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Background. Coronary heart disease (CHD) is the most prevalent disease with an unelucidated pathogenetic mechanism and is
mediated by complex molecular interactions of exosomes. Here, we aimed to identify differentially expressed exosome genes
for the disease development and prognosis of CHD. Method. Six CHD samples and 32 normal samples were downloaded from
the exoRbase database to identify the candidate genes in the CHD. The differentially expressed genes (DEGs) were identified.
And then, weighted gene correlation network analysis (WGCNA) was used to investigate the modules in coexpressed genes
between CHD samples and normal samples. DEGs and the module of the WGCNA were intersected to obtain the most
relevant exosome genes. After that, the function enrichment analyses and protein-protein interaction network (PPI) were
performed for the particular module using STRING and Cytoscape software. Finally, the CIBERSORT algorithm was used to
analyze the immune infiltration of exosome genes between CHD samples and normal samples. Result. We obtain a total of 715
overlapping exosome genes located at the intersection of the DEGs and key modules. The Gene Ontology enrichment of DEGs in
the blue module included inflammatory response, neutrophil degranulation, and activation of CHD. In addition, protein-protein
networks were constructed, and hub genes were identified, such as LYZ, CAMP, HP, ORM1, and LTF. The immune infiltration
profiles varied significantly between normal controls and CHD. Finally, we found that mast cells activated and eosinophils had a
positive correlation. B cell memory had a significant negative correlation with B cell naive. Besides, neutrophils and mast cells were
significantly increased in CHD patients. Conclusion. The underlying mechanism may be related to neutrophil degranulation and
the immune response. The hub genes and the difference in immune infiltration identified in the present study may provide new
insights into the diagnostic and provide candidate targets for CHD.

1. Introduction

Coronary heart disease (CHD) is a collective term for disease
in which the wall of the coronary arteries becomes narrowed
due to fatty material accumulation [1, 2]. As the most com-
mon heart disease worldwide, it is estimated that around 200
million people suffer from CHD [3]. With the aging of soci-
ety, an increasing number of CHD patients may be seen in
the future. The poor prognosis of CHD seriously affects
the quality of life of patients and brings a heavy burden to

society [4]. Therefore, this study mainly explores the hub
genes of exosomes in CHD and its regulatory function.

Exosomes are nanometer-sized vesicles (30-150nm in
diameter) secreted by most cells through exocytosis. They
are encapsulated in a lipid bilayer and carry a variety of bio-
molecules, such as proteins, glycan, lipids, metabolites, RNA,
and DNA [5]. Exosomes play a critical aspect in several
pathological diseases, including cardiovascular disease [6,
7] and acute and chronic inflammation [8]. exoRBase is an
exosome library derived from RNA-seq data analysis of
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human blood exosomes, including experimental verification
from published literature [9]. It helps researchers identify
molecular features in blood exosomes and triggers the
discovery of new circulating biomarkers and functional impli-
cations for human diseases [10]. An important pathological
feature of CHD is atherosclerosis. Exosome-mediated inter-
cellular signalingmay be a significant aspect of atherosclerotic
plaque formation, affecting not only the initiation of CHDbut
also its progression [11]. Therefore, exosomesmay be an ideal
biomarker candidate and therapeutic target for CHD.

Recently, the focus has mainly shifted to screening DEGs
but not exploring gene interactions [12]. Weighted gene cor-
relation network analysis (WGCNA) is a systematic biology
method and widely used to explore the connections between
key modules and target disease [13, 14]. The WGCNA
method generates a scale-free gene coexpression network
based on Pearson’s correlation matrix of genes [15]. After
constructing the WGCNA network, we observed that simi-
larly expressed genes were in the candidate module. Then,
we analyzed the connection between acquired module and
DEGs and finally determined the exosome genes with the
most significant relation to CHD. Then, based on the genes
acquired before, both functional enrichment analysis and
protein-protein interaction (PPI) were performed and we
revealed the potential transcriptional regulatory network in
CHD, aiming to obtain new insights for CHD prevention
and therapy. Besides, this is the first time in discovering
the relationship between exosome genes and CHD by
merged bioinformatic analysis. Therefore, the present study
may advance the understanding of the underlying molecular
mechanisms of CHD and may contribute to the diagnosis
and treatment of CHD.

