l, and P
|m|
l

is
an associated Legendre function (Dunster, 2010). Real-valued
eigenmodes Ym

l
can be constructed as linear combinations of Ylm

and Yl,−m that give sine and cosine dependences on ϕ (Dunster,
2010); viz,

Ym
l = (−1)m

(

Ylm + Y∗
lm

)

/
√
2, m > 0;

= Ylm, m = 0; (52)

= −i(−1)m
(

Yl|m| − Y∗
l|m|

)

/
√
2, m < 0.

The first nine of these modes are shown in Figure 6 in real
form, which is more convenient for plotting and interpretation,
although the complex form in Equation (50) is easier for the
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FIGURE 6 | First nine real eigenmodes Ym
l on a spherical cortex. In each case the mode is normalized to a maximum amplitude of unity and regions of opposite sign

are shown red and blue as in the color bar.

analytic work below. Note that symmetry implies that these
modes can be rotated through any angle on the sphere and
still remain eigenmodes; however, nonuniformity breaks this
symmetry and removes this degeneracy.

The corresponding eigenvalues are

k2lm = l(l+ 1)/R2s , (53)

which are independent of m because of spherical symmetry.
Setting the denominator of T(k,ω) to zero implies that the wave
dispersion equation is

k2lm + q2(ω) = 0. (54)

Unlike Equation (49), when Equation (54) is solved for ω it does
not usually give a unique solution for a given klm because of the
complex dynamics it embodies; rather, for each mode it typically
gives rise to a series of frequency resonances, to which we return
below (Robinson et al., 2002; Robinson, 2003; Babaie-Janvier and
Robinson, 2018, 2019; Gabay et al., 2018). Oscillations at the
resonant frequency cause the modes to change back and forth in
sign as time passes.

Although the functional form of the spatial eigenfunctions is
more complex on a sphere than a violin string, the same key
aspects remain: they are discrete with eigenvalues determined
by the boundary conditions (a spherical topology and geometry
here), overlap in space because each extends over the entire
cortex, and have essential anticorrelated regions.

2.3.3. Convoluted Cortex
Solution of the Helmholtz equation on the highly convoluted
cortex cannot be done in closed analytical form because of
the complex geometry, although the topology of a cortical
hemisphere still remains that of a sphere if one neglects small
gaps such as where the corpus callosum passes through, as we
justify below. Numerical solution of the NFT equations yields
the real modes ym

l
shown in Figure 7. An appropriate choice

of coordinates yields ym
l

= Ym
l

in the spherical limit, although
more generally, the perturbed eigenfunction ym

l
is a more general

linear combination of the Ym′
l′ dominated by l′ = l (Robinson

et al., 2016). Alternatively, solution of the connection matrix 3̂
obtained from diffusion imaging yields almost identical spatial
structure (Robinson et al., 2016). Unlike the spherical case, the
eigenvalues klm are not degenerate because spherical symmetry
has been broken by the convolutions, which affect the Laplacian
(Jirsa et al., 2001; Robinson et al., 2016; Gabay and Robinson,
2017).

Much insight into the symmetry breaking and resulting effects
on eigenvalues has been obtained by treating the effects of the
convolutions on the Laplacian as perturbations of the spherical
case and applying standard perturbation theory from quantum
physics to calculate the convoluted eigenmodes as perturbed
versions of the spherical ones, with the perturbations expressed
as sums over the unperturbed modes (Schiff, 1968; Gabay and
Robinson, 2017). This proceeds by using the standard Freesurfer
mapping (Fischl et al., 1999; Robinson et al., 2016; Gabay and
Robinson, 2017) tomap the convoluted surface to the sphere (and
vice versa) so as to assign spherical coordinates to every point
for the purposes of calculation. The Laplacian on the convoluted
surface is likewise mapped to the sphere and the difference from
the corresponding spherical value is used as a perturbation.

Figure 8 shows the curvature on one cortical hemisphere
plotted as the ratio of mean curvature κO of an average cortical
template surface (Glasser et al., 2016), which is somewhat less
folded than an actual individual cortex, vs. the curvature κs =
0.148 cm−1 of a sphere of equal area, where the curvature is
defined to be the mean of the two principal curvatures at each
point (i.e., themean of the reciprocals of the two principal radii of
curvature). Despite the large local values of this ratio, and hence
of the Laplacian, the perturbation analysis gave excellent results
and showed that the form of the lowest modes is locked in by
the relatively mild curvature perturbations due to the gross shape
of the brain, as seen in Figure 9, rather than by the more severe
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local perturbations due to highly curved sulci and gyri (Gabay
and Robinson, 2017). The reason for this can be seen from the
structure of the perturbation terms that arise in the calculations,
as we discuss in the next paragraphs.

FIGURE 8 | Ratio κO/κs of one cortical hemisphere’s local curvature to that of

an equal-area sphere vs. position, as indicated by the color bar. Surfaces are

of an average cortical template from the Human Connectome Project (Glasser

et al., 2016). (A) Lateral view of the hemisphere. (B) Medial view. (C) Spherical

projection corresponding to (A), mapped to spherical coordinates via the

standard Freesurfer mapping (Fischl et al., 1999). (D) Spherical projection

corresponding to (B). (E) Sinusoidal projection of the whole hemisphere. (F)

Flat projection of the hemisphere (Fischl et al., 1999).

If we expand perturbations of ∇2 from its spherical form as
sums of Ylm in the spherical coordinates � = (ϑ ,ϕ) defined by
the Freesurfer mapping, we can write the perturbation as (Gabay
and Robinson, 2017).

∇2
pert(�) =

∑

l′m′
al′m′Yl′m′ (�), (55)

where the al′m′ are angular differential operators; resulting
perturbations to the eigenvalues k2

lm
and eigenfunctions Ylm

involve sums over terms with coefficients proportional to Gabay
and Robinson (2017) and Schiff (1968).