2. Methods

2.1. Search Strategy. The mRNA expression profiles, which
included 12 CHD and 118 normal blood samples, were
obtained from the exoRBase (http://www.exorbase.org/
exoRBaseV2/download/toIndex) database [9]. The expres-
sion matrix was preprocessed using the following included
criteria: (1) mRNA was filtered, and lncRNA was deleted;
(2) at least one of mRNAs was nonzero in specific gene
expression and (3) on the same platform. Finally, a total of
13768 mRNAs (including 6 CHD blood samples and 32 nor-
mal blood samples), which had proper expression data, were
included for further analysis. Besides, the acquired genes
could trace back to the GEO database (https://www.ncbi.nlm
.nih.gov/geo/), and gene expression profiles of GSE100206
and GSE99985 were downloaded. Normal peripheral blood
samples were collected from Shanghai Jiao Tong University
School of Medicine, and CHD peripheral blood samples were
collected from Fudan University Shanghai Cancer Center and
Biomedical Research Institute. All the gene matrix data were
performed by the single platform of Illumina HiSeq 2000
(Homo sapiens).

2.2. Data Preprocessing and DEG Analysis. Using the GEO
database and merging two genes expressed matrix (including
GSE99985 and GSE100206), the genes were preprocessed to

do the next analysis. The limma (https://www.bioconductor
.org/packages/release/bioc/html/limma.html) package in the
R (version 4.0.5) software was used to normalize the gene
expression profile of peripheral blood samples. The expres-
sion profile contained 13768 genes and was used for further
study. After that, the limma package was employed to calcu-
late DEGs. An adjusted-P value <0.05 and ∣log2 fold change
ðlog2FCÞ ∣ >1 were considered as a threshold.

2.3. WGCNA Construction. WGCNA is a system biology
method used to describe the correlation patterns of genes
in microarray samples and is commonly used in a variety
of system biology analyses [13]. To conduct WGCNA anal-
ysis, the biochip platform (GPL11154) annotation informa-
tion was used to match gene probes and gene names. The
coexpression network module was constructed by the R soft-
ware and the WGCNA package (https://cran.rproject.org/
web/packages/WGCNA/index.html). To ensure the reliabil-
ity of network construction, we first normalized the samples,
then eliminated outliers, constructed a hierarchical cluster
tree, and divided the genes with high and low coexpression
into the same module according to their respective expres-
sion levels. Then, the adjacency matrix was transformed into
a topological overlap matrix, and the corresponding dissim-
ilarity degree was calculated. Based on hierarchical gene
clustering, the modules were identified by the dynamic tree
cutting method. The depth segmentation value was 2, and
the minimum size cutoff value was 50. Meanwhile, the
Pearson correlation matrix and adjacency matrix were to
establish the information of the whole common expression
network. Commonly, the value of the highest module signif-
icance was considered as the significant part.

2.4. Enrichment Analysis. WGCNA is a network-based
method concentrating on gene sets other than individual
genes, which alleviates the multiple testing problem inherent
in microarray data analysis and is available for unweighted
correlation networks. To evaluate its biological function,
genes of the intersection between DEGs and the most
significant module were selected for further functional
enrichment analysis. The http://org.hs.eg/. db package
(https://bioconductor.org/packages/release/data/annotation/
html/org.Hs.eg.db.html) was selected to map the key genes
with ensemble ID. The Clusterprofiler package (https://
bioconductor.org/packages/release/bioc/html/clusterProfiler
.html) was used to perform Gene Ontology (GO) functional
annotations to explore and determine the potential biological
function. RichPlot, colorspace, STRING, dose, and ggplot2
packages were also used as dependent packages, and three
parts, including biological processes (BPs), cellular compo-
nents (CCs), and molecular functions (MFs), were obtained.

2.5. PPI Network Construction and Identification of Hub
Genes. At the protein level, the STRING database (https://
string-db.org) was employed to construct a protein-protein
interaction (PPI) network and then saved as a tsv file. The
Cytoscape software (version 3.8.2) network analyzer was uti-
lized to develop the interaction association of the candidate
genes encoding in CHD. After that, the CytoHubba plugin
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was inserted and the Maximal Clique Centrality (MCC)
method was calculated to find the top 10 hub genes. Besides,
the MCC algorithm performs better performance in predict-
ing hub genes in PPI networks compared with the rest of the
topological algorithms. Thus, we selected the MCC algo-
rithm to identify HCC hub genes [16].