∫

Y∗
l1m1

(�)Yl′m′ (�)Ylm(�)d�, (56)

which determine the contribution of mode Yl1m1
to the perturbed

state [see Equations (41, 42) of Gabay and Robinson, 2017
for details]. This integral is related to the Clebsch-Gordan
coefficients of quantum theory (Schiff, 1968; Maximon, 2010); for
it to be nonzero, perturbations must satisfy

m′ = m1 −m, (57)

|l1 − l| ≤ l′ ≤ l1 + l (58)

This means that only perturbations that satisfy (Equations
57, 58) can affect the eigenfunctions or their eigenvalues.
Such selection rules are familiar from conservation of angular
momentum in quantum mechanics (Schiff, 1968) and mean
that the perturbed lm mode can only involve a contribution
from Yl1m1

if perturbations have a component Yl′m′ that satisfies
Equations (57, 58). Hence, because activity and connectivity
patterns are dominated by low-order modes with l . 3, only
low-order perturbations can perturb them significantly. Indeed,
it has been found that the dominant changes to low-order modes
are contributed by modes with the same l (Robinson et al., 2016;
Gabay and Robinson, 2017), which corresponds to coordinate
rotation in the spherical case. Figure 7 shows the first nine real
eigenmodes calculated on the convoluted cortex.

FIGURE 7 | First nine real eigenmodes on a convoluted cortical hemisphere. In each case they are labeled yml by analogy with the Ym
l and normalized to a maximum

value of unity; regions of opposite polarity are colored red and blue as shown in the color bar.
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FIGURE 9 | Second to ninth real eigenmodes vs. cortical folding, with each

row corresponding to one mode, as labeled. Moving from left to right

corresponds to the cortex being gradually folded toward its final shape,

starting from an ellipsoid. In each case the modes are calculated on the

surface using the formulas of Gabay and Robinson (2017) with positive and

negative regions distinguished by color.

In Gabay and Robinson (2017) it was shown that
eigenfunctions with small l and m in the spherical limit are
pinned to specific orientations by large-scale curvature of the
cortex on similar ∼ 10 cm scales to the spatial structure of
the eigenfunctions themselves, whereas the strong, short-scale
curvature due to gyri and sulci on scales of ∼ 2 cm had little
effect, despite being larger in amplitude; this is consistent with
the arguments in the previous paragraph. Departures from
the mean spherical value are large, as seen in Figure 9, but
the perturbation matrix element remains small because of the

mismatch of spatial scales (Gabay and Robinson, 2017). The
circumference of one brain hemisphere is ∼ 60 cm and the Ym

l
have l “wavelengths” (i.e., the typical separation of successive
maximums) in this distance, so a 2 cm scale corresponds to
l ≈ 15 if it represents a half-wavelength. The lack of effect reflects
the selection rules discussed in the previous paragraph and that
the strong local curvature of sulci and gyri contributes only
slightly to low-order modes of the perturbation.

The number of spherical eigenmodes up to and including the
level l is (l + 1)2. Hence, to account for the typical numbers of <
10 microstates or RSNs, we need to focus on eigenmodes with l .
2; activity is also dominated by these modes (Nunez, 1995; Nunez
et al., 2001; Robinson et al., 2001, 2016, 2018; Mukta et al., 2017,
2019). Note that when the bihemispheric brain is considered, the
number of modes is doubled by including combinations of the
present modes that are symmetric and antisymmetric between
hemispheres (Robinson et al., 2016).

Before leaving this section, it is worth stressing that: (i)
Even though the eigenmodes on the convoluted cortex are
complicated, they can be used perfectly well to expand activity
and connectivity via the general formulas in section 2.2, with
sums and integrals performed numerically. (ii) The assumption
of Laplacian coupling in this section is not necessary; eigenmodes
found from measured FC matrices are almost identical because
the underlying Green function of propagation is close to the
anatomical connectivity (Robinson et al., 1997, 2016; Braitenberg
and Schüz, 1998) and analogs of the above analysis in matrix
notation are straightforward. We return to this point in
section 3. (iii) Activity-based eigenmodes assume only linearity
and automatically include the effects of unresolved short-range
and subcortical dynamics and connectivity (Robinson, 2019; Gao
and Robinson, 2020). (iv) These results imply that low-order
modes can compactly represent complex connectivity (Robinson
et al., 2016; Gao and Robinson, 2020). For example, Figure 10
shows the contributions to approximation of an experimental Ĉ
from the first few modes, and the cumulative approximations
obtained by summing them. This demonstrates that as few as 4
or 5 modes can give a good representation of the main features
of the FC. One might wonder how the intricate structure, with
block-like features, seen in Figure 10 can arise from just a few,
smooth, large-scale modes. The reason is that most of the visual
appearance of intricacy is an artifact of the mapping of the
2D cortex onto a 1D list of cortical locations (Henderson and
Robinson, 2011). (v) Comparison of Figures 10B,C shows that
these two modes are almost complements of one another. Hence,
if the relative instantaneous amplitudes of activity in these modes
were to change so that first one dominated then the other, the
FC structure would shift substantially, leading to “switching”
behavior when mapped to the instantaneous nearest of a finite
set of patterns (Hansen et al., 2015).

It is worth noting that eigenfunctions are not direct
equivalents of microstates or RSNs. Microstates are scalp
projections of cortical activity, filtered through overlying tissues,
so they result from activity in superpositions of multiple
eigenstates (Nunez, 1995; Gabay et al., 2018). Likewise, if RSNs
are defined to be spatially nonoverlapping with sharp edges
and are decomposed into eigenmodes without fully taking
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FIGURE 10 | Modal contributions to FC in connection-matrix form, with scale

as in the color bar. (A–E) Contributions from each of the first 5 modes in order.

(F–J) Cumulative sums of the frames on the left. (K) Exact FC.

into account the processing steps that yield them and the
properties of spectral transform (Atasoy et al., 2016), they have
a broad eigenspectrum due to their sharp boundaries rather than
intrinsic structure in the dynamics. Hence, recent claims to have
“explained” RSNs with eigenmodes (Atasoy et al., 2016, 2018)
are incorrect per se, and trivial if all that is meant is that it is
possible to expand RSNs in a series of eigenmodes of a structural
connectivity matrix—this is mathematically guaranteed because
these eigenmodes form a complete orthonormal basis that can be

used to expand any well-behaved function (Schiff, 1968; Courant
and Hilbert, 2004).

2.4. Control Systems Links
If eigenvalues are distinguished by a subscript j, we can
approximate the part ofT that arises from the jthmode as Babaie-
Janvier and Robinson (2018), Babaie-Janvier and Robinson
(2019), and Ogata and Yang (1970).