2.6. Immune Infiltration Pattern. The proportion of each
group of immune cells was estimated using the deconvolu-
tion method CIBERSORT (https://cibersort.stanford.edu/).
We set to run mode as bulk-mode, disabled quantile normal-
ization, and 100 permutations were set for the following signif-
icance analysis. We obtained the gene signatures to identify 22
immune cell populations (B cell naive, B cell memory, plasma
cells, T cell CD8, T cell CD4 naive, T cell CD4memory resting,
T cell CD4 memory activated, T cell follicular helper, T cell
regulatory (Treg), T cell gamma delta, NK cells resting, NK
cells activated, monocytes, macrophage M0, macrophage
M1, macrophage M2, dendritic cells resting, dendritic cells
activated, mast cells resting, mast cells activated, eosinophils,
and neutrophils). After filtration, the corrplot package was
employed to generate a correlation heat map. The ggplot2
package was used to compare the normal group with the
CHD group. Adjusted-P value <0.05 was considered signifi-
cant to the corresponding cell type.

3. Results

3.1. Flow Diagram of the Study. Figure 1 shows the workflow
of the study. First, the data was obtained from the exoRBase
and GEO databases. After conduct batch normalization by
limma package, we proceed with DEG screening and

WGCNA analysis, respectively. Based on the WGCNA result,
the most significant gene modules were detected. Then, taking
the intersection DEGs and acquired module and the overlap-
ping genes were regarded as the significant genes we were
interested. Then, basing on DEG results, GO analyses were
performed to identify the function of hub genes. The Cytos-
cape software was used, and 10 hub genes of the PPI network
were constructed to show the interaction. Last, we analyzed
the immune cell infiltrate pattern.

3.2. Identification of DEGs. The GEO dataset of the blood
sample was dealt with the R software. We found that there
was a significant batch effect between different datasets,
which was corrected by performing batch normalization in
the limma package (Figure 2). Then, a total of 2583 DEGs
were found. Among that, 706 genes were downregulated,
and 1877 genes were upregulated in the CHD group com-
pared with the normal group. Figure 3(a) depicts the upreg-
ulated, downregulated genes, and non-DEGs in volcanic
maps. Meanwhile, the top 50 DEGs ranked with adjusted-
P values were used to generate a heat map (Figure 3(b)).

3.3. Weighted Gene Coexpression Networks and Finding
Module of Interest. We extracted exosome sequencing genes
from CHD blood samples and exosome sequencing genes
from normal blood samples for WGCNA to explore
coexpression networks. The CHD and normal sample
cluster tree diagram is shown in Figure 4(a). We used a
scale-free topology index and mean connectivity to
determine the soft threshold of WGCNA. The higher the
scale-free topology index value equaled to the greater the pos-
sibility of the scale-free feature. The correlation coefficient

Data downloading from
GEO and exoRbase

DEGs screening
(|Log2FC| > 1, adjusted-P, < 0.05)

Date preprocessing

715 genes in intersection

GO enrichment
analysis 

1877 up-regulated DEGs
706 down-regulated DEGs 

Construction of co-expression
network by WGCNA 

Detection of gene module
(Blue module) 

PPI network Immune cell
infiltration 

Figure 1: Design and workflow of the whole study. Abbreviations: DEGs: differentially expressed genes; WGCNA: weighted gene
correlation network analysis; GO: Gene Ontology; PPI: protein-protein interaction.
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between log (k) and logP (k) was 0.9, and the soft threshold
β = 3 was selected to convert the correlation matrix into a
scale-free adjacency matrix (Figure 4(b)). Next, the dynamic
tree cutting based on the topological overlap matrix was used
to generate the coexpression module, and the coexpression
network generated a total of 11 modules (Figure 4(c)). To
examine the correlation between different modules and
CHD conditions, we calculated the correlation factors for each
module (Figure 4(d)). It showed that the correlation coeffi-
cients of the blue module, which contains 1994 genes, were
greatest (Figure 4(e), correlation coefficient = 0:89, P < 0:001,
containing 487 genes). The modules obtained from WGCNA
were verified with the results of differential gene cluster
analysis. To further explore the physiological or pathological
pathways associated with CHD, DEGs and the blue module
were intersected, and 715 overlapping genes were obtained
(Figure 4(f)).

3.4. Functional Annotation. The GO enrichment analysis of
overlapping genes is shown in Table 1 and Figure 5(a). As
for BP, the analysis showed that these genes were enriched
in multiple pathways, including neutrophil degranulation

and activation involved in the immune response. With
regard to CC, these genes were mainly involved in the for-
mation of vesicle lumen, cytoplasmic lumen, and secretory
granule lumen. And for MF, these genes were related to gly-
cosaminoglycan binding, heparin binding, and antioxidant
activity. These results suggest that CHD exosome mRNA
may play an important role in regulating immune response
during the occurrence and development of disease.

3.5. PPI Network Construction and Identification of Hub
Genes. A PPI network of 715 overlapping genes was depicted
using the STRING database. Hub genes were selected from the
PPI network through the MCC algorithm of CytoHubba plu-
gin (Figure 5(b)). The top 10 genes with the highest MCC
scores were identified as centers and are shown in
Figure 5(c), including lysozyme (LYZ), CAMP, haptoglobin
(Hp), ORM1, LTF, CRISP3, PRG3, MMP8, OLFM4, and pep-
tidoglycan recognition protein-1 (PGLYRP1) (Figure 5(d)).

3.6. Immune Cell Infiltration Analysis. Multiple GO func-
tional analyses related to immune processes were identified.
Thus, to further discover the relationship between both, we
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Figure 2: Normalization of CHD expression. (a) Expression microarray datasets of GSE100206 and GSE99985 before normalization. (b)
GSE100206 and GSE99985 datasets of normalization. Abbreviations: CHD: coronary heart disease; N: normal samples.
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first examined the pattern of immune infiltration under
CHD and normal conditions using the CIBERSORT
algorithm. The percent of the 22 immune cells is visually dis-
played in Figure 6(a). Corheatmap (Figure 6(b)) result
showed that mast cells activated and eosinophils had a pos-
itive correlation (value = 0:92). B cell memory had a signifi-
cant negative correlation (value = −0:74) with B cell naive.
Besides, in CHD patients, neutrophils and mast cells were
significantly increased (P < 0:05) and showed in the vioplot
as below (Figure 6(c)).

4. Discussion

Exosomes had shown a critical effect on the occurrence and
development of CHD. Intercellular vesicle information
transport of exosomes is one of the important mechanisms
of CHD [17]. The recognition and researches of exosomes
were penetrating deeply and had got some new progressions
for the past few years. Valadi et al. showed many mRNAs
were not present in the donor cell [18]. They were passed
to another cell and translated through the exosome. It had
been proved the translation of exosome mRNAs was func-
tional in vitro. To confirm the potential effects of exosome
genes in the development of CHD, we screened the DEGs
associated with CHD based on the exoRBase data and the
most related module to obtain the candidate genes associ-

ated with CHD. In the GO enrichment analyses, most genes
were enriched in BP and CC. Neutrophil degranulation,
neutrophil activation involved in immune response, secre-
tory granule lumen, cytoplasmic vehicle lumen, and vehicle
lumen collagen-containing were the most remarkable cate-
gories. In this study, we used the Cytoscape software and
the MCC method to further discover the core genes in the
network. Then, the plugin Cytoscape was used for node
ranking calculation. Chin et al. [19] have reported that Cyto-
Hubba provides 11 topological analysis methods including
Degree, Edge Percolated Component, Maximum Neighbor-
hood Component, Density of Maximum Neighborhood
Component, Maximal Clique Centrality, and six centralities
(Bottleneck, EcCentricity, Closeness, Radiality, Betweenness,
and Stress) based on shortest paths. Among that, the newly
proposed method, MCC, has a better performance on the
precision of predicting essential proteins and has been
adopted in this study. Finally, ten hub genes were discovered
from the PPI network, including LYZ, CAMP, HP, ORM1,
LTF, CRISP3, MMP8, OLFM4, and PGLYRP1.