T(kj,ω) =
∑

p

rjp

ω − ωjp
, (59)

ωjp = �jp − iγjp, (60)

where �jp is the real part of the frequency of pole jp, γjp is its
damping rate, and rjp is its weight in the expansion. The reality
condition on the Fourier transform implies that any pole with
nonzero �jp must be paired with one at −�jp with the same
damping rate, and a weight that is the complex conjugate of rjp.

The form (59) can be interpreted as a sum of PID
(proportional-integral-derivative) filters (Ogata and Yang, 1970;
Babaie-Janvier and Robinson, 2018), one at each pole, having
the standard control-system roles of implementing prediction
and attention via gain control (Babaie-Janvier and Robinson,
2018, 2019, 2020). Each pole corresponds to a resonance in the
response and an enhancement in the EEG spectrum (Babaie-
Janvier and Robinson, 2018, 2019, 2020), although these only
yield distinguishable spectral peaks if the damping is small.

Many authors have noted similarities in the patterns of activity
and connectivity observed at different timescales, ranging from
the . 0.1 Hz of fMRI to tens of Hz in EEG (Honey et al.,
2007; Mantini et al., 2007; Ghosh et al., 2008; Van De Ville et al.,
2010; Hipp et al., 2012; Marzetti et al., 2013; Gohel and Biswal,
2015; Vidaurre et al., 2018; Hunyadi et al., 2019). This is easily
explained by the fact that activity at all frequencies has the same
spatial eigenmodes (Robinson et al., 2016). Corticothalamic NFT
has previously explained how multiple frequency resonances
exist for each mode (unlike in a violin string, where there is only
one frequency per mode) due to the effects of delays in loops
between cortex and thalamus (Robinson et al., 2002, 2016; Deco
et al., 2008; Gabay and Robinson, 2017). Likewise, the connection
between weakly damped resonances and long-range correlations
is a straightforward consequence of the physics—weakly damped
waves are easily excited and propagate long distances (Robinson,
2003), plausibly supporting long-range in-phase communication
via the communication-through-coherence hypothesis (Fries,
2005).

In applications to date it has been found that in the adult
human corticothalamic system the main poles have frequencies
in the traditional slow/delta, alpha, and beta bands at around
0, 10, and 20 Hz, respectively (Gabay et al., 2018). However,
different modes have frequencies differing by ∼ 1 Hz in the
alpha band, for example. This means that the modes can beat
with one another, giving rise to linear and circular polarization
dynamics and directly explaining a number of features and
selection effects in measurements of EEG microstates (Gabay et
al., 2018) without needing the nonlinear mechanisms invoked by
some authors (Roberts et al., 2019).
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3. RESULTS

In the previous section we reviewed and adapted the background
theory and key selection rules for perturbations to affect
eigenmodes. In particular, we noted that some connectivity
changes can be viewed as responses to stimuli and can thus
be absorbed into 3 and T (Rennie et al., 1999; Robinson
and Roy, 2015; Babaie-Janvier and Robinson, 2019, 2020).
We also showed that even strong perturbations that do not
satisfy selection rules analogous to Equations (57, 58) do
not significantly affect eigenmodes. In the present section
we thus use the eigenmodes of the long-term average FC
as a robust basis for expanding all dynamical quantities,
using real eigenmodes without loss of generality. We then
argue that these spatial modes can only be very slightly
perturbed by short-term brain state changes because they are
strongly pinned by overall brain curvature and any other
permanent spatial parameter variations that are present, as
seen in Figure 8, and because the selection rules (Equations
57, 58) prevent significant perturbations by local effects; so
amplitude changes of activity in these modes are expected
to dominate FC dynamics. Finally, we systematically analyze
short-term dynamics by expansion in terms of the robust long-
term eigenmodes.

Having laid this groundwork, we now turn our attention
to treating the effects of dynamic changes in brain EC that
cannot be captured as stimulus responses via equations such as
Equation (16) and which are not part of the long-term (typically
hours or more) structure of the brain. These putative changes
have been argued to be responsible for at least part of the
observed temporal evolution of FC on timescales from tens to
hundreds of seconds, as observed via fMRI (Hindriks et al.,
2016; Bassett et al., 2017). We do not concern ourselves here
with the important and complex issues of removal of artifacts
from signals—e.g., those due to head motion, breathing, and
heartbeat for fMRI, and electrical interference for EEG, except
to note that we assume that we start with the signals that stem
from neural activity, including any global component, which
will have its largest projection into the lowest mode. If the
latter mode is removed, as is commonly done (examples can
be found in Sporns, 2011; Fornito et al., 2016), the FC matrix
will tend to develop more negative entries, as has been widely
observed, because the lowest mode is the only one without
negative correlations between points.

The most common approach to tracking changes in FC is to
calculate covariances of temporally windowed fMRI time series.
As noted in the introduction, windowed covariances have long
been known to give rise to artifacts on timescales of the order of
the window length (Yule, 1926; Ernst et al., 2017). The natural
bandwidth (1f ∼ 0.07 Hz) of spontaneous fluctuations in fMRI
signals, even with static EC, also gives rise to time variations in
correlations on a timescale of∼ 15 s (Pang and Robinson, 2019).
When trying to distinguish the effects of true EC changes wemust
allow for these complications and also set aside evoked changes
on time scales of . 15 s, which accords with observations of
correlation times and simulations (Zalesky and Breakspear, 2015;
Preti et al., 2017).

Numerous methods, discussed in the Introduction, have been
proposed to try to deal with the above issues. Many are based on
blind signal analysis and/or statistics, while others are ad hoc and
often threshold and sparsify data in the interests of simplicity, but
without clear justification; few have any regard to the physical
nature of the system that generates the signals that are correlated
to generate the FC. In contrast, the discussion of eigenmodes in
section 2 shows that the physical nature of the dynamics cannot
be disregarded without sundering dynamical links that one needs
to retain, as illustrated schematically in Figure 1.

Many of the problems with current methods derive from
the intrinsic loss of time resolution imposed by windowing—
shorter windows are more affected by random variations in noise,
whereas long windows lose time resolution. This is a fundamental
limit imposed by Nyquist’s theorem or the equivalent uncertainty
principle and cannot be circumvented by any method. However,
the relative effects can be estimated and one can seek to
distinguish and minimize averaging effects in a systematic way.

3.1. Long-Term Eigenmodes
Stable eigenmodes that are robust with respect to transient system
fluctuations are advantageous as the basis for spectral analysis.
Ideally, these should be based on activity measures, such as
the covariance, to ensure that the effects of spatially unresolved
dynamics and connectivity are included, but estimation of these
modes can be affected by noise. Modes based on solution
of the Helmholtz equation on the cortical surface have also
been shown to be a reasonable approximation, and are not
affected by noise, but do not incorporate short-range effects nor
spatial variations in parameters other than the curvature. We
illustrate both types here but do not address experimental data
processing issues.

fMRI signals reflect neural activity that drives changes in
blood flow and oxygenation. The hemodynamics of these
processes restricts the spectrum of these signals to. 0.1 Hz, with
a plateau below about 0.07Hz, wheremost of the energy is located
(Jezzard et al., 2001; Robinson et al., 2006; Drysdale et al., 2010;
Pang and Robinson, 2019). Hence, if we wish to calculate mean
FC in which the effects of these fluctuations on∼ 30-s timescales
are averaged out, we need to use a window of length tL with
tL & 300 s, but not so great that state changes due to drowsiness
or falling asleep occur, because these can give rise to significant
alterations in FC (Tagliazucchi and Laufs, 2014), presumably due
to changes in relative mode amplitudes.

Because signals are measured on an array of measurement
points (e.g., voxels or discretized regions of interest), we
use matrix notation for the covariance matrix and resulting
connectivities. But we stress that the discretization must be
sufficiently fine to resolve phenomena of interest and reiterate
that one must not confuse the structure of the discrete array
of measurement points with that of a (nonexistent) discrete
macroscale cortical network.

Having calculated the normalized covariance matrix C by
approximating Equation (3) for τ = 0 by truncating the
integral to a long window of duration tL, we obtain its
orthonormal eigenfunctions uj by standard matrix methods.
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FIGURE 11 | First four modes for the left hemisphere. (A) Modes obtained by solving the Helmholtz equation on the cortical surface. (B) Covariance-based modes

obtained from the average of C over subjects in the HCP1200 dataset; for each subject C was calculated for a 14 min recording.

For symmetric connectivity we can obtain T and 3 from
Equations (29–31). More generally, even in the asymmetric
case, spectral factorization methods can be used to calculate
the corresponding nonorthonormal vj in long-term averaged
expressions analogous to Equations (17, 21) if the full correlation
function is retained.

We demonstrate the above steps by using the Human
Connectome Project HCP 1200 resting fMRI dataset (Glasser et
al., 2013). We use postprocessed resting-state fMRI timeseries
that have passed through a data processing pipeline to register
the measurements onto a standard surface (Glasser et al., 2013)
and denoise the data (Glasser et al., 2016) using ICA-FIX. From
this release of the data, we remove subjects whose data exhibited
incomplete artifact removal as identified in Elam (2019), which
yielded a total of 932 subjects. Data are parcellated using the
1000 ROI Schaefer parcellation (Schaefer et al., 2018). To further
reduce noise and the effects of incomplete artfact removal, we
average C over all subject resting state recordings and all 932
subjects. Averaging over individuals restricts us to analyzing
low order modes whose spatial variations are larger than the
sizes of differences between brains of individuals and therefore
relatively unaffected by this averaging compared to high order
modes, but this suffices for the present illustrative purposes.
Figure 11 shows that the first four modes obtained from this
subject averaged fMRI C are consistent with the first four modes
obtained by solving the Helmholtz equation on the curved
cortical surface in section 2.3.3. These low-order C modes are
obtained purely from data, thus confirming that at least the

lowest-order surface-based modes are good approximations,
although noise effects on the activity-based modes increase at
higher mode numbers. It was previously shown that the lowest
ordermodes were also very similar to ones based on the structural
connectivity (Robinson et al., 2016), a fact that follows ultimately
from the close similarity of the white matter distribution to
the kernel of the Laplacian operator when written in integral
form (Robinson et al., 1997). Indeed, the indexes lm of the
Ylm can be used to label the corresponding modes on the
convoluted cortex.

Commonly discussed fMRI RSNs and EEG microstates have
typical linear scales of many cm, so their decomposition must
be dominated by low-order eigenmodes. As shown in Figure 8,
such modes are spatially pinned by the large-scale curvature of
the cortex and even strong localized perturbations do not change
them significantly. Moreover, the large-scale curvature produces
eigenvalue perturbations that are tens of per cent (Robinson et
al., 2016; Gabay and Robinson, 2017). Hence, only large-scale
perturbations of other parameters that satisfy selection rules
analogous to Equations (57, 58) and have an amplitude large
enough to cause similar-sized shifts could potentially change the
modal structure significantly. However, early stages of sensory
processing are transient and localized to specific areas of cortex,
so associated changes will leave large-scale modal structure
almost unchanged, but can be expected to alter the relative
activity levels in these modes, which will also change the FC;
such changes can also result from spontaneous background
neural activity.
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FIGURE 12 | Temporal dependence of mode coefficients. (A) cj (t), for the first nine covariance modes from a single resting state fMRI scan in the HCP1200 dataset

(Glasser et al., 2013). For each mode j vertical axis tick marks are at −0.1, 0, 0.1. (B) The power of each covariance mode 〈cj (t)2〉.

3.2. Instantaneous Activity and
Connectivity Kernels
If we use long-term real eigenfunctions uj to decompose
activity as

Q(r, t) =
∑

j

cj(t)uj(r), (61)

cj(t) =
∫

uj(r)Q(r, t)d
2r, (62)

where the integral is over the cortical surface and the
uj are constructed to be real. In matrix notation, these
equations become

Q(t) =
∑

j

cj(t)uj, (63)

cj(t) = uTj Q(t), (64)

where the superscript T denotes the transpose. Note that
Equations (62, 64) are evaluated by integrating over space at a
fixed time without temporal averaging.