Atherosclerosis was considered to be the pathological
foundation of CHD. The development of atherosclerosis is
the result of the combined action of chronic inflammation
and abnormal lipid metabolism [20]. CAMP was a member
of the antimicrobial peptide family with a cathelin domain
characterized by a highly conserved N-terminal signal
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Figure 4: Construction of weighted gene coexpression network of CHD samples. (a) Sample clustering to detect outliers. (b) The cutoff was
set to be 0.9, and β = 3 was chosen to be the soft-threshold power. (c) The gene dendrogram showed that the molecules were classified into
different gene modules based on the correlation analysis. Different colors represented the different modules. (d) A heat map of the
relationship between module traits showed the correlation between different modules and disease status. The red square represented a
positive correlation, and the blue square represented a negative correlation. The common correlation between the module and the
disease and the P value was shown in the box. (e) Correlation between module membership of blue and green circles and gene
significance (absolute value). (f) Venn diagram of gene crossover between the DEG list and the blue module. A total of 715 overlapping
genes were located at the intersection of the DEGs and the blue module. Abbreviation: DEGs: differentially expressed genes.
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peptide [21, 22], except for its antibacterial activities, the
CAMP protein functions in the inflammatory response
[23], which was related to the development of CHD. Zhao
et al. showed that serum levels of LL-37 (human analog of
CAMP) were significantly reduced in CHD patients [24,
25]. Moreover, LL-37 was expressed in atherosclerotic
lesions, mainly existed in macrophages and T cells, and
functioned in inducing inflammatory gene expression [25].
Amounts of LL-37-mtDNA complex increased in athero-
sclerotic plasma and plaques, resisted DNase II degradation,
and escaped from autophagic recognition in atherosclerosis
[26], indicating that CAMP might induce atherosclerosis to
increase the risk of CHD.

LYZ was a basic protein interacting with negatively
charged phospholipid bilayers [27]. Endogenous LYZ regu-
lated the composition of exosome-related RNA during inflam-
mation, reflecting its role in cell-cell communication signaling
in the inflammatory response of CHD [28]. Abey et al. dem-
onstrated the importance of LYZ in epithelial cell migration.
Meanwhile, they also found that LYZ therapy altered the
expression of proteins, which was associated with signaling
networks of inflammation, immune signaling, and atheroscle-
rotic pathways [29]. Abdul-Salam et al. found that LYZ was a
potential biomarker for atherosclerotic disease. The elevated
LYZ level was closely correlated with disease severity, suggest-
ing its value as a diagnostic tool to assess CHD patients [30].

Table 1: GO analysis of overlapping genes.

Category ID Description Adjust- P value Genes

BP GO:0043312 Neutrophil degranulation 3.25E-11

DEFA1B/HSPA1B/CAMP/MPO/AZU1/MMP8/DEFA1/CTSG/
PRTN3/PGAM1/MMP9/ELANE/S100A8/HP/EPX/LTF/PRG2/
PGLYRP1/CEACAM6/S100A9/CYSTM1/CDA/LYZ/ORM1/

FCGR3B/DEFA4/S100A12/BPI/OLFM4/PRG3/LGALS3/RNASE2/
HVCN1/A1BG/MS4A3/SLC2A5/ABCA13/HSPA1A/S100P/
TNFAIP6/CD59/GPR84/FPR1/ARG1/RNASE3/BRI3/CXCR1/

CRISP3/CEACAM8/PRAM1/MME/ALAD/PTGES2

BP GO:0002283
Neutrophil activation
involved in immune

response
3.25E-11

DEFA1B/HSPA1B/CAMP/MPO/AZU1/MMP8/DEFA1/CTSG/
PRTN3/PGAM1/MMP9/ELANE/S100A8/HP/EPX/LTF/PRG2/
PGLYRP1/CEACAM6/S100A9/CYSTM1/CDA/LYZ/ORM1/

FCGR3B/DEFA4/S100A12/BPI/OLFM4/PRG3/LGALS3/RNASE2/
HVCN1/A1BG/MS4A3/SLC2A5/ABCA13/HSPA1A/S100P/
TNFAIP6/CD59/GPR84/FPR1/ARG1/RNASE3/BRI3/CXCR1/

CRISP3/CEACAM8/PRAM1/MME/ALAD/PTGES2

BP GO:0050832
Defense response to

fungus
4.58E-07

DEFA1B/DEFA3/MPO/DEFA1/CTSG/ELANE/S100A8/LTF/
S100A9/DEFA4/S100A12/HRG/ARG1

BP GO:0019730
Antimicrobial humoral

response
6.57E-07

DEFA1B/CAMP/DEFA3/AZU1/DEFA1/CTSG/PRTN3/ELANE/
S100A8/LTF/PGLYRP1/S100A9/LYZ/DEFA4/S100A12/BPI/

CXCL9/HRG/BCL3/PGLYRP2/FGB/RNASE3

BP GO:0031640
Killing of cells of other

organism
1.68E-06

DEFA1B/CAMP/DEFA3/AZU1/DEFA1/CTSG/ELANE/LTF/
PGLYRP1/LYZ/DEFA4/S100A12/HRG/ARG1/APOL1

CC GO:0034774 Secretory granule lumen 1.77E-09

DEFA1B/CAMP/DEFA3/MPO/AZU1/MMP8/DEFA1/CTSG/
PRTN3/PGAM1/ELANE/S100A8/HP/EPX/LTF/PGLYRP1/

S100A9/CDA/LYZ/ORM1/FN1/DEFA4/S100A12/TIMP3/BPI/
OLFM4/PRG3/RNASE2/A1BG/HRG/S100P/FGB/ARG1/RNASE3/

APOA1/CRISP3/ALAD/PTGES2

CC GO:0060205
Cytoplasmic vesicle

lumen
1.77E-09

DEFA1B/CAMP/DEFA3/MPO/AZU1/MMP8/DEFA1/CTSG/
PRTN3/PGAM1/ELANE/S100A8/HP/EPX/LTF/PGLYRP1/

S100A9/CDA/LYZ/ORM1/FN1/DEFA4/S100A12/TIMP3/BPI/
OLFM4/PRG3/RNASE2/A1BG/HRG/S100P/FGB/ARG1/RNASE3/

APOA1/CRISP3/ALAD/PTGES2

CC GO:0031983 Vesicle lumen 1.77E-09

DEFA1B/CAMP/DEFA3/MPO/AZU1/MMP8/DEFA1/CTSG/
PRTN3/PGAM1/ELANE/S100A8/HP/EPX/LTF/PGLYRP1/

S100A9/CDA/LYZ/ORM1/FN1/DEFA4/S100A12/TIMP3/BPI/
OLFM4/PRG3/RNASE2/A1BG/HRG/S100P/FGB/ARG1/RNASE3/

APOA1/CRISP3/ALAD/PTGES2

MF GO:0016209 Antioxidant activity 0.000793131
HBA1/MPO/HBA2/HP/EPX/S100A9/PRDX2/APOE/TXN/HBM/

HBZ/TXNDC17/HBG1/PXDNL

MF GO:0004601 Peroxidase activity 0.002388549
HBA1/MPO/HBA2/EPX/PRDX2/HBM/HBZ/TXNDC17/HBG1/

PXDNL

MF GO:0031720 Haptoglobin binding 0.002388549 HBA1/HBA2/HBM/HBZ/HBG1

Abbreviations: BP: biological process; CC: cellular component; MF: molecular function.
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Figure 5: Continued.
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(b)

(c)

Rank Node

1 LYZ

2 CAMP

3 HP

4 ORM1

5 LTF

6 CRISP3

6 PRG3

6 MMP8

6 OLFM4

6 PGLYRP1

(d)

Figure 5: Functional enrichment analysis of DEGs. (a) GO enrichment significance items of overlapping DEGs in different functional
groups: BP, CC, and MF. (b) Visualization of the PPI network and hub genes of the identified DEGs by Cytoscape of a PPI network of
overlapping DEGs. (c) Ten hub genes of the overlapping DEGs marked with different colors. (d) Top 10 DEGs ranked by MCC. The
redder, the higher its grades. Abbreviations: DEGs: differentially expressed genes; GO: Gene Ontology; BP: biological process; CC:
cellular component; MF: molecular function; PPI: protein-protein interaction.
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Figure 6: Continued.
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PGLYRP1 was a bacterial wall component known to be
present in human atherosclerosis and was found almost
exclusively in the secretory granules of neutrophils and
eosinophils [31]. Peptidoglycan might promote inflamma-
tion by activating innate immune responses, peptidoglycan
recognition proteins, chemokines, and proinflammatory
cytokines (IL-1, IL-6, and tumor necrosis factor-alpha) in
nonmucosal sites [32]. These processes may promote and
accelerate the development of atherosclerotic lesions. Our
results verified that CAMP, LYZ, and PGLYRP1 were impor-
tant factors in constituting the atherosclerosis of CHD.