Figure 12A shows an illustrative example of the temporal
coefficients cj(t) of covariance modes obtained from
measurements. The first nine left-hemisphere covariance
matrix mode coefficients, cj(t), are shown for a single subject,
single resting state fMRI scan. Data are from the Human
Connectome Project 1200 Subject Database (Glasser et al.,
2013). The vertex level data are de-meaned and normalized by
the mean before being parcellated into 1000 ROIs using the
Schaefer 17 network parcellation (Schaefer et al., 2018). The
covariance matrix is computed from the ROI timeseries using
Equation (3) with τ = 0, and its eigenvectors are then calculated
using standard matrix methods (e.g., MatLab’s eig function)

to give the spatial component of the covariance modes. The
spatial components of the covariance modes are then projected
back onto the ROI timeseries using Equation (64) to give the
mode coefficients cj(t). Figure 12B shows that the low order
coefficients dominate the power spectrum of the measurements;
relatively fewmodes are required to capture most of the observed
dynamics, in comparison to using an ROI or vertex basis of
hundreds or thousands of coefficients, respectively.

Setting aside the integral over t, the instantaneous kernel of
the correlation function in Equation (3) can now be written as

C̃(r, t + τ ; r′, t) =
∑

j

uj(r)uj(r
′)κj(τ , t), (65)

κj(τ , t) = cj(t + τ )cj(t). (66)

This result decomposes the kernel into a sum of terms that
correspond directly to the eigenmodes and whose spatial
dependence is evaluated without averaging over multiple
temporal measurements. Because the evaluation of the temporal
coefficients cj via Equation (64) involves summation over many
spatial points in the discrete approximation, noise is reduced
without blurring the signals in time. For example, in fMRI
there can be ∼ 104 voxels, so noise is reduced by about a
factor of 100 relative to the single-voxel value at any fixed t,
whereas obtaining the same reduction by using ∼ 104 temporal
measurements would typically take hours, completely average
out any short-term dynamics, and almost certainly involve
connectivity changes due to drowsiness (Tagliazucchi and Laufs,
2014). If necessary, it is still possible to smooth or interpolate
the cj(t) over a small number of time points by fitting a moving
average, for example, to get an improved estimate at any given
time, but we do not use this step in the present work. If
robust uj are available, the above procedure directly projects
out the dominant, large-scale modes of interest in studying
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resting-state fMRI and EEG activity, and suppresses fine-scale
spatial features (of noise and activity) in the process, leaving
them in the higher modes. This is far more straightforward
and mathematically justified than trying to obtain such patterns
directly from correlation matrices of voxel- or ROI-level time
series that are then thresholded, clustered, and/or sparsified to
reduce complexity, and time-averaged to suppress noise.

We can also define the symmetric kernel

κ ′j (τ , t) = cj(t + τ/2)cj(t − τ/2), (67)

which enables us to define the analogs C(τ , t) and K(τ , t) of C(τ )
and K(τ ) in Equations (31, 37); covariance corresponds to τ = 0.
Equation (67) can be Fourier transformed with respect to τ to
obtain K(ω, t), the ω-dependent kernel centered at time t, and
thence, via the analogs of Equations (29–33), the ECs T(ω, t, tF)
and 3(ω, t, tF), where these Fourier-space quantities necessarily
involve integration over a temporal window of width tF to
accomplish the Fourier transform. Hence, there is an unavoidable
trade-off between spectral and temporal resolution, dictated by
the uncertainty principle, and κj(τ , t) will vary with t due to time-
varying activity, even for a static brain structure. Similar results
can also be defined for wavelet transforms.

It is also possible to average κj(τ , t) over a range1t0 of t0; i.e.,

κ j(τ , t,1t) =
∫ ∞

−∞
κj(τ , t + t′)w(t′,1t)dt′, (68)

where w(t,1t) is a weight function with unit integral and a
characteristic width 1t in time. In the limit that 1t → ∞, κ j
approaches its long-term average and the equations in section 2.2
can be used without modification, while at shorter times, we see
from the definition (67) that κj is second order in the amplitude
cj and thus varies on the same timescale as the correlation
time (i.e., inverse bandwidth) of the activity. Correlations of the
covariances measured at different times are sometimes used as
a measure of dynamic FC; however, such correlations are fourth
order in the amplitudes, so it cannot have a longer correlation
time than the usual second-order activity correlation.

Overall, it is worth stressing that all covariance-based
connectivity measures (and by analogy, ones based on other
quantities such as coherence) will vary over time due to
the nonzero bandwidth of the activity from which they are
computed, even if the actual brain effective connectivity is static.
We return to this point below.

3.3. Direct Determination of T
Having obtained the uj from the covariance, for example, one can
construct T in an alternate way that only uses data from time
intervals of order 1 s, and then use it to obtain 3̂. The fact that T
is by definition the response to a delta function stimulus implies
that the response T(r, r0, τ ) to a unit delta-function stimulus at r0
and t = 0 is given by Equation (2) with N(r′, t) = δ2(r′ − r0)δ(t),
which yields

θj(τ ) =
1

uj(r0)

∫

uj(r)T(r, r0, τ )d
2r. (69)

If the eigenmodes are determined via a high resolution method
such as fMRI, or by solutions of the Helmholtz equation,

Equation (69) then enables the coefficients θj(τ ) in Equation (36)
to be determined by EEG with good temporal resolution once
T(r, r0, τ ) has beenmeasured at a number of points. Significantly,
this does not require high EEG spatial resolution because, by
analogy to Fourier transforms, the lowest M/2 of the θj can
be determined by sampling at M points, labeled k. One finds
(Robinson, 2013; Robinson et al., 2018; Henderson et al., 2021).

ak(t) = T(rk, r0, τ ), (70)

≈
M

∑

k=1

uj(rk)uj(r0)θj(τ ), (71)

=
M

∑

k=1

bkjθj(τ ), (72)

bkj = uj(rk)uj(r0), (73)

where Equation (70) defines ak(t) and Equation (36) has been
used in obtaining Equation (71). Equation (72) can be inverted to
obtain the θj(τ ), and thence T, so long as the condition number
of the matrix of the bkj is not too large, which would correspond
to a measurement or stimulus point lying very near a zero of one
of the modes. The simplest solution in such a case is to add or
substitute more measurement points, which would also reduce
the effects of noise.