The role of cholesterol in coronary heart disease was
undisputed [33, 34]. Hp was a rich plasma protein that
played an important role in immune regulation and reversal
of cholesterol transport. It is also bound to hemoglobin to
protect against oxidative damage [35]. Also, this gene played
an important role in CHD pathological process [36, 37]. In
Belgian, Hp 1-1 phenotype had a strong association with
an increased risk of CHD [38]. It had been reported by
Cahill et al. that diabetes mellitus individuals carried with
Hp 2-2 allele had more likely to develop CHD [39], which
means that Hp was closely related to the occurrence and
development of cardiovascular disease.

Other key exosome genes, including LTF, CRISP3, and
OLFM4, were mainly associated with acute and chronic
inflammation. MMP8, LTF, CRISP3, and OLFM4 were
upregulated in the inflammatory process to facilitate

leukocyte-mediated migration, neutrophil activation, and
degranulation process [40]. MMP8, LTF, and OLFM4 were
also known as neutrophil collagenase [41]. MMP8 was
expressed and produced by endothelial cells, smooth muscle
cells, and macrophages in atherosclerotic plaques [42].
Momiyama et al. proved MMP8 levels were higher in both
stable CHD and unstable angina patients. Also, high plasma
MMP8 levels suggested that MMP8 might reflect coronary
plaque instability, which suggested that MMP8 was a prom-
ising biomarker for CHD [43]. OLFM4 and LTF were sub-
populations of neutrophils in septic shock. Among that, a
high percentage of OLFM4 positive neutrophils were associ-
ated with a greater risk of organ failure and death [44].
PRG3 gene was a novel p53 target gene in p53-dependent
apoptosis pathway [45].

Infiltrated immune cells constitute important parts of
CHD and have been widely studied in recent years. Neutro-
phil was found to be indicative of responses to plaque forma-
tion [46]. It expelled intracellular contents which were rich
in uncoagulated chromatin, histones, and active substances
[47]. These intracellular contents could participate in plaque
erosion, including noxious effects on vascular cells, direct
thrombogenic activity, and the promotion of platelet activa-
tion/aggregation [47]. Quillard et al. had demonstrated that
TLR2 stimulation and neutrophil participation might cause
the plaques vulnerable to superficial erosion and thrombotic
complications [48]. Therefore, the function of neutrophils
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Figure 6: Immune cell infiltration analysis. (a) The distribution of immune infiltration in peripheral blood of CHD patients in 22
subpopulations of immune cells. Different colors represent different immune cells, and the length of the bars in the barplot represents
the proportion of the immune cell population. (b) A Corheatmap of the correlation matrix for filtered 18 immune cell proportions in
CHD. The red color represents the positive relationship between two immune cells, and the blue color represents the negative
relationship between two immune cells. The darker the color, the higher the correlation was (P < 0:05). (c) The violin plot of immune
cells. The blue bar represents normal samples, and the red bar represents the peripheral blood samples of CHD patients. Abbreviations:
CHD: coronary heart disease; N: normal samples.
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played a critical role in the pathophysiology of CHD, which
is consistent with our results.

Some limitations cannot be ignored. First of all, the
results in this paper were limited to bioinformatic analysis,
and it had not been further proved by experiments. Second,
the number of samples was limited because of insufficient
databases. Therefore, further verification was needed by col-
lecting more clinical samples. Moreover, studies were
needed to explore how these exosome genes work in vivo
and in vitro.

In summary, we determined that the activation and
degranulation of neutrophils may possess significant roles
in mediating the process of CHD. Besides, the underlying
mechanism may be related to the immune cell infiltration
response. In addition, the core PPI exosome genes identified
might be used as biomarkers and therapeutic targets for
CHD. This study could provide a new insight to predict,
assess, and treat for CHD.
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