This procedure enables fusion of high spatial resolution
fMRI data with high temporal resolution ERP time series (see
Figure 1A) via a sparse representation of modes that is analogous
to the use of amplitude and phase to describe Fourier modes
(Robinson, 2013). It does employ long-term eigenmodes, but
does not involve any other windowing of the data, and can probe
rapid changes in response via standard ERP protocols (Luck and
Kappenman, 2012). In principle, by allowing sparse nonuniform
sampling, it also solves the problem of the relatively coarse-
grained resolution of EEG measurements and their inability to
probe activity in sulci (Nunez, 1995).

3.4. Dynamic FC
Functional connectivity is most commonly defined to be the
two-point covariance of signals, often normalized to constant
variance and evaluated using fMRI averaged over a long window
of length tL. However, Yule showed that windowed covariance
can exhibit artifactual dynamics even for a pair of sinusoidal
signals of fixed relative phase, due to the interaction between the
window length and the wave period (Yule, 1926). This analysis
has been extended to two signals generated by Wiener processes,
where the covariance has been found to be volatile even in a
system of fixed structure (Yule, 1926; Ernst et al., 2017), and has
also been revisited by Zalesky and Breakspear (2015), Preti et al.
(2017), and Leonardi et al. (2015), and has been further clarified
above. The problem is to try to separate the covariance changes
that occur due to the finite bandwidth of the activity and the
window length from those due to underlying EC changes.

3.4.1. Violin String Analog System
Here we analyze a simple example of the dynamics of FC under
spontaneous conditions to clarify the roles of bandwidth, mode
beating, and transients, and point out intrinsic shortcomings of
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analysis methods that seek “switching” between patterns from a
precompiled dictionary or cluster-based analysis. To do this we
use a simple 1D two-mode example to examine the ways in which
mode frequencies and bandwidths can affect FC even when there
is no change in the underlying EC. All the results here can be
straightforwardly generalized to includemoremodes, continuous
frequency spectra, 2D effects, and different boundary conditions.

Let us first consider a 1D brain akin to the violin string in
Figure 2, in the absence of damping and regeneration of activity,
but now with periodic boundary conditions that identify the
left and right boundaries with one another and allow nonzero
displacement at all points, including the two points that were
fixed in Figure 2. The lowest mode here is uniform in space and
kj = 2π j/L with j = 0, 1, 2, . . ..

If all the activity is in the lowest two nonuniform modes, and
the transfer function has two pairs of poles at slightly different
frequencies we have

Q(x, t) = u1(x)[sin(�11t)+ sin(�12t)]

+u2(x)[sin(�21t)+ sin(�22t)], (74)

= 2u1(x) sin(�1t) cos(1ω1t)

+2u2(x) sin(�2t) cos(1ω2t), (75)

u1(x) = sin(2πx/L), (76)

u2(x) = cos(2πx/L), (77)

�j = (�j1 +�j2)/2, (78)

1ωj = (�j1 −�j2)/2 (79)

in the simplified case that all poles are of equal strength. Typically,
nonzero mode frequencies in the corticothalamic system are of
order 3–20 Hz (Babaie-Janvier and Robinson, 2018, 2019, 2020;
Gabay et al., 2018) and the frequency difference between poles
in the same band is of order 1 Hz or less (Gabay and Robinson,
2017; Gabay et al., 2018). Moreover, multiple modes typically
have resonances close to each other in a given band (Gabay et al.,
2018). In Equation (74) the mode coefficients vary sinusoidally in
time, but if a form analogous to Equation (59) is used, we can
separate off the sinusoidal part and fully specify the dynamics
by the constant coefficients of these functions, which is even
more compact. More generally, these coefficents may vary on
timescales longer than the period of the oscillations (if they varied
on a shorter timescale, clear oscillations would not be seen).

Equation (75) shows that each mode will display fast
oscillations at each nonzero �j and slow beating at 1ωj.
These have been shown to account for properties of EEG
microstates, including effects that lead to preferential detection
of the particular patterns that occur at the extremums of the
beats (Gabay et al., 2018).

If we write the instantaneous contribution of the above activity
to the covariance as c(r, r′, t, τ = 0) before any temporal
averaging, then

c(r, r′, t, τ = 0) = u1(x)u1(x
′) sin2(�1t) cos

2(1ω1t) (80)

+u2(x)u2(x
′) sin2(�2t) cos

2(1ω2t)

+[u1(x)u2(x
′)+ u2(x)u1(x

′)]

× sin(�1t) sin(�2t) cos(1ω1t) cos(1ω2t),

which gives a FC that is manifestly time- and frequency-
dependent. Again, if averaging is done over the fast oscillations,
only the first two terms on the right remain, modulated by slow
oscillations that arise from the beats, and giving

c(r, r′, t, τ = 0) = 1

2
u1(x)u1(x

′) cos2(1ω1t)

+1

2
u2(x)u2(x

′) cos2(1ω2t). (81)

The FC will thus vary on long timescales ∼ 1/|1ωj|, spending
disproportionately large time intervals near one or other
extremum of the cos2 factors, and switching quasiperiodically
between them; however, these extremums are not “metastable”
(i.e., in stable local equilibrium but with a small margin of
stability relative to other more stable states), contrary to a
misleading usage that has crept into some corners of the
literature; the term “metastable” should not be used to describe
patterns that are merely transient.

Because 1ω1 6= 1ω2 in general, the two contributions in
Equation (76) will gradually drift in and out of phase, so FC
estimates on scales of ∼ 1 s will vary even without any change
in modes, modal structure, or mean activity in the individual
modes. Further averaging over the beat timescales would replace
the cos2 terms by 1/2. Hence, we have three regimes of dynamics
and window-length tL for corresponding averaging: (i) tL ≫
2π/|1ωj|where long-term average FC is recovered; (ii) 2π/�j .

tL . 2π/|1ωj| where beats of activity induce FC modulations
and interact with the window length to give spurious apparent
dynamics; and (iii) tL . 2π/�j where fast oscillations modulate
FC on timescales detectable by EEG methods.

Turning to the spatial properties of Equations (75, 81), we
first note that points where uj(x) and uj(x

′) have the same sign
will be positively correlated, as shown in Figures 13A,B. This
means that there will be strong positive correlations near x =
L/4, 3L/4 for mode 1, but these two regions will be strongly
anticorrelated with one another. Hence, methods that group
regions with high positive correlations into RSNswill erroneously
split each mode except the lowest into two separate RSNs, as
seen in Figures 13C,D, despite it being a single dynamical entity.
Seed-based clustering methods that ignore negative correlations
will thus tend to return four separate RSNs in place of the two
modes in Equation (80). Similar comments apply to methods
that cluster spatial points on the basis of similarity of patterns
of incoming or outgoing connectivity (Yeo et al., 2011). Many of
these methods do find robust patterns of the type they impose,
but they break the underlying dynamical links and suffer from
thresholding effects, artificial discretization, omission of negative
correlations, assumptions of nonoverlapping patterns, and/or
other restrictions built into the methods themselves, as discussed
in the Introduction.

The temporal variations noted above will cause the peaks
and troughs of the covariance to wax and wane on timescales
∼ 2π/|1ωj|. In general, this will cause the two pairs of regions
of highly correlated activity to come and go so that 0, 2, or 4
extremums will be detectable above some magnitude threshold,
which would normally be set by experimental noise or imposed
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FIGURE 13 | Schematic RSNs of a violin string with periodic boundary conditions. (A) Correlations between points at x and x′ for the mode shown in (B), with positive

values shown red and negative blue. (B) One sinusoidal mode. (C) Correlations with the points L/4 (solid) and 3L/4 (dashed). (D) Thresholded correlations for the two

cases in (C). (E) RSNs defined by large positive correlations between points.

by fiat to keep the number of patterns small. Methods that rely
on matching to a dictionary of predetermined FC patterns will
thus appear to show sudden switching between patterns, despite
the underlying dynamics being smooth and without jumps. Such
apparent transitions are thus a spurious artifact of moment-by-
moment matching of continuous evolution to the nearest pattern
in a discrete list.

3.4.2. Limitations on Detecting Dynamic FC
The example in the previous subsection can be generalized to
cases in which the power spectrum is continuous and many
resonances are present at once. In the most relevant case, in
which spontaneous activity spectra peak at zero frequency, one
simply sets �j = 0 and replaces the bandwidth 1ωj by the total
bandwidth of the spectrum.

Figure 14 shows schematic spectra and temporal correlation
functions of spontaneous fMRI BOLD signals and EEG or MEG
signals, normalized to unity at low frequencies. These have
bandwidths and correlation times tc of order 1f ≈ 0.07 s and
tc ≈ 15 s for BOLD and 1f ≈ 15 Hz and tc ≈ 0.07 s for EEG or
MEG, respectively.

Two regimes are defined by the correlation functions in
Figure 14B. The first regime corresponds to measurement times
much less than tc. In this case activity fluctuations (and hence
fluctuations in the FC even for static EC) are essentially static
during a given measurement. Here it is possible to obtain a
“snapshot” of FC, but this timescale (≪0.2 s) is too short to

be useful for EEG or MEG. In the case of fMRI timescales
of a few seconds can be probed and such responses can
be incorporated into the evoked response, as discussed in
section 2.3.1.

The second regime corresponds to measurement times much
greater than tc. Here, fluctuations in FC on timescales of order
tc will tend to average out, thereby exposing modifications in FC
that are due to EC changes on longer timescales. For fMRI this
restricts attention to timescales of a 100 s or more, as has been
argued previously (Leonardi et al., 2015; Zalesky and Breakspear,
2015). EEG and MEG methods can reach this regime on the
scale of a few seconds or longer. This has the potential to enable
EC changes to be monitored on timescales much shorter than
those of alertness dynamics, and potentially to be probed by the
evoked-response approach in section 3.3.

4. SUMMARY AND DISCUSSION

We have used eigenfunction-based spectral methods to analyze
dynamical brain connectivity in the usual linear regime, drawing
together and generalizing many results from spectral analysis,
propagator theory, and neural field theory in the process. The
results clarify the limitations on a range of ad hoc methods for
FC analysis and point the way to avoiding some of their pitfalls,
although it is not possible to analyze individually the multitude
that have been proposed.
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FIGURE 14 | Frequencies and timescales relevant to FC dynamics. (A) Schematic EEG (solid) and BOLD (dashed) spectra, with characteristic bandwidths of ∼ 15 Hz

and ∼ 0.1 Hz, respectively. (B) Schematic correlation functions of EEG (red) and BOLD (blue) fluctuations, with characteristic correlation times of 0.1 s and 15 s,

respectively.

Central to this work is the recognition that the brain is a
physical system, understanding of which is facilitated by taking

its physical nature into account. This is reflected in our use
of system eigenfunctions as the physical building blocks of its

dynamics and connectivity, rather than employing statistically
constructed “networks.” We also avoid treating the set of links

between artificially discretized brain regions as being an actual

macroscale brain network—no such network exists. We do
acknowledge that some such phenomenological approaches yield

measures that are useful for classification and estabishment of
case-control distinctions, for example, but they tend to obscure

the nature of the underlying dynamics, which is the focus of the
present work.

The main findings are:

(i) Links between activity, EC, and FC have been clarified,

including short-term modulation of EC as part of the
evoked response to a stimulus (e.g., via gain dynamics)

being able to be absorbed into the definition of the transfer

function (Babaie-Janvier and Robinson, 2020). The EC-
FC connection is fundamental because directly observable

structural connectivity (SC) does not capture short-range
connectivity, especially of inhibitory neurons, and also says

nothing about which neurons are active in a given situation.

The SC-EC connection is thus a separate issue.
(ii) Eigenmodes of a violin-string analog system were used as a

foil to elucidate the concepts, spatial brain eigenfunctions
being analogous to the spatial eigenfunctions that
correspond to individual notes from a musical instrument.
This analogy has been used to clarify how every eigenmode
spans the whole system and every point participates in each
eigenmode. This invalidates classes of methods based on
thresholding and/or clustering that seek to find discrete
patterns (or “networks”) that have sharp boundaries and
are mutually exclusive.

(iii) Eigenmode analysis emphasizes how smooth evolution of
activity gives rise to time-dependent FC. Beating of modes

at different frequencies will give rise to changes in activity
and FC patterns without requiring nonlinear mechanisms
(Gabay and Robinson, 2017). Resulting dominance of
different modes at different times can yield substantial FC
changes even when the EC is static. Methods that match
instantaneous FC to the nearest entry in a finite dictionary
of patterns will produce sudden, but artifactual, “switching”
as a result.

(iv) EC and FC are dominated by a moderate number
of low-order modes, which explains the robustness of
a relatively small number of patterns seen in EEG
and fMRI experiments—microstates and resting-state
networks, respectively. The dominance of just a few modes
also explains the observed similarity of FC at timescales
ranging from seconds to tens of minutes.

(v) There is not a one-to-one mapping between eigenmodes
and patterns such as RSNs or microstates. Generally,
phenomenological patterns can be decomposed into
superpositions of multiple eigenmodes, but the common
steps of thresholding and imposition of mutual exclusivity
usually lead to the results being noncompact and subject
to serious artifact. If such steps are avoided, few-
component expansions should be possible, with observed
patterns being akin to musical chords, with eigenmodes
corresponding to notes.

(vi) Eigenfunctions have been shown to be robust to
perturbations except where these are large and of
similar spatial scale to variations in the eigenfunction
amplitude, as governed by selection rules analogous to
those for interactions in quantum physics. Eigenmode
robustness explains the general similarity of FC patterns
across arousal states. Dynamic changes in FC are thus
likely to be dominated by activity changes, rather
than changes in EC; for example, deep sleep has
enhanced low-frequency activity, which is correlated
with lower-order modes and larger correlation lengths
and may explain FC differences between arousal
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states (Nunez, 1995; Robinson, 2003; Chang et al.,
2016).

(vii) It has been shown that robust low-order eigenmodes can

be estimated from fMRI covariance data, for example, and

that these are very similar to modes found by solving
the Helmholtz equation on the cortical surface, which

further supports their validity. This finding complements
earlier work that showed similarities between surface-based

modes and ones obtained from structural connectivity

(Robinson et al., 2016). Higher-order covariance-based
modes are increasingly affected by noise, at least for the

data pipeline used in the HCP1200 data set. Denoising is
an active area of research that promises to deliver better

results in the future, but is beyond the scope of the

present aper.
(viii) Projection of activity onto eigenmodes enables

direct estimation of their coefficients as functions
of time. For activity evoked by an impulse

stimulus, this permits calculation of the transfer

function, and thus the EC and implied FC, on
timescales as short as a second or so using EEG
or MEG. This method also has the advantage that
multiple presentations under task or background
conditions can be used to average out the effects of
uncontrolled background activity, as is usual in evoked
response experiments.

(ix) Calculation of eigenmode coefficients provides a

compact few-mode representation of activity, EC, and
the kernels of FC without averaging over time. This
reduces noise because short-scale noise predominantly
affects high-order spatial modes, removes artifacts
due to windowing, and improves time resolution.
Tracking mode coefficients vs. time is thus likely
to be superior to covariance-based dynamic FC for
many purposes.

(x) Because activity changes contribute to FC dynamics,
changing FC is a mandatory consequence of the finite
bandwidth of the signals even when EC is fixed,
and the window length used to evaluate mean FC
compounds this with artifact (Yule, 1926). These effects
are not always separable, but the temporal regimes
required to probe them have been elucidated, with
the correlation time tc of background activity being
the key parameter. For observations on timescales
much less than tc, activity fluctuations can be
viewed as static, whereas they tend to average out
for times much greater than tc, thereby potentially
exposing EC changes that are not direct responses
to activity.

(xi) As noted above, eigenmodes form a discrete set, with
activity dominated by the lowest-order members.
Moreover, the frequency response of each mode
can be closely approximated by a discrete sum of
resonant responses. The latter sum can be truncated to
a few terms, each of which represents the dynamics
of a PID filter that links the resulting activity to

control-systems functions such as prediction and
gain-adjustment, the latter implementing a form of
attention (Babaie-Janvier and Robinson, 2018, 2019,
2020). These facts imply that eigenmodes form an
actual discrete set of entities for the transmission of
brain activity, as opposed to “networks” constructed
artificially on the basis of arbitrary sensor locations
or brain parcellations. The difference here is that the
“nodes” are spatially extended eigenmodes; however,
these are local in the spectral domain, where they form
a discrete lattice labeled by spatial eigenvalues and
resonant frequencies.

(xii) Spatial modes plausibly enable spatial communications
channels with activity broadcasted into modes, especially
near their peaks (Robinson et al., 2018), and available
to be read out near other peaks. Significantly, as the
number of active modes increases, a steep increase
in the number of such channels occurs. Likewise,
mode resonances enhance temporal coherence and may
thus facilitate a version of the communication through
coherence proposal, where in-phase activity can lead
to nonlinear enhancement of local firing rates (Fries,
2005).

(xiii) Just as in fields such as nonlinear optics and nonlinear
plasma theory, linear modes provide the appropriate
starting point to analyze such dynamics systematically via
perturbation techniques such as mode-coupling expansions
(Butcher and Cotter, 1990; Melrose and McPhedran,
1991).

Overall, the above findings reinforce the advantages of using
physically based approaches that work with physical objects
and respect the underlying dynamics, and analyzing them
via standard mathematical methods whose properties and
limitations are thoroughly understood. Such approaches
avoid working with unphysical objects, failure to respect
dimensionality and units, category errors such as attributing
discrete properties to continuous systems or quantities,
and forced attribution to the brain of characteristics that
are actually imposed by the analysis methods used (e.g.,
discreteness, graph-theoretic properties such as motifs and
degree, sharp boundaries, tree-like hierarchies, or modularity,
although some of these can be redefined to be valid in the
limit of increasingly fine discretization Robinson, 2019).
Seductive, but largely unjustified, steps such as sparsification,
thresholding, and clustering are also avoided, along with
the use of idiosyncratic analyses whose properties and
relationships to other approaches are poorly understood. Thus,
in keeping with Occam’s Razor, new mathematical methods
and constructs should be eschewed unless established methods
are inadequate.

Systematic methods enable many problems to be attacked
that could not otherwise be addressed, and the results to
be unified into an overarching framework that spans activity
and connectivity. However, the flip-side of this is that one
must learn and acquire facility with a range of well-established
mathematical and physical techniques—statistical methods alone
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are not enough to understand dynamics and connectivity beyond
phenomenological classification.
